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Electrostatic environment and Majorana bound states in full-shell topological insulator nanowires
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The combination of a superconductor (SC) and a topological insulator (TI) nanowire was proposed as a
potential candidate for realizing Majorana zero modes (MZMs). In this study, we adopt the Schrödinger-Poisson
formalism to incorporate the electrostatic environment inside the nanowire and systematically explore its
topological properties. Our calculations reveal that the proximity to the SC induces a band bending effect,
leading to a nonuniform potential across the TI nanowire. As a consequence, there is an upward shift of the
Fermi level within the conduction band. This gives rise to the coexistence of surface and bulk states, localized in
an accumulation layer adjacent to the TI-SC interface. When magnetic flux is applied, these occupied states have
different flux-penetration areas, suppressing the superconducting gap. However, this impact can be mitigated by
increasing the radius of the nanowire. Finally, we demonstrate that MZMs can be achieved across a wide range
of parameters centered around one applied flux quantum, φ0 = h/2e. Within this regime, MZMs can be realized
even in the presence of conduction bands. Moreover, the realization of MZMs is not affected by the band bending
effect. These findings provide valuable insights into the practical realization of MZMs in TI nanowire-based
devices, especially in the presence of a complicated electrostatic environment.
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I. INTRODUCTION

Majorana zero modes (MZMs), as quasiparticles at topo-
logical superconductor boundaries, have been extensively
studied because of their potential applications in topological
quantum computations [1–3]. The most heavily investigated
experimental systems to search for MZMs are semiconduc-
tor (SM)-superconductor (SC) devices [4–6]. Despite various
experimental progress reported [7–11], the conclusive obser-
vation of MZMs is still lacking. A significant reason is that
some trivial mechanisms can also produce similar experi-
mental signatures [12–21], which significantly complicated
the search for MZMs. To overcome this issue, two main
directions have been pursued. The first approach involves
utilizing alternative detection methods providing signals that
can hardly be mimicked by non-Majorana states [22–26].
One such method is nonlocal conductance measurements in
three-terminal devices [27–35], which can directly detect the
bulk gap closing and reopening. The second approach focuses
on finding materials with high quality and unique proper-
ties that are conducive to the formation and manipulation
of MZMs [36–44]. For instance, materials like topological
insulator (TI) nanowires have been identified as potential
candidates [36–38]. When a TI is made into a nanowire,
quantum confinement gives rise to peculiar one-dimensional
Dirac subbands whose energy dispersion can be manipulated
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by external fields. In contrast to semiconductor-based systems
where the Fermi level needs to be finely tuned within a narrow
gap opened by the Zeeman effect, TI nanowires offer a topo-
logical region that can extend throughout the entire bulk gap
[36,37].

In the past few years, substantial progress in the growth
of TI nanowire devices have been reported [45–48]. These
advancements enabled the fabrication of high-quality TI
nanowires with well-controlled properties [49–51]. Recently,
proximity-induced superconductivity in TI nanowires has
been experimentally reported [51–53], but the deterministic
evidence of the MZMs in TI nanowire is still lacking. Mean-
while, the previous theoretical works [36–38] treat chemical
potential and induced superconducting (SC) gap as inde-
pendently adjustable parameters. However, the unavoidable
electrostatic effects and band bending effect at the TI-SC
interface can greatly complicate the Majorana physics in the
TI-SC system, as they did in the SM-SC system [54–56]. For
instance, in experiments where TI are grown with SC films,
the process induces charge doping from the SC to the TI,
resulting in a shift of the Fermi level into the conduction
band [57,58]. This effect is undesirable since the realization
of MZMs requires TIs to be bulk insulating [36,37,59]. Fur-
thermore, the band bending effect near the SC can suppress
the tunability of surface states through gating [60], further
complicating the control of electronic properties in TI-SC
hybrid devices. These challenges and limitations motivate
us to develop more realistic calculations that can accurately
describe the electrostatic environment and band structures
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FIG. 1. TI nanowire is covered by a full superconducting shell.
The magnetic field is applied along the nanowire (z direction). The
radius of the TI nanowire is R0.

of TI nanowires, leading to a better understanding of their
topological properties.

