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Spin-valley locking in Kekulé-distorted graphene with Dirac-Rashba interactions
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The joint effects of Kekulé lattice distortions and Rashba-type spin-orbit coupling on the electronic properties
of graphene are explored. We modeled the position dependence of the Rashba energy term in a manner that
allows its seamless integration into the scheme introduced by Gamayun et al. [New J. Phys. 20, 023016 (2018)] to
describe graphene with Kekulé lattice distortion. Particularly for the Kekulé-Y (Kek-Y) texture, the effective low-
energy Dirac Hamiltonian contains a new spin-valley locking term in addition to the well-known Rashba-induced
momentum-pseudospin and spin-pseudospin couplings and the Kekulé-induced momentum-valley coupling
term. We report on the low-energy band structure and Landau level spectra of Rashba-spin-orbit-coupled Kek-Y
graphene and propose an experimental scheme to discern between the presence of Rashba spin-orbit coupling,
Kek-Y lattice distortion, and both based on doping-dependent magnetotransport measurements.
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I. INTRODUCTION

In recent years, graphene-metal hybrid systems have at-
tracted much attention because they showcase new and
exciting electronic and magnetic phenomena not present in
pristine graphene [1]. Through proximity effects, these hybrid
systems enable the modification and control of the electronic
properties of pristine graphene, such as opening a gap between
the valence and conduction bands [2]; distorting the linear
behavior of carriers at low energies [3]; and introducing the
anomalous, spin, and spin-quantum Hall effects [4–6]. Re-
searchers aim to break graphene’s symmetries—from which
many of its extraordinary properties originate—through var-
ious mechanisms to turn graphene into a suitable candidate
for spintronic applications [7]. Two of the most actively re-
searched mechanisms for breaking graphene’s symmetries are
lattice deformations and spin-orbit effects induced by proxim-
ity [8–13]. Throughout this paper, we shall focus on these two
mechanisms, combining specifically Kekulé lattice distortions
and proximity-induced Rashba spin-orbit (RSO) coupling.

On the one hand, a Kekulé Y-shaped bond pattern
(Kek-Y) was experimentally obtained in 2016 by Gutierrez
et al. [14,15] by growing graphene epitaxially on a Cu(111)
surface and was attributed to the commensurate lattice con-
stants of graphene and the copper substrate, combined with
the presence of copper vacancies acting as “ghost” adatoms.
Eom and Koo [16] observed both Kek-Y and Kek-O textures
by inducing nanoscale strain on graphene using a silicon
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dioxide substrate. Finally, the graphene Kek-O texture was
observed by Li et al. in quantum Hall ferromagnetic states [17]
and, more recently, by Bao et al. in Li-intercalated graphene
samples [18,19] and by Qu et al. in graphene decorated with
Li adatoms [20]. In order to determine the electronic structure
of graphene with Kekulé lattice distortion, Gamayun et al.
[21] derived low-energy Dirac Hamiltonians for both the Kek-
Y and Kek-O textures. In the former case, they found that
the lattice distortion introduces a new coupling between the
electronic momentum and its valley isospin as a result of the
broken chiral symmetry. The low-energy spectrum preserved
its linear behavior near the Fermi level, but with the valley
degeneracy breaking resulting in two Dirac bands with distinct
Fermi velocities.

On the other hand, Rashba-type spin-orbit coupling has
been confirmed in graphene due to proximity effects with
metallic substrates. This extrinsic effect is momentum in-
dependent in the single-valley approximation and causes an
energy splitting between opposite spin states of 13–225 meV
[22–25]: 3 to 4 orders of magnitude greater than the split-
ting associated with graphene’s intrinsic spin-orbit coupling
[26–28]. Such a substantial enhancement of the RSO inter-
action has been mainly attributed to hybridization between
carbon’s 2pz orbitals and the metal substrate’s d orbitals and
broken lattice symmetry in graphene [29]. Moreover, the RSO
interaction strength has been shown to be tunable via external
gate voltages, as well as local lattice deformations [11,30].
Given the bond length dependence of the Rashba parame-
ter [30], the following question naturally arises: How will
the RSO coupling be modified by the presence of Kekulé
lattice distortions in graphene? In this paper, we aim to an-
swer this question. We introduce a generalized tight-binding
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Hamiltonian for graphene with RSO coupling and Kekulé lat-
tice distortion, parametrized via position-dependent hopping
and spin-orbit interaction terms, exhibiting Kekulé period-
icity. After mapping the problem onto reciprocal space and
folding the graphene bands onto the Kekulé Brillouin zone
(KBZ), we derive effective k · p-type Hamiltonians for both
the Kek-Y and Kek-O textures that are valid for the bands
nearest the Fermi level. We then use these effective Hamil-
tonians to compute the low-energy band spectra of Kekulé
distorted graphene with RSO coupling and discuss its most
salient features, including the resulting spin, pseudospin, and
valley textures. Finally, we introduce an out-of-plane mag-
netic field in the minimal coupling approximation [31] for
the Kek-Y case and compute its Landau level (LL) spectrum,
focusing on the competing effects of the Kekulé and RSO
terms in magnetotransport. In particular, we identify different
trends for the horizontal LL splittings in a carrier density vs
magnetic field diagram in the cases of graphene with only
a Kek-Y distortion, graphene with only RSO coupling, and
graphene with both a Kek-Y distortion and RSO coupling.
We propose that these distinct trends may be used to exper-
imentally identify the presence of Kek-Y distortions, RSO
coupling, or both on graphene-metal hybrid structures.

II. TIGHT-BINDING MODEL

A. Tight-binding model

The tight-binding Hamiltonian for a single layer of
graphene with proximity-induced, sublattice-resolved Dirac-
Rashba spin-orbit coupling [6,32] and a Kekulé lattice
distortion [21] can be written as H pq = H pq

0 + H pq
R , with the

spinless graphene Hamiltonian

H pq
0 = −

∑
μ

∑
R

3∑
j=1

(
t pq
R,R+δ j

a†
R,μbR+δ j ,μ + H.c.

)
, (1)

where a†
R,μ (aR,μ) is the creation (annihilation) operator for

an electron on site R of sublattice A, with spin projec-
tion μ =↑,↓, and b†

R+δ j ,μ
(bR+δ j ,μ) are the corresponding

B sublattice operators. The integers p and q parametrize
the Kekulé bond texture over the honeycomb lattice, as
shown below [see Eqs. (2) and (7)]. In the case of pristine
graphene (� = 0), each atom at site R is connected to three
nearest neighbors at sites R + δ j , with relative position vec-
tors δ1 = a0

2 (
√

3,−1), δ2 = − a0
2 (

√
3, 1), and δ3 = a0(0, 1),

where a0 = 1.421 Å is the unperturbed C-C bond length. The
lattice vectors are a1 = δ3 − δ1 and a2 = δ3 − δ2. However,
the presence of a Kekulé bond distortion will modulate the

hopping terms t pq
R,R+δ j

as [21]

t pq
R,R+δ j

t0
= 1 + 2Re[�eiKpq·δ j+iG·R]. (2)

Here, Kpq ≡ pK+ + qK−, with the graphene valley vectors

K± = 4π

3
√

3a0

(
±1

2
,

√
3

2

)
, (3)

and the vector

G ≡ K+ − K− = 4π

3
√

3a0

(1, 0) (4)

is a Kekulé superlattice primitive Bragg vector. The type of
bond texture is determined by the integer (∈ Z3)

n = (1 + q − p) mod3, (5)

where a Kek-O texture corresponds to n = 0, whereas Kek-Y
textures are obtained for n = ±1.

Since G connects the two graphene valleys K± in recip-
rocal space, the latter are folded down onto the � point of
the KBZ. The hopping term modulation amplitude � is, in
general, complex valued, although in the remainder of this
paper we shall take both � and t to be real without loss of
generality. Finally, we point out that, for pristine graphene, the
nearest-neighbor hopping integral reduces to t0 = 3.16 eV.

The Dirac-Rashba spin-orbit term has the form

H pq
R =

∑
μν

∑
R

3∑
j=1

[
iλpq

R,R+δ j

2
a†

R,μ(sμν×δ̂ j )zbR+δ j ,ν − H.c.

]
,

(6)
where s is the vector of Pauli matrices acting on the phys-
ical spin subspace, whereas δ̂ j = δ j/|δ j |. We have allowed
a periodic bond length modulation of the Rashba spin-orbit
coupling λ

pq
R,R+δ j

, analogous to that of the hopping parameter
in Eq. (2), with a complex amplitude ξ :

λ
pq
R,R+δ j

λR
= 1 + 2Re[ξeiKpq·δ j+iG·R], (7)

where λR is the Dirac-Rashba parameter in the absence of a
Kekulé distortion.

Finally, we note that the Kekulé distortion also admits
on-site energy modulation by ionic potentials [21] or by
second-nearest-neighbor hopping [33]. These additional terms
are discussed in Appendix E and will not be considered in our
main discussion.

B. Total Hamiltonian in reciprocal space

Taking the Fourier transforms of the total Hamiltonian
gives the spin-conserving and Dirac-Rashba terms as

H pq
0 =

∑
k∈BZ

∑
μ

[	(k)a†
k,μbk,μ + �	(k + Kpq)a†

k+G μbk,μ + �	(k − Kpq)a†
k−G μbk,μ + H.c.],

H pq
R = i

∑
k∈BZ

∑
μ,ν

[a†
k,μ
μν (k)bk,ν + ξa†

k+G,μ
μν (k + Kpq)bk,ν + ξa†
k−G,μ
μν (k − Kpq)bk,ν − H.c.], (8)
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with the sum over k running over all wave vectors of the
original (pristine graphene) Brillouin zone (BZ). We have also
defined

	(k) = −t0

3∑
j=1

eik·δ j , 
μν (k) = λR

2

3∑
j=1

eik·δ j (sμν × δ̂ j )z.

(9)
We now perform a zone folding from the original BZ onto

the KBZ by introducing the 12-spinors �k = (ck,↑, ck,↓)T ,
where

ck,μ = (ak,μ, ak−G,μ, ak+G,μ, bk−G,μ, bk+G,μ, bk,μ)T (10)

and k ∈ KBZ. Using the properties (m ∈ Z)

�(k) = ei 2π
3 m�[k + m(K+ + K−)] = �(k + 3mK±), (11)

which are valid for both �(k) = 	(k) and �(k) = 
(k), we
may write

H pq =
∑

k∈KBZ

�
†
kHpq(k)�k, (12)

with the Bloch Hamiltonian

Hpq(k)=

⎛
⎜⎜⎝

0 En(k) 0 iR↑↓
n (k)

E†
n (k) 0 −iR↓↑ ∗

n (k) 0
0 iR↓↑

n (k) 0 En(k)
−iR↑↓

n
∗(k) 0 E†

n (k) 0

⎞
⎟⎟⎠

(13)
containing the matrices

En(k) =
⎛
⎝ 	0(k) �pq	n+1(k) �∗

pq	−n−1(k)
�∗

pq	−n+1(k) 	−1(k) �pq	n(k)
�pq	n−1(k) �∗

pq	−n(k) 	1(k)

⎞
⎠,

Rμν
n (k) =

⎛
⎝ 


μν
0 (k) ξpq


μν
n+1(k) ξ ∗

pq

μν
−n−1(k)

ξ ∗
pq


μν
−n+1(k) 


μν
−1(k) ξpq


μν
n (k)

ξpq

μν
n−1(k) ξ ∗

pq

μν
−n(k) 


μν
1 (k),

⎞
⎠,

(14)

where we have introduced the folded tunneling function
	n(k) ≡ 	(k + nG) and RSO coupling 
μν

n (k) ≡ 
μν (k +
nG), with n given by Eq. (5). We have also introduced the
Kekulé terms

�pq ≡ ei
2π
3 (p+q)

�, ξpq ≡ ei
2π
3 (p+q)

ξ . (15)

Note that all terms 
↑↑(k + nG) = 
↓↓(k + nG) = 0, by the
symmetry of the Pauli matrices.

We may now obtain an effective low-energy model with
reduced dimensionality 8 × 8 by projecting out the two high-
energy electron and hole bands present in Hpq(k) for k near
the � point, corresponding to operators ak,μ and bk,μ in
Eq. (10). We do so at zeroth order in perturbation theory and
linearize 	n(k) and 
n(k) about k = 0. Finally, introducing
the new 8-spinor basis

� ′
k = (−bk−G ↑,−bk−G ↓, ak−G ↑, ak−G ↓,

ak+G ↑, ak+G ↓, bk+G ↑, bk+G ↓)T , (16)

we obtain two compact forms of H̃pq (Appendix A): All
cases when (1 + q − p)mod3 = ±1 give the Kek-Y Bloch

Hamiltonians

HY(k) = h̄vσ τ0(k · σ)s0 + λσ

2
τ0(σ × s)z

+ h̄vτ (k · τ±)σ0s0 + λτ

2
(τ± × σ0s)z, (17)

whereas for (1 + q − p)mod3 = 0 we obtain the Kek-O
model

HO(k) = h̄vσ τ0(k · σ )s0 + λσ

2
τ0(σ × s)z + 3t0�τxσzs0. (18)

Here, we use the standard definitions of the Pauli matrix
vectors σ and s acting on the sublattice and spin degrees of
freedom, respectively. For the valley subspace, we define the
Pauli vectors τn = (nτx, τy, τz ), where n = ±1 corresponds to
the type of Kek-Y texture defined by the parameters p and q.
τ0, σ0, and s0 are the unit matrices in the valley, sublattice,
and spin subspaces. We also define the two Fermi velocities
vσ = 3

2h̄ t0a0 and vτ = �vσ and the constants λσ = 3
2λR and

λτ = ξλσ . The latter, introduced by the Kekulé-modulated
RSO interaction in the Kek-Y case, constitutes a novel spin-
valley coupling. By contrast, note that in a Kek-O texture there
is no coupling between valley and momentum or valley and
spin.