In this work, we investigate the properties of a TI nanowire
covered by a full-shell SC. To account for the electrostatic
environment of the system, we employ the self-consistent
Schrödinger-Poisson (SP) methods to calculate the electro-
static potential inside the TI nanowire. Our analysis reveals
that the band bending effect at the TI-SC interface leads to
a shift of the Fermi level into the conduction band, consis-
tent with experimental observations [57,58]. Consequently,
the surface states and bulk states coexist in the system and
they are confined to an accumulation region near the TI-SC
interface. Moreover, these occupied states have different flux-
penetration areas, leading to a suppression of the SC gap under
the application of a magnetic field. To address this issue, we
propose to use a TI nanowire with a larger radius. Finally, we
give a topological phase diagram and demonstrate that MZMs
can be achieved over a wide range of parameters near one
applied flux quantum, φ0 = h/2e. In this case, the presence
of MZMs is independent of the strength of the band bending,
eliminating the need for fine-tuning of the Fermi level. These
findings provide valuable insights into the phase diagram and
practical realization of MZMs in TI nanowire-based devices.

The paper is organized as follows. In Sec. II, we construct
a model Hamiltonian in the cylinder coordinate. In Sec. III,
we calculate the electrostatic potential using the Schrödinger-
Poisson approach. In Sec. IV, we discuss the topological
properties of the TI nanowire. Finally, we draw a discussion
and conclusion in Sec. V.

II. MODEL HAMILTONIAN

We consider a topological insulator (TI) nanowire coated
by a full superconducting shell, as illustrated in Fig. 1.
The system is exposed to a magnetic field B oriented
along the nanowire’s direction. To maintain the system’s
rotational symmetry, we adopt the electromagnetic vector
potential A = 1

2 (B × r). Subsequently, we formulate the elec-
tronic Hamiltonian of the TI in cylindrical coordinates as
follows (see Appendix B):

He = HTI + HM − eφ(r), (1)

where

HTI = M(r, θ, z)s0σz + D(r, θ, z)s0σ0 + A1(−i∂z )szσx

+A2P−θ s+σx + A2P+θ s−σx. (2)

The Pauli matrices s and σ act on spin and orbital
space, respectively. r, θ , and z are the cylindrical coordi-
nates. We define s± = (sx ± isy)/2, sθ = cos θsy − sin θsx,
M(r, θ, z) = m0 − B1∂

2
z − B2( 1

r ∂r + ∂2
r + 1

r2 ∂
2
θ ), D(r, θ, z) =

C0 − D1∂
2
z − D2( 1

r ∂r + ∂2
r + 1

r2 ∂
2
θ ), and P±θ=−ie±iθ (∂r± i

r ∂θ ).
The parameters m0, C0, Bi, Ai, and Di with i = 1, 2 are
model parameters from ab initio calculations [61]. The elec-
trostatic potential φ(r) arises due to the band bending effect
at the interface between the TI and SC, which can be self-
consistently calculated through the SP method, as we will
show in Sec. III. HM is the magnetic flux-induced term and
takes the form (see Appendix B)

HM = B2

r2
[�2(r) + 2iB2�(r)∂θ ]s0σz − A2�(r)

r
sθσx, (3)

where �(r) = Br2/�0 represents the normalized magnetic
flux with respect to the flux quantum �0 = h/e.