Both models HY and HO can be diagonalized exactly,
yielding the band structures

EY
α,β,γ (k) = α

2

[√
(2h̄vτ k + βγλσ )2 + λ2

τ

+γ

√
(2h̄vσ k + βγλτ )2 + λ2

σ

]
, (19a)

EO
α,β (k) = α

[
(h̄vσ k)2 + (3t0�)2 + λ2

σ

8

+βλσ

√
(h̄vσ k)2 + (

λσ

2

)2]1/2
, (19b)

where the indices α, β, γ = ±1. Note that in the Kek-Y case,
the dispersions are identical for n = ±1. Figure 1 shows the
band structure (19a) along the −M � M line (ky = 0) of the
KBZ for different values of the RSO coupling λσ and Kekulé
hopping modulation �, keeping the Rashba modulation pa-
rameter ξ = 0. Setting � = 0 for finite λσ , we obtain the
well-known band structure of RSO-coupled graphene [22,34],
except folded onto the KBZ, leading to a double degener-
acy for each band, corresponding to the valley pseudospin.
Figure 1(a) also shows the expectation values of the s and
σ operators as blue circled symbols and red arrows, respec-
tively, showing that the sublattice polarization for all bands
is locked perpendicularly to the spin, forming a right-handed
(left-handed) pair [35] for the first conduction and second
valence (second conduction and first valence) bands, with the
sublattice (spin) vector always pointing in the radial (polar)
direction.

Figure 1(b) shows the case of λσ = 0 with a finite Kekulé
hopping modulation �, reproducing the band structure of
ordinary Kek-Y graphene [21], consisting of two concen-
tric Dirac cones with different Fermi velocities, vσ ± vτ . All
bands are spin degenerate and valley sublattice locked into
parallel (second conduction and valence bands) or antiparallel
(first conduction and valence bands) pairs, with both vectors
always oriented radially. This is shown in Fig. 1(b), where the

075410-3



DAVID A. RUIZ-TIJERINA et al. PHYSICAL REVIEW B 109, 075410 (2024)

FIG. 1. Band structure (19a) for Kek-Y graphene for the parameters (a) λσ 	= 0 and � = 0, (b) λσ = 0 and � 	= 0, and (c) λσ 	= 0 and
� 	= 0. In all cases, the Kekulé-induced modulation to the RSO coupling was set to ξ = 0. Blue circled symbols and red and green arrows
indicate the spin, sublattice, and valley polarizations, respectively, with ⊗ and � representing arrows pointing in the positive and negative ŷ
directions, respectively.

sublattice and valley vectors are shown with red and green
arrows, respectively.

Next, Fig. 1(c) shows the band structure for Kek-Y
graphene (� 	= 0) with finite RSO coupling (λσ 	= 0). In this
case, all bands show both valley-sublattice locking, as in the
case of ordinary Kek-Y graphene, and spin-sublattice locking
coming from the RSO interaction. The combined effect of
the Kek-Y and RSO terms is thus an indirect spin-valley
locking for each low-energy band at every KBZ momentum,
such that once its spin polarization is known, it unequivocally
determines its valley polarization. Specifically, the spin and
valley vectors form right-handed pairs for the second and third
conduction and first and fourth valence bands and left-handed
pairs for all other bands. We point out that this spin-valley
locking effect occurs even when the prefactor λτ of the ex-
plicit spin-valley coupling in Eq. (17) vanishes.

Figure 2 shows how a finite spin-valley coupling λτ = ξλσ ,
coming from the Kekulé-induced modulation to the RSO
interaction, modifies the band structure of Kek-Y graphene,
focusing on the first two conduction and valence bands and
choosing large values |ξ | = 0.2, 0.4 to clearly see its effects
on the band structure. For either positive or negative ξ , Fig. 2
reveals the appearance of a doubly degenerate Dirac cone cen-
tered at the � point, surrounded by a circular band touching
at the Fermi level centered also at �, with bands that disperse
linearly in the radial direction away from the touching points.
The resulting Fermi surface is a doubly degenerate circle sur-
rounding a fourfold-degenerate point at �. The radius of the
Fermi circle increases with |ξ |, and the case ξ = 0 represents
a critical point where the Fermi surface becomes an eightfold-
degenerate point at �. We note that all band structures in
Figs. 1 and 2 are particle-hole symmetric as a consequence
of the chiral symmetry {HY(k), τzσzs0} = 0, which we have
found to hold for the Hamiltonian (17). This chirality operator
was first identified by Gamayun et al. [21] for ordinary Kek-Y
graphene (λσ = 0).

For completeness, Fig. 3 shows the band structures of Kek-
O graphene for λσ = 0 and 120 meV and fixed � = 0.1. It
exhibits a large, direct band gap of size 6t0� ≈ 1.9 eV at the �

point, coming from the valley-sublattice coupling in Eq. (18).
For λσ = 0, the conduction and valence bands are parabolic,
whereas for finite λσ we obtain the typical band structure of
RSO-coupled parabolic bands. Note that the Kekulé-induced
Rashba modulation ξ does not appear in the Kek-O Hamil-
tonian (18). Henceforth, we shall focus on the Kek-Y case,
which we deem more interesting due to its lack of a band gap
and the chiral nature of its bands.

III. LANDAU LEVEL SPECTRUM OF KEK-Y GRAPHENE
WITH RSO COUPLING

We introduce an out-of-plane magnetic field B = Bẑ, with
symmetric-gauge vector potential A = B

2 (−yx̂ + xŷ), into the
Kek-Y graphene Hamiltonian (17) [36] via the minimal sub-
stitution h̄k → h̄k − e

c A = π, where the components of the
canonical momentum π obey the algebra [πx, πy] = −i e

c h̄B.
This allows the introduction of the ladder operators (π± ≡
πx ± iπy)

a =
√

c

2eh̄B
π−, a† =

√
c

2eh̄B
π+, (20)

obeying the harmonic oscillator algebra [a, a†] = 1 and oper-
ating on the LL basis {|�〉} as a|�〉 = √

�|� − 1〉 and a†|�〉 =√
� + 1|� + 1〉 for integer � � 0. These operators enter the

Kek-Y Hamiltonian (17) through the substitution

π · ν = π+ν− + π−ν+ =
√

2eh̄B

c
(a†ν− + aν+), (21)

where ν = τ, σ. The resulting LL Hamiltonian is shown in its
full form in Appendix B. Here, we merely report its numerical
energy spectra for varying magnetic field.

Figure 4(a) shows the LLs obtained in the absence
of a Kek-Y deformation for multiple values of the RSO
coupling λσ , including λσ = 0, which corresponds to the case
of pristine graphene. In that case [37], a fourfold-degenerate
zero-energy mode appears for all magnetic field values, sur-
rounded by an electron-hole-symmetric fan of valley- and
spin-degenerate LLs evolving as B1/2. The zero modes persist
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FIG. 2. Low-energy bands of Kek-Y graphene for different values of the Kekulé-induced RSO modulation ξ for fixed � = 0.1 and λσ =
10 meV (top row) and λσ = 60 meV (bottom row). Note the qualitative similarities between the two cases when both axes are appropriately
rescaled.

for finite λσ , and the surrounding LLs split into two distinct
fans, corresponding to the two separate conduction and va-
lence bands shown in Fig. 1(a). As a connection with transport
experiments, Fig. 4(b) shows the density of states (DOS) at the
Fermi level as a function of both magnetic field and λσ , with
εF = 50 meV.

Next, Fig. 5 shows the LL spectrum of Kek-Y graphene
for multiple values of �, with λσ = ξ = 0, showing that the
zero-mode quadruplet also survives in the presence of the
Kekulé deformation, as reported in Ref. [21]. The reference
LL fan of pristine graphene splits into two separate fans when
� 	= 0. Note, however, that this splitting occurs only at finite

FIG. 3. Band structures of the Hamiltonian (18) for Kek-O
graphene for RSO coupling λσ = 0 and 120 meV for fixed � = 0.1.

magnetic fields, and both fans evolve with magnetic field as
B1/2, by contrast to the case of Rashba-SO-coupled graphene.
This is a consequence of the two Dirac cones with different
Fermi velocities vσ ± vτ , shown in Fig. 1(b). Figure 5(b)
shows the Fermi level DOS for εF = 50 meV, as it evolves
with the Kekulé hopping modulation �. Importantly, we can
see that the DOS peaks split with increasing �, analogous to
the case of RSO coupling shown in Fig. 4(b). In other words,
a splitting in the DOS peaks, measured in magnetotransport
experiments as split conductance peaks, may come from either
source. However, as we discuss next, the two effects can be
distinguished through doping-dependent transport measure-
ments. For completeness, the LL spectrum of graphene with
both a Kek-Y distortion and RSO coupling is shown in Ap-
pendix C. Figure 6 shows the DOS at the Fermi level for
varying magnetic field B and Fermi energy εF while the model
parameters in (17) are kept constant, with ξ = 0 in all cases.
Qualitatively similar behaviors are observed both for finite
λσ and no Kek-Y distortion (left panels) and for no RSO
coupling with finite Kek-Y distortion (right panels), namely, a
fan of LLs that split into two, with overall larger splittings
obtained for larger values of the finite parameter. Some of
these splittings are indicated in Fig. 6(h). However, we have
found that the εF dependence of these splittings is distinct for
the cases of (λσ 	= 0,� = 0) and (λσ = 0,� 	= 0).

Figure 7 shows the LL magnetic field splittings of the
bottom three split pairs indicated in Fig. 6(h) as a function of
the Fermi energy. Figure 7(a) shows that, for a pure Kek-Y
distortion (λσ = 0), all three splittings exhibit a power-law
behavior

δBρ (εF ) = Aρ ε2
F , (22)

where ρ = �, �, � indicates the corresponding magnetic
field splitting shown in Fig. 6. For instance, for the rightmost
splitting one can analytically compute the coefficient (see
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FIG. 4. (a) Landau levels for different values of λσ and (b) B2 × DOS(εF ) (arbitrary units) as a function of λσ and magnetic field for
� = ξ = 0. In (b) we set εF = 50 meV.

Appendix D)

A� = 8�2

h̄2v2
F

√
c

2eh̄
(23)

up to third order in �. By contrast, Fig. 7(b) shows that, in the
case of pure RSO coupling (� = 0), there is clear saturation
of the splitting energies at large εF , with the first LL splitting
(symbol �) showing saturation already for εF ≈ 50 meV. The
saturation value of the first LL splitting can be computed as
(see Appendix D)

δB�(εF � λσ ) = 2λ2
σ

h̄2v2
σ

√
c

2eh̄
. (24)

We propose that these distinct behaviors may be used ex-
perimentally not only to distinguish between the two effects
but also to estimate the magnitude of the Kekulé distortion
or RSO coupling using doping-dependent magnetotransport
measurements.

Figure 7(c) shows the predicted magnetic field splittings
for a graphene sample with both a Kek-Y distortion and finite
RSO coupling, the latter without Kekulé modulation (ξ = 0).
Although the analysis that led us to Eqs. (23) and (24) can
be repeated in this case, the resulting expressions are much
more complicated and far less illuminating. Nonetheless, the
simultaneous presence of both the Kek-Y distortion and the
Rashba effect can be inferred from the first (�) splitting:

FIG. 5. (a) Landau levels for different values of � and (b) B2 × DOS(εF ) (arbitrary units) as a function of � and magnetic field for
λσ = ξ = 0. In (b) we set εF = 50 meV.
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FIG. 6. B2 × DOS(εF ) as a function of the Fermi energy εF and magnetic field B for ξ = 0. Left (right) panels correspond to model (17)
with � = 0 (� 	= 0). The markers in (h) indicate the splittings described in Fig. 7.

Fig. 7(c) shows a crossover from a saturating behavior at low
εF , consistent with λσ 	= 0, to a monotonic increase at large εF

when the Kek-Y distortion begins to dominate. Importantly,
note that the initial plateau that appears before the crossover
exceeds the theoretical value for the case of only RSO cou-
pling (24), shown by the cyan line in Fig. 7(c). Therefore,
when aiming to determine the values of the Hamiltonian pa-
rameters λσ and � from magnetotransport experiments, it is
important to explore beyond the weak doping regime to avoid
overestimating the value of λσ .