Notably, the electronic angular momentum operator Ĵe
z

commutes with He, where Ĵe
z = −i∂θ + 1

2 sz have the eigen-
values je = Z + 1

2 . The angular dependence of He can be
eliminated using a unitary transformation U = exp[−i( je −
1
2 sz )θ ], namely H̃e = UHeU †. Consequently, H̃e becomes
block diagonal, expressed as

H̃e =
⊕
je,kz

H je
TI (r, kz ), (4)

while taking the periodic boundary condition along the z di-
rection. The explicit form of H je

TI (r, kz ) is given in Appendix B.
When the electrostatic potential is absent, i.e., φ(r) = 0, the
energy spectrum of the surface states can be approximated by
the formula [62,63]

Ekz, je =
√

A2
1k2

z + A2
2

(
je − �(R0)

R0

)2

. (5)

In the absence of a magnetic field, the branches Ekz,±| je| are
doubly degenerate due to time reversal symmetry. Upon appli-
cation of a magnetic field, the degeneracy is lifted by a finite
gap of 2δ = 2A2�(R0 )

R0
between bands with ± je due to the flux

effect. For R0 = 50 nm, the surface level spacing is estimated
to be 8.2 meV at half flux quantum, i.e., �(R0) = 1/2. Here,
we neglect the Zeeman splitting because its energy scale Ez =
0.056 meV (taking g factor g ≈ 4 for Bi2Se3 [64]), which is
much smaller than the energy scale we are interested in.

III. ELECTROSTATIC POTENTIAL

To compute the electrostatic potential φ(r) self-
consistently, we begin by solving the Schrödinger equation:

H je
TI (r, kz )ψ je

nz,kz
(r) = E je

nz,kz
ψ

je
nz,kz

(r) (6)

in each je block with given kz in the basis of Bessel functions
(see Appendix C). Here, nz is the index of the transverse
modes. It is important to note that we solve the Schrödinger
equation only within the TI region. This is due to the fact that
the superconductor screens the electric field due to its metallic
nature. As a result, throughout the self-consistent procedure,
we treat the SC shell solely as a boundary condition with a
band offset W at the TI-SC interface. Then the charge density
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FIG. 2. Profiles of (a) the electrostatic potential −eφ(r) and
(b) the charge density ρ(r) are depicted along the radial direction
of the nanowire for three distinct band bending strengths W .

with the profile φ(r) is obtained

ρ(r) = −e

(2π )2

∑
nz, je

∫
dkz

[∣∣ψ je
nz,kz

(r)
∣∣2

fT − ρval(r)
]
, (7)

where fT = 1/(eβE je
nz ,kz + 1) represents the Fermi distribution

with temperature T = 10 meV. Notably, the first term on the
right-hand side of Eq. (7) accounts for the charge density
originating from all occupied states. To obtain the charge
density of free electrons or holes, the density from the entire
valence band ρval(r) needs to be subtracted [60]; see details in
Appendix D. Finally, the electrostatic potential is determined

by solving the Poisson equation in radial coordinates:

1

r
∂rφ(r) + ∂2

r φ(r) = −ρ(r)

ε0εr
, (8)

where εr is the relative dielectric constant of TI. The SP
method is to solve Eqs. (6) and (8) self-consistently (see
Appendix E for details).

In Fig. 2, we present the distribution of the self-consistent
potential φ(r) and charge density ρ(r) for various values of
W . Notably, the potential gradually increases from the bound-
ary to the interior of the TI due to the charge screening effect.
The contact between the TI nanowire and the SC shell induces
charge doping from the SC to the TI, resulting in an upward
shift of the Fermi level, which is evident in the band struc-
ture shown in Figs. 3(a)–3(c). When W is relatively small,
the Fermi level remains within the bulk band gap, leading
to the occupation of only surface states [Fig. 3(a)]. As W
increases up to 0.2 and 0.3 eV, the Fermi level moves into
the conduction band [Figs. 3(b) and 3(c)]. Recent ab initio
calculations suggest that W ≈ 0.3 eV in Bi2Te3-Nb hybrid
systems [65]. This implies that most TI-SC nanowires natu-
rally exhibit a Fermi level pinned within the conduction band,
as demonstrated in Fig. 3(c). Furthermore, the distributions
of the density of states (DOS) of the wave functions at the
Fermi level are shown in Figs. 3(d)–3(f). Remarkably, both
the occupied surface states and bulk states are confined to a
narrow accumulation region near the TI-SC interface [66,67],
characterized by a width of about 30 nm. The remaining
part of the nanowire remains relatively insulating in the bulk.
Moreover, it is observed that the surface states and bulk
states exhibit distinct localizations near the TI-SC interface, as

FIG. 3. (a)–(c) Left to right: the band structure of TI nanowire with inhomogeneous potential φ(r) when W = 0.1, 0.2, 0.3 eV, respectively.
The blue (black) lines correspond to surface states (bulk states). The red dashed line represents the Fermi level. Notably, the absence of a
magnetic flux maintains the doubly degenerate nature of all bands due to time reversal symmetry. (d)–(e) The density distribution of occupied
states at the Fermi level in panels (a)–(c).

075408-3



CHEN, PAN, CAO, LIU, AND LIU PHYSICAL REVIEW B 109, 075408 (2024)

FIG. 4. Schematic of the superconducting pairing sectors of the
surface states for n = 0 in panel (a) and n = 1 in panel (b). The pair-
ing potential occurs between two surface states whose total angular
momentum satisfies je1 + je2 = n, as indicated by the blue dashed
box. The red upward (downward) arrows signify surface states with
negative (positive) angular momentum je.

indicated by the blue and black lines in Figs. 2(e) and 2(f).
This confinement of the surface states and bulk states within
the accumulation region is a significant consequence arising
from the electrostatic environment of the system, which has
not been considered in previous works [36–38].

IV. TOPOLOGICAL PROPERTY

In the presence of the superconductor, the system is de-
scribed by the Bogoliubov–de Gennes (BdG) Hamiltonian,
which takes the form

H =
(

He isy(r)einθ

−isy(r)e−inθ −H∗
e

)
. (9)

We use a spatial dependence of the pairing amplitude in such
a setup, which is given by (r � R0) = 0 exp[(r − R0)/ξ ]
[68]; ξ is the superconducting coherence length in the TI. n
is the superconducting phase winding number. In this work,
we choose n = [φflux + 0.5], where the square brackets indi-
cate taking the closest integer smaller than it. φflux = BR2

0/φ0

represents the penetrated magnetic flux normalized by the
superconducting flux quanta, φ0 = h/2e. The BdG Hamil-
tonian H satisfies [Ĵz, H] = 0 with Ĵz = −i∂θ + 1

2 szτz − n
2τz

and j is the eigenvalue of the total angular momentum Ĵz.
Consequently, the BdG Hamiltonian can be block diagonal as

H =
⊕
j,kz

H j (r, kz ), (10)

with

H j =
(

H je
TI isy(r)

−isy(r) −(
Hn− je

TI

)∗

)
. (11)

In Fig. 4, a schematic representation of the superconducting
pairing sectors for the surface states is provided, characterized

FIG. 5. Minimal gap min of all the occupied states as a func-
tion of the magnetic field with (a) different band bend strength W
and (b) different radius R0. In panel (a), R0 is fixed to 50 nm. In
panel (b), the band bending is fixed to 0.3 eV. The abscissa below
panel (b) corresponds to the case with R0 = 70 nm. We choose the
parameters 0 = 1.6 meV [68] and ξ = 25 nm [68].

by the electronic angular momentum je. Notably, the pairing
potential occurs between the two surface states whose total
angular momentum satisfies je1 + je2 = n, as indicated by the
blue dashed box.