Finally, we briefly discuss the case where all Kek-Y model
parameters λσ , �, and ξ are finite. The corresponding LL
spectrum is shown in Fig. 8 in Appendix C. In this case, the
LL structure is quite complex, and a doping-dependent mag-
netic field splitting analysis becomes intractable. However,
the new dispersion has a salient feature that is absent when
either �= 0 or λσ = 0, namely, that the zero-energy quadru-
plet shown in Figs. 4(a) and 5(a) splits for finite magnetic
fields into a zero-energy doublet, closely surrounded by two
electron-hole-symmetric LLs. For small values of |� − ξ |, the

FIG. 7. Energy splittings of the lower three LL pairs as a function of the Fermi energy εF for fixed model parameters (a) (λσ = 0, � 	= 0),
(b) (λσ 	= 0, � = 0), and (c) (λσ 	= 0, � 	= 0), with ξ = 0 in all cases. The data symbols (�, �, and �) are matched to those shown in
Fig. 6(h). The solid lines in (a) correspond to Eq. (22) with the coefficient A� given by Eq. (23), whereas in (b) the solid lines indicate the
saturation value given by Eq. (24). The cyan solid line in (c) indicates the saturation value predicted by Eq. (24), which is exceeded in the
presence of a Kek-Y distortion. The dashed lines in (b) and (c) are merely guides to the eye.
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splitting between the latter two LLs takes the form [vσ (B) ≡
vσ

√
2eh̄B

c ; see Appendix B]

δεz′ = 2λσvσ (B)√
(1 + �2)v2

σ (B) + (1 + ξ 2)λ2
σ

|� − ξ | (25)

and is always finite, with the exception of the fine-tuned
case � = ξ . It is possible that this feature may be observed
in magnetotransport experiments at very low doping levels,
thus confirming that both a Kek-Y texture and finite RSO
coupling are present in the graphene system. Moreover, if
the parameters � and λσ are estimated from the previously
discussed analysis of the magnetic field splittings, they may be
introduced into Eq. (25), thus allowing for a rough estimation
of the RSO modulation parameter ξ .

IV. CONCLUSIONS

We introduced generalized tight-binding Hamiltonians for
graphene with Kekulé-Y and Kekulé-O bond textures, as
well as Rashba spin-orbit coupling, which takes into account
a possible modulation of the Rashba term by the Kekulé
bond distortions. We also derived low-energy effective models
based on the general tight-binding Hamiltonians, following
the scheme introduced by Gamayun et al. [21]. We found
that, whereas the Kekulé-O effective model is independent
of the Rashba term modulation, the Kekulé-Y model exhibits
novel spin-valley locking, as well as a new combined Kekulé-
Rashba term that can dramatically modify the Fermi surface
of the system in charge neutrality.

We also studied the Landau level spectrum of this sys-
tem under a perpendicular magnetic field and computed its
density of states at the Fermi level with an aim to motivate
magnetotransport experiments on Kekulé graphene systems
on transition metal substrates. We found that, whereas the
Landau level spectra exhibit a degenerate quadruplet of zero-

energy modes in graphene with either a Kekulé-Y distortion or
Rashba spin-orbit coupling, this degeneracy is partially lifted
when both effects are present, resulting in a degenerate dou-
blet of zero-energy modes closely surrounded by two satellite
Landau levels. Based on our findings, we put forth an exper-
imental method to distinguish the presence of the Kekulé-Y
bond texture, a Rashba spin-orbit term, or both based on an
analysis of the magnetic field splittings of the DOS peaks
as a function of the Fermi energy. We showed that, once the
strengths of both effects are extracted from this analysis, they
may be used to estimate the magnitude of the Kekulé-induced
modulation of the Rashba spin-orbit coupling based on the
magnitude of the zero-energy mode splitting, which may be
experimentally resolved at low enough values of the Fermi
energy.

Possible realizations of the models presented in this pa-
per are sandwich-type Cu-graphene-M, where M represents
a heavy transition metal with a large spin-orbit interaction,
such as gold [22] and iridium [38], and the graphene sam-
ple has been epitaxially grown on top of a copper substrate.
Such systems may combine the two basic ingredients required
for our model: A Kekulé distortion and a proximity-induced
Rashba interaction. A possible alternative may be to deposit
gold nanoparticles onto a Kekulé graphene system, such as
epitaxial Cu-graphene, or even lithium intercalated graphene.
It was recently shown [20] that gold nanoparticles deposited
onto graphene naturally adopt a Kekulé configuration, open-
ing a possible pathway to introducing the spatially modulated
Rashba interaction considered in our models.
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APPENDIX A: EFFECTIVE LOW-ENERGY BLOCH HAMILTONIANS

Starting from Eq. (12), we identify the four high-energy bands corresponding to states at the � point of the
original BZ and neglect them, which corresponds to projecting them out at zeroth order in perturbation theory.
This is justified by the large offset between these states and the Fermi level (≈3 eV) compared with all relevant
model parameters, which fall in the 10 meV range. Collecting the annihilation operators in the column vector ψk =
(ak−G,↑, ak−G,↓, ak+G,↑, ak+G,↓, bk−G,↑, bk−G,↓, bk+G,↑, bk+G,↓)T , we write the total Hamiltonian for the eight bands closest
to the Fermi level as

H′
pq(k) =

(
0 �n(k)

�†
n (k) 0

)
, (A1)

with n given by the Kekulé texture parameters p and q through Eq. (5) and

�n(k) =

⎛
⎜⎜⎜⎝

	−1(k) i
↑↓
−1(k) �	n(k) iξ
↑↓

n (k)
i
↓↑

−1(k) 	−1(k) iξ
↓↑
n (k) �	n(k)

�∗	−n(k) iξ ∗
↑↓
−n(k) 	1(k) i
↑↓

1 (k)
iξ ∗
↓↑

−n(k) �∗	n(k) i
↓↑
1 (k) 	1(k)

⎞
⎟⎟⎟⎠, (A2)
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where 	n(k) = 	n(k + nG) and 
μν
n (k) = 
μν (k + nG), following the definitions (9). For μ 	= ν we obtain explicitly



μν
0 (k) = λσ

3
eia0ky

[
1 + 2 cos

(√
3

2
a0kx + 2π

3
γμν

)
e−i 3

2 a0ky

]
, (A3a)



μν
±1(k) = λσ

6
e−ia0ky

[
(1 ∓ 3) cos

(√
3

2
a0kx

)
+

√
3(γμν ± 1) sin

(√
3

2
a0kx

)
+ 2eia0ky

]
, (A3b)

where we have defined γ↑↓ = −γ↓↑ = 1. Moreover, 
μμ
n (k) = 0.