As illustrated in Fig. 3(f), the occupied surface states and
bulk states exhibit distinct localizations near the TI-SC inter-
face. Consequently, these states exhibit different magnitudes
of the induced superconducting gaps. To quantitatively assess
this phenomenon, we define the minimum gap min among
all occupied states. In Fig. 5(a), min is plotted as a function
of the magnetic field for various band bending strengths W .
When W = 0.1 eV (blue lines), min is largest, displaying a
typical Little-Parks oscillation behavior. Notably, the maxi-
mum of min occurs when the flux φ slightly exceeds the
integer superconducting flux quantum. This is due to the fact
that the actual flux-penetration area of the states is slightly
smaller than the nanowire’s cross-sectional area. Furthermore,
we observe a significant decrease in min as W increases, as
depicted by the red and black lines in Fig. 5(a). This behavior
can be elucidated as follows: as W rises to 0.2 eV, both
surface states and bulk states become occupied [Fig. 3(b)].
In general, the SC gap of bulk states is smaller than that
of the surface states [60]. Additionally, their difference in
the flux-penetration area, Aphys, introduces a phase uncer-
tainty δφ = 2π (AphysB/φ0), which suppresses the min as
the magnetic field increases. As shown by the red (black)
lines in Fig. 5(a), the third (second) Little-Parks oscillation
peak disappears when W = 0.2 (0.3) eV. Thus, in comparison
to the scenario where the TI nanowire is solely occupied
by surface states, a significant reduction in min is observed
when the Fermi level resides within the bulk bands. To address
this challenge, we propose employing a TI nanowire with a
larger radius. As illustrated in Fig. 5(b), the SC gap shows an
upward trend with an increase in the nanowire’s radius. This
trend appears to be unexpected in the context of an intuitive
understanding of the proximity effect in TI-SC slab systems,
in which the induced gap in the TI typically decreases with
increasing thickness [57,69]. However, there are two key fac-
tors at play. First, the presence of a full SC shell confines
the occupied states to an accumulation layer near the TI-SC
interface. The thickness of the accumulation layer determines
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the coupling strength between the TI and the SC. Notably, this
accumulation layer maintains a nearly consistent thickness of
approximately 30 nm, regardless of the specific radius of the
TI nanowire (see Appendix F). Secondly, as the radius of the
nanowire’s cross-sectional area increases, the ratio between
the accumulation layer and the nanowire’s sectional area can
be effectively reduced. As a consequence, this leads to an
enhancement of min.

To characterize the topology of the TI nanowire, we calcu-
late the Pfaffian topological invariant ν, also called the Kitaev
or Majorana number [70]. A unitary transformation is used to
express the Hamiltonian H in the Majorana basis HMj , which
is also block diagonal as

HM j (kz = 0, π ) =
⊕

j

H j
M j (kz = 0, π ). (12)

Then the topological invariant ν can be calculated in each j
block, which takes the form [71]

ν = sgn

{∏
j

Pf
[
H j

M j (kz = 0)
]

Pf
[
H j

M j (kz = π )
]
}

= sgn

{∏
j

ν j

}
. (13)

As depicted in Fig. 4, the configuration of the supercon-
ducting pairing depends on the parity of the winding number
n. This feature engenders different topological properties of
the TI nanowire, contingent on whether n is an even or odd
integer. For the sake of clarity, let us first consider the even-n
scenario, as illustrated in Fig. 4(a). The surface states with ± je
exhibit an energy splitting which plays a similar role to the
Zeeman splitting in the Rashba nanowire system. Therefore,
the realization of MZMs requires the fine-tuning of the Fermi
level. However, since the TI nanowire is fully surrounded
by the SC shell, the strong screening effect in the SC shell
makes it difficult to tune the Fermi level by the gate voltage.
Although Fermi level control can be equivalently achieved by
altering the magnitude of W , it is essential to note that, in
practical experiments, W is a nonadjustable parameter that is
determined by work function imbalance at the TI-SC interface
[72]. Considering these intricate factors, the realization of
MZMs with even-n appears to be difficult in our proposed
framework.