We now focus on momenta close to the KBZ � point and expand all expressions up to first order in a0k to obtain (h̄vσ = 3
2 a0t0)

	0(k) ≈ −3t0, (A4a)

	±1(k) ≈ h̄vσ (∓kx + iky), (A4b)



↑↓
0 (k) = −(
↓↑

0 (k))∗ ≈ − λσ

2 a0(kx − iky), (A4c)



↑↓
1 (k) = −(
↓↑

−1(k))∗ ≈ λσ

2 a0(kx + iky), (A4d)



↑↓
−1(k) = 


↓↑
1 (k) ≈ λσ . (A4e)

For clarity, we now use the basis ordering chosen in Ref. [21] for each spin quantum number, ψ ′
k = (ψ ′

k,↑, ψk,↓)T , with
(s =↑,↓)

ψk,s = (−bk−G,s, ak−G,s, ak+G,s, bk+G,s)T ,

such that the effective Hamiltonian adopts the form

H′′
pq(k) =

(
Hpq

0 (k) 04×4

04×4 Hpq
0 (k)

)
+

(
04×4 Hpq

R (k)
Hpq†

R (k) 04×4

)
, (A5)

where

Hpq
0 (k) =

(
h̄vσ k · σ �Qn(k)
�∗Q†

n(k) h̄vσ k · σ

)
(A6)

is the usual Kekulé graphene Hamiltonian for either a Kek-O (Q0 = 3t0σz) or a Kek-Y [Q±1 = h̄vσ (±kx − iky)σ0] texture. The
Kekulé-RSO term Hpq

R (k) has the general form

Hpq
R (k) =

⎛
⎜⎜⎜⎜⎝

0 i[�↓↑
−1(k)]∗ iξ [�↓↑

−n(k)]∗ 0

−i�↑↓
−1(k) 0 0 iξ�↑↓

n (k)

−iξ ∗�↑↓
−n(k) 0 0 i�↑↓

1 (k)

0 −iξ ∗[�↓↑
n (k)]∗ −i[�↓↑

1 (k)]∗ 0

⎞
⎟⎟⎟⎟⎠

and simplifies as follows for the three possible values n = −1, 0, 1: For n = 0 we get the Kek-O effective model

Hn=0
R (k) =

⎛
⎜⎜⎜⎜⎝

0 −i λσ

2 a0(kx + iky) iξ λσ

2 a0(kx − iky) 0

−iλσ 0 0 −iξ λσ

2 a0(kx − iky)

iξ ∗ λσ

2 a0(kx − iky) 0 0 i λσ

2 a0(kx + iky)

0 −iξ ∗ λσ

2 a0(kx − iky) −iλσ 0

⎞
⎟⎟⎟⎟⎠, (A7)

whereas for n = ±1 we obtain the Kek-Y effective models

Hn=1
R (k) =

⎛
⎜⎜⎜⎜⎝

0 −i λσ

2 a0(kx + iky) −iξ λσ

2 a0(kx + iky) 0

−iλσ 0 0 iξ λσ

2 a0(kx + iky)

−iξ ∗λσ 0 0 i λσ

2 a0(kx + iky)

0 −iξ ∗λσ −iλσ 0

⎞
⎟⎟⎟⎟⎠, (A8a)
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Hn=−1
R (k) =

⎛
⎜⎜⎜⎜⎝

0 −i λσ

2 a0(kx + iky) iξλσ 0

−iλσ 0 0 iξλσ

−iξ ∗ λσ

2 a0(kx + iky) 0 0 i λσ

2 a0(kx + iky)

0 iξ ∗ λσ

2 a0(kx + iky) −iλσ 0

⎞
⎟⎟⎟⎟⎠. (A8b)

Equations (17) and (18) are obtained from Eqs. (A8) and (A7), respectively, by reordering the basis according to Eq. (16) and
neglecting the terms linear in momentum.

APPENDIX B: LANDAU LEVEL HAMILTONIAN FOR THE KEK-Y CASE

For the Kekulé-Y case, the electronic Hamiltonian is obtained from (17) by substituting [31,39]

h̄vσ (kx + iky) −→ vσ (B)a†,

h̄vσ (kx − iky) −→ vσ (B)a,

with vσ (B) ≡ vσ

√
2eh̄B

c (in Gaussian units) and a and a† being the LL ladder operators. Ordering the basis as

{|↑, 1,−1〉, |↑,−1, 1〉, |↓, 1,−1〉, |↓,−1, 1〉,
|↑,−1,−1〉, |↑, 1, 1〉, |↓,−1,−1〉, |↓, 1, 1〉},

where the quantum numbers correspond to spin s, pseudospin σ , and valley τ , respectively, the Landau level Hamiltonian takes
the form

HLL
KY =

(
0 h(B)

h†(B) 0

)
, (B1)

with

h(B) =

⎛
⎜⎜⎝

vσ (B)a �vσ (B)a† 0 −iξλσ

�vσ (B)a vσ (B)a† 0 −iλσ

iλσ 0 vσ (B)a �vσ (B)a†

iξλσ 0 �vσ (B)a vσ (B)a†

⎞
⎟⎟⎠. (B2)

Defining the Landau level eigenstates |s, σ, τ ; �〉 (� = 0, 1, 2, . . .), we may propose a general solution of the form

|ψ�〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|� − 2〉
|� − 2〉
|� − 1〉
|� − 1〉
|� − 1〉
|� − 3〉

|�〉
|� − 2〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B3)

such that for � � 3 we get

HLL
KY |ψ�〉 =

(
04×4 hn(B)
h†

n(B) 04×4

)
|ψ�〉, (B4)

with

h�(B) =

⎛
⎜⎜⎜⎝

vσ (B)
√

� − 1 �vσ (B)
√

� − 2 0 −iξλσ

�vσ (B)
√

� − 1 vσ (B)
√

� − 2 0 −iλσ

iλσ 0 vσ (B)
√

� �vσ (B)
√

� − 1
iξλσ 0 �vσ (B)

√
� vσ (B)

√
� − 1

⎞
⎟⎟⎟⎠, � � 3. (B5)

Setting � = 2 yields the reduced problem

HLL
KY |ψ2〉 =

(
04×4 h2(B)
h†

2(B) 03×3

)
|ψ2〉, (B6)
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with

h2(B) =

⎛
⎜⎜⎝

vσ (B) 0 −iξλσ

�vσ (B) 0 −iλσ

iλ
√

2vσ (B) �vσ (B)
iξλσ

√
2�vσ (B) vσ (B)

⎞
⎟⎟⎠ (B7)

and the reduced basis

{|↑, 1,−1; 0〉, |↑,−1, 1; 0〉, |↓, 1,−1; 1〉, |↓,−1, 1; 1〉, |↑,−1,−1; 1〉, |↓,−1,−1; 2〉, |↓, 1, 1; 0〉}. (B8)