In the scenario where n is an odd integer, such as the case
of n = 1, distinct behavior emerges. Here, the presence of
a solitary je = 1/2 surface subband [Fig. 4(b)] violates the
fermion doubling theorem, leading to a topological invari-
ant ν j=0 = −1 [70]. Consequently, the topological conditions
require that the remaining blocks ( j �= 0) should be topolog-
ically trivial. For the j �= 0 blocks, the energy splitting 2δ′
between the je and 1 − je subbands is given by A2

R0
|1 − φflux|.

When a magnetic flux of φflux = 1 is applied, the je and
1 − je subbands become perfectly degenerate. The fermion
doubling theorem implies the topological invariant ν j �=0 = 1,
indicating a topologically nontrivial system regardless of the
Fermi level’s position within the bulk gap of the TI nanowire
[36,37]. Remarkably, we find that the system always remains
topologically nontrivial even when the Fermi level is deep

within the conduction band [Fig. 6(a)]. This finding seems
to contrast with previous works that neglected the electro-
static environment and posited that achieving MZMs requires
the Fermi level within the bulk gaps [36–38]. To grasp this
distinction intuitively, one can apprehend it as the follow-
ing. The Fermi levels in the previous works are tuned by
the phenomenal parameters, i.e., the homogeneous chemical
potential μ. When μ is inside the conduction band, the bulk
of the nanowire becomes metallic and the topological surface
states disappear [36,37,59]. However, in this work, the up-
ward shift of the Fermi level is caused by the band bending
effect at the TI-SC interface, described by the electrostatic
potential. Although the surface states and bulk states are both
occupied, they are confined to an accumulation layer adjacent
to the TI- SC interface. Remarkably, the confinement of the
electrostatic potential protects the surface states, especially
for je = 1/2 surface subbands, from hybridization with the
conduction bands [Fig. 3(f)]. This finding is our central result,
as it demonstrates that MZMs can be realized even in the
presence of conduction bands. Moreover, the realization of
MZMs is not affected by the band bending effect. Notably,
our results require that the primary TI nanowire (without the
effect of electrostatic potential) be bulk insulating, which is
consistent with the previous work.

In addition to the topological invariant ν = −1, the real-
ization of robust MZMs also requires large min. Figure 6(b)
shows the topological phase diagram as a function of the
magnetic flux φflux and band bending strength W . A large
topological region with a finite SC gap exits near a sin-
gle flux quantum, φflux = 1. Notably, topological phases are
not dependent upon the precise value of W . This signifies
that achieving MZMs solely demands the application of a
magnetic field near the n = 1 region, thereby obviating the
necessity for finely tuning the Fermi level. To further confirm
the system is exactly in the topological phase under such
conditions, we consider a TI nanowire with finite length Lz

in the z direction. Then we calculate the eigenvalues of each
j block, as shown in Fig. 6(c). Analogous to the Caroli–de
Gennes–Matricon (CdGM) states [73], we observe in-gap
states with nearly equal energy separation δE in each j block.
These CdGM analogs are confined to the TI-SC interface
rather than around a vortex core [74,75]. Notably, a pair of
MZMs emerge in the j = 0 blocks because of the particle-
hole symmetry. We further calculate the distribution of the
DOS of MZMs in the Lz − r plane [Fig. 6(d)]. As we can
see, MZMs are mostly localized in the center of the top and
bottom surface of the TI nanowire and gradually decay to the
lateral boundary. As previously mentioned, the suppression
of the SC gap can be mitigated by increasing the radius R0.
Nevertheless, the energy separation δE diminishes with in-
creasing R0 [74]; see the black line in Fig. 6(e). In order to
detect and manipulate MZMs, it is requisite that δE far ex-
ceeds the experimental temperature. Notably, δE still remains
approximately at 0.064 0 ≈ 0.1 meV when R0 = 100 nm.
Finally, we consider the disorder effect on the TI nanowire.
This is important because present-day bulk insulating TI wires
are relatively dirty [49]. In order to investigate the stability
of MZMs, we use the on-site fluctuations in the potential δφ

that are drawn randomly as δφ ∈ [−u0/2, u0/2] in the r − z
plane. The SC gap of the nanowire gradually diminishes with

075408-5



CHEN, PAN, CAO, LIU, AND LIU PHYSICAL REVIEW B 109, 075408 (2024)

FIG. 6. (a) Topological invariant ν as a function of the band bending strength W when n = 1. (b) The phase diagram as a function of
magnetic flux and band bending strength. The SC gap is multiplied by the topological invariant ν, so the red regions correspond to the gapped
topological phase. (c) The eigenvalues of several lowest j blocks when n = 1. A pair of MZMs exists in the j = 0 block. (d) The distribution
of DOS of MZMs in the Lz − r plane. (e) Black line: the average energy separation of the in-gap states δE decreases with increasing R0.
Red line: the minimal gap min increases with R0. (f) The average energy of MZMs with 30 different disorder configurations at various
fluctuation strengths u0. E1 is the first exited states, representing the SC gap of the nanowire. tz = 0.1 eV is the hopping magnitude in the z
direction. Parameters used in each panel: (a) R0 = 70 nm and φflux = 1.26. (b) R0 = 70 nm. (c),(d),(f) R0 = 70 nm, Lz = 1000 nm, φ = 1.26,
and W = 0.3 eV. (e) φflux = 1.26 and W = 0.3 eV.

increasing disorder [Fig. 6(f)]. However, the energy of the
MZMs remains very close to zero, exhibiting no observable
fluctuations, which is consistent with the results in the previ-
ous work [37].

V. DISCUSSION AND CONCLUSION

We study the topological characteristics of a TI nanowire
covered by a full SC shell. To comprehensively account
for the system’s electrostatic environment, we employ the
self-consistent Schrödinger-Poisson method, enabling us to
compute the internal electrostatic potential within the TI
nanowire. Our analysis unearths a distinctive outcome: the
band bending effect at the interface between the TI and SC
induces a notable shift of the Fermi level into the conduc-
tion band. This shift, in turn, leads to the coexistence of
occupied surface states and bulk states, localized within an
accumulation region proximate to the TI-SC interface. This
accumulation layer maintains a nearly consistent thickness of
approximately 30 nm, regardless of the specific radius of the
TI nanowire. When magnetic flux is applied, the surface states
and bulk states have different flux-penetration areas, which
engenders a suppression on the superconducting gap. To ad-
dress this issue, we propose to use TI nanowires with larger
radii. Finally, we demonstrate that MZMs can be achieved
across a wide spectrum of parameters centered around one
applied flux quantum, φ0 = h/2e. Importantly, within this

regime, MZMs can be realized even in the presence of con-
duction bands.

In our calculations, we have retained the rotational sym-
metry of the TI nanowire. This strategic choice reduces the
computational cost and facilitates the treatment of the fully
three-dimensional system [76]. Importantly, the topological
properties of TI nanowires remain insensitive to the specific
shape of the cross section [71]. References [54–56] proposed
that the electrostatic environment in Rashba semiconductors
has a significant effect on their topological proprieties. This
prompts our inquiry into the electrostatic influences within TI
nanowires. Indeed, in the context of TI nanowires, the role of
the electrostatic effect also remains essential. Compared with
bulk states in Rashba semiconductors, the surface states are
more localized near the TI-SC interface, so they are more sen-
sitive to the band bending effect. Building upon this insight,
Ref. [60] demonstrated that surface states near the SC nearly
do not respond to gating, thereby constraining the tunability of
the system. As it has been shown theoretically, the geometry
of SC in the TI nanowire-based devices can either be a full
shell [71] or just attaching the SC to several side surfaces
of the TI nanowire [38,77]. The full shell geometry offers
a larger induced SC gap but restricts the tunability of the
Fermi level through the gate voltage. Notably, our results
demonstrate that the presence of MZMs remains independent
of the band bending strength, thereby eliminating the need for
the fine-tuning of the Fermi level. This signifies that achieving
MZMs solely demands the application of a magnetic field
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TABLE I. Parameters used for the calculations in this work.

ar az 0 ξ εr

0.5 nm 1 nm 1.6 meV [68] 25 nm [68] 113 [78]

near the φflux = h/2e region, further reducing the difficulties
in experimental control.