From this case we can extract the valley-sublattice-locked (τσ = −1) zero-energy mode

|z−〉 = N
− 1

2
z [−(�α − β )| ↑, 1,−1; 0〉 + (α − ξβ )| ↑,−1, 1; 0〉 + i�γ | ↓, 1,−1; 1〉 − iγ | ↓,−1, 1; 1〉], (B9)

where

α = v2
σ (B)(1 − �2), (B10a)

β = λ2
σ (ξ − �), (B10b)

γ = λσvσ (B)�(1 − ξ�), (B10c)

Nz = (α2 + γ 2)(1 + �2) + β2(1 + ξ 2) − 2(ξ + �)αβ. (B10d)

Then, setting � = 1, we obtain the reduced problem

HLL
KY |ψ1〉 =

(
02×2 h1(B)
h†

1(B) 02×2

)
|ψ1〉, (B11)

with

h1(B) =
(

iλσ vσ (B)
iξλσ �vσ (B)

)
, (B12)

and the reduced basis

{|↓, 1,−1; 0〉, |↓,−1, 1; 0〉, |↑,−1,−1; 0〉, |↓,−1,−1; 1〉}.
This can be diagonalized analytically and gives the eigenvalues (η, ζ = ±1)

εη,ζ (B) = η√
2

√
(1 + �2)v2

σ (B) + (1 + ξ 2)λ2
σ + ζ

√[
(1 + �2)v2

σ (B) + (1 + ξ 2)λ2
σ

]2 − 4λ2
σv2

σ (B)(� − ξ )2. (B13)

Two additional zero modes are recovered in the case of ξ = �, corresponding to the eigenstates

|z′
+〉 = vσ (B)| ↑,−1,−1; 1〉 − iλσ | ↓,−1,−1; 0〉√

v2
σ (B) + λ2

σ

,

|z′
−〉 = −�| ↓, 1,−1; 0〉 + | ↓,−1, 1; 1〉√

1 + �2
,

which split as

δεz′ = 2λσvσ (B)√
(1 + �2)v2

σ (B) + (1 + ξ 2)λ2
σ

|� − ξ | (B14)

for 0 < |� − ξ | � 1.
Finally, setting � = 0 yields the zero-energy mode

|z+〉 = |↓,−1,−1; 0〉. (B15)
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Note that in the absence of Rashba spin-orbit coupling (λσ → 0), the four zero-energy modes identified reduce to those
reported by Gamayun et al. in Ref. [21]:

|z+〉|λσ =0 = |↓,−1,−1; 0〉,
|z′

+〉∣∣
λσ =0 = |↑,−1,−1; 1〉,

|z−〉|λσ =0 = −�|↑, 1,−1; 0〉 + |↑,−1, 1; 0〉√
1 + �2

,

|z′
−〉∣∣

λσ =0 = −�|↓, 1,−1; 0〉 + |↓,−1, 1; 1〉√
1 + �2

.

APPENDIX C: LANDAU LEVEL SPECTRUM OF KEK-Y
GRAPHENE WITH RSO COUPLING

Figure 8 shows the LL spectra of Kek-Y graphene with
fixed Kekulé parameter � = 0.1 for several values of the RSO
term λσ , keeping the RSO distortion ξ = 0. At first sight, this
LL spectrum resembles that of RSO graphene (Fig. 4), with
a duplicated fan due to the two Fermi velocities introduced
by the Kek-Y distortion (Fig. 5). However, a major qualitative
difference from those cases is that the zero-energy quadruplet
breaks, in the case of simultaneous Kek-Y and RSO effects,
into a zero-energy doublet surrounded by two dispersive LLs
that split according to Eq. (B14).

APPENDIX D: MAGNETIC FIELD SPLITTINGS IN THE
FERMI-LEVEL-DEPENDENT DOS OF PURE KEK-Y

AND RSO SAMPLES

The high-DOS fans in Fig. 7 are direct visualizations of
constant energy cuts of the LL fans in Figs. 4 and 5 for

FIG. 8. Landau levels for different values of λσ , keeping � =
0.1 fixed. Note the splitting of the zero-energy quadruplet for λσ 	= 0
into a zero-energy doublet and two dispersive LLs.

ELL = εF . The εF -dependent splittings can be extracted
directly from the B-dependent eigenvalues of the LL Hamil-
tonians (B4), (B6), and (B11). For simplicity, let us focus
on the rightmost LL splitting, indicated in Fig. 6(h) with the
symbol �.

In the case of only a Kek-Y distortion (� 	= 0, λσ = 0,
ξ = 0), this splitting occurs between the LLs

ε
(1)
4 (B) = vσ (B)

√
1 + �2,

ε
(2)
5 (B) =vσ (B)

√
3(1 + �2) − √

1 + 34�2 + �4

2
,

(D1)

where ε(�)
m is the mth eigenvalue, with increasing energy, ob-

tained from the model (B4) by fixing the LL index �. The
magnetic field splitting between these two LLs at fixed εF is
obtained as δB = B> − B<, where

ε
(2)
5 (B>) = ε

(1)
4 (B<) = εF . (D2)

This gives

δB = ε2
F

h̄2v2
σ

√
c

2eh̄

×
[

2

3(1 + �2) − √
1 + 34�2 + �4

− 1

1 + �2

]

= 8�2

h̄2v2
σ

ε2
F

√
c

2eh̄
+ O{�4}, (D3)

leading to Eqs. (22) and (23).
We may follow the same procedure in the case of only

RSO coupling (� = 0, λσ 	= 0, ξ = 0), where the relevant LL

FIG. 9. Low-energy band structure for Kekulé-Y graphene with
� = 0.1, including the term (E1) with values of the parameter μ.
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FIG. 10. Low-energy band structure for graphene with Rashba
spin-orbit coupling λσ = 60 meV, including the term (E1) with dif-
ferent values of the parameter μ.

energies are

ε
(1)
4 (B) =

√
h̄2v2

σ (B) + λ2
σ ,

ε
(2)
5 (B) =

√
3v2

σ (B) + λ2
σ − √

v4
σ (B) + 6λ2

σv2
σ (B) + λ4

σ

2
.

(D4)

In this case, Eq. (D2) gives B< = ε2
F −λ2

σ

h̄2v2
σ

√ c
2eh̄ , whereas for B>

we get the equation

2ε2
F = λ2

σ + (h̄vσ )2

√
c

2eh̄
B

×
⎡
⎣3 −

√
1 + 6λ2

σ

(h̄vσ )2B

√
c

2eh̄
+ λ4

σ

(h̄vσ )4B2

c

2eh̄

⎤
⎦.

This can be simplified by working in the limit of λ2
σ

v2
σ (B) � 1

and expanding up to second order. This gives the quadratic
equation

B2 − ε2
F + λ2

σ

h̄2v2
σ

√
c

2eh̄
B + 2λ4

σ

h̄2v4
σ

c

2eh̄
≈ 0,

from which we take the solution

B> ≈ ε2
F + λ2

σ

2h̄2v2
σ

⎡
⎣1 +

√
1 − 8λ4

σ

(ε2
F + λ2

σ )2

⎤
⎦.

FIG. 11. Band gap and valley momentum of the conduction
(blue) and valence (red) band edges as a function of μ for the param-
eters � = 0 and λσ = 60 meV (left) and � = 0.1 and λσ = 60 meV
(right).

FIG. 12. Low-energy band structure for Kek-Y graphene (� =
0.1) with Rashba spin-orbit coupling (λσ = 60 meV), including the
term (E1) with different values of the parameter μ.

In the limit of λσ

εF
� 1 we may approximate B> ≈ ε2

F +λ2
σ

2h̄2v2
σ

,

yielding the magnetic field splitting

δB = 2λ2
σ

h̄2v2
σ

√
c

2eh̄
+ O

{(
λσ

εF

)2}
, (D5)

leading to Eq. (24).

APPENDIX E: IONIC POTENTIAL AND
SECOND-NEAREST-NEIGHBOR CONTRIBUTIONS TO

THE EFFECTIVE HAMILTONIAN FOR KEK-Y
GRAPHENE WITH RSO COUPLING

For Kek-Y samples, the valley-sublattice term

δH = μ

2
(τxσxs0 + τyσys0 − τzσzs0) (E1)

may appear due to two distinct mechanisms: the presence of a
relative energy shift μ1 between the Y-center and Y-end sites
of the Kekulé pattern [21] and the presence of second-nearest-
neighbor hopping energy t2, giving [33]

μ2 = 9�2t2
0 t2

2

t2
0 − 9t2

2

, (E2)

which together give μ = μ1 + μ2. Whereas μ1, like �, is
an unknown, μ2 can be estimated by considering theoretical
values of t2. For instance, Jung and MacDonald suggested
[40] 0.12|t0| � |t2| � 0.16|t0|, such that for t0 = 3.16 eV and
� = 0.1 we have 39 meV � |μ2| � 59 meV. On the other
hand, Kretinin et al. [41] provided a somewhat lower exper-
imental estimate of |t2| ≈ 300 meV based on measurements

FIG. 13. Landau level spectra for Kek-Y graphene without
Rashba spin-orbit coupling (λσ = 0), including the term (E1) with
μ = −50 meV (left) and μ = 50 meV (right).
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FIG. 14. Landau level spectra for pristine graphene (� = 0)
with Rashba spin-orbit coupling, including the term (E1) with μ =
−50 meV (left) and μ = 50 meV (right).

of the electron-hole asymmetry of graphene, yielding |μ2| ≈
29 meV for � = 0.1. Deacon et al. [42] made an even smaller
estimate of |t2| ≈ 100 meV based on Fermi velocity measure-
ments from cyclotron resonance experiments, corresponding
to |μ2| ≈ 10 meV. However, it is well understood that the
graphene Fermi velocity and electron-hole asymmetry are di-
rectly related to |t2| only in the single-particle approximation,
whereas a many-body approach shows that these values are,
in fact, strongly renormalized by electronic correlations [43].

Below, we show the effects of the term (E1) on the band
and LL energies of Kek-Y graphene with RSO interaction.
For the sake of concreteness, we take the upper limit |μ| =
50 meV and consider the possibility that μ may be either
negative or positive.

Figure 9 shows the well-documented case of Kek-Y
graphene (� = 0.1) including the term (E1), showing the
cases of μ = −50 and 50 meV, where the term δH changes
the dispersion from two concentric Dirac cones meeting at
the Fermi level into a single Dirac cone plus a gapped pair of
parabolic bands. In the latter case, the Dirac point of the first
pair of bands shifts above (below) the Fermi level for μ < 0
(μ > 0), with the bottom of the highest (top of the lowest)
parabolic band being degenerate with the Dirac point.

Figure 10 shows the case of a pure (� = 0) Rashba spin-
orbit coupling λ = 30 meV, with μ = −50 and 50 meV. In
this case, δH opens a gap and introduces a new two-valley
structure to the valence (conduction) band for μ < 0 (μ > 0).
The left panels in Fig. 11 show that both the band gap and the
valley momentum increase with |μ| and vanish at μ = 0. Note
that the conduction (valence) band edge for μ < 0 (μ > 0)
is doubly degenerate and somewhat flat close to the � point

FIG. 15. Landau level spectra for Kek-Y graphene (� 	= 0) with
Rashba spin-orbit coupling (λσ 	= 0), including the term (E1) with
μ = −50 meV (left) and μ = 50 meV (right).

of the Kekulé Brillouin zone and that the band structures for
μ > 0 can be obtained from the ones for μ < 0 by mirror-
ing the energies with respect to the Fermi level. Although
these dispersion features occur at wave vectors k ∼ 10−2 Å−1,
much smaller than the graphene Brillouin zone (≈3 Å−1) or
the Kekulé Brillouin zone (≈1.7 Å−1), the salient feature at
larger momenta is the splitting of the bands expected from
only the Rashba spin-orbit coupling (shown in the middle
panel of Fig. 10) by some tens of meV, although they exhibit
the same Fermi velocities. This effect would be difficult to
distinguish from the case of combined Rashba spin-orbit cou-
pling and Kek-Y distortion (middle panel of Fig. 12), where
that degeneracy is also broken.

A similar band gap and two-valley structure also appear
in the combined case of Rashba spin-orbit and Kek-Y terms,
as shown in Fig. 12. However, the right panels in Fig. 11
show that, in stark contrast to the case of � = 0, for finite
� the valley momentum reaches a saturation value at μ = 0,
resulting in a sharp discontinuity as this value is crossed.

Finally, we discuss the LL spectra of the Kek-Y model
modified with the term δH . Figures 13 and 14 show the cases
of only Kek-Y and only Rashba spin-orbit coupling, respec-
tively. The most salient feature of these spectra is, perhaps, the
absence of zero-energy modes, although dispersionless (with
respect to the magnetic field value B) modes are observed
above (below) the Fermi level for μ < 0 (μ > 0). These dis-
persionless modes correspond to the solution discussed in
Eq. (B15) of Appendix B, with the exception that it now
possesses an energy eigenvalue of −μ/2. This is also the
case for simultaneous Kek-Y and Rashba spin-orbit terms, as
shown in Fig. 15.
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