ACKNOWLEDGMENTS

The authors thank C.-X. Liu and F.-C. Zhang for helpful
discussions. X.L. acknowledges the support of the Innovation
Program for Quantum Science and Technology (Grant No.
2021ZD0302700) and the National Natural Science Founda-
tion of China (NSFC) (Grant No. 12074133). D.E.L. acknowl-
edges the support of the Innovation Program for Quantum
Science and Technology (Grant No. 2021ZD0302400) and
the National Natural Science Foundation of China (Grant No.
1974198). X.-H.P. acknowledges the support of the China
Postdoctoral Science Foundation (Grant No. 2023M731208).

Z.C. acknowledges the support of the National Natural Sci-
ence Foundation of China (Grants No. 12374158 and No.
12074039).

L.C. and X.-H.P. contributed equally to this work.

APPENDIX A: PARAMETERS USED IN THIS WORK

The parameters of the k · p Hamiltonian of the
Bi2Se3 nanowire in Eq. (2) are adopted from ab initio
calculations [61]: C0 = −0.0068 eV, m0 = 0.15 eV, D1 =
1.3 eV Å2, D2 = 19.6 eV Å2, B1 = 10 eV Å2, B2 = 56.6 eV
Å2, A1 = 2.2 eV Å, and A2 = 4.1 eV Å. The other parameters
used in this work are given in Table I. ar and az are the radial
and longitudinal lattice constant of TI in the tight-binding
calculations. In our calculations, the choice of the SC materiel
is Nb [68].

APPENDIX B: MODEL HAMILTONIAN OF TI
IN CYLINDRICAL COORDINATES

The model Hamiltonian of TI in the Cartesian coordinates
takes the form [61,64]

Hcar(k) = ε0(k) +

⎡
⎢⎢⎢⎢⎣

M(k) A1kz 0 A2k−
A1kz −M(k) A2k− 0

0 A2k+ M(k) A1kz

A2k+ 0 A1kz −M(k)

⎤
⎥⎥⎥⎥⎦, (B1)

where k± = kx ± iky, ε0(k) = C0 + D1k2
z + D2(k2

x + k2
y ), and M(k) = M0 + B1k2

z + B2(k2
x + k2

y ). To rewrite Eq. (B1) in cylin-
drical coordinates, we can use the relation ⎡

⎢⎣
∂x

∂y

∂z

⎤
⎥⎦ =

⎡
⎢⎣

cos θ − 1
r sin θ 0

sin θ 1
r cos θ 0

0 0 1

⎤
⎥⎦

⎡
⎢⎣

∂r

∂θ

∂z.

⎤
⎥⎦. (B2)

Subsequently, the TI Hamiltonian in cylindrical coordinates takes the form

HTI(r, θ, z) = ε0(r, θ, z) +

⎡
⎢⎢⎣

M(r, θ, z) −iA1∂z 0 A2P−θ

−iA1∂z −M(r, θ, z) A2P−θ 0
0 A2P+θ M(r, θ, z) −iA1∂z

A2P+θ 0 −iA1∂z −M(r, θ, z)

⎤
⎥⎥⎦, (B3)

where M(r, θ, z) = m0 − B1∂
2
z − B2∇2

in and ε(r, θ, z) = C0 −
D1∂

2
z − D2∇2

in. Here, ∇2
in = 1

r ∂r + ∂2
r + 1

r2 ∂
2
θ is the Laplacian

operator in the in-plane coordinates. P±θ = −ie±iθ (∂r ± i
r ∂θ ).

Now, consider a magnetic field applied along the nanowire
(z direction) and choose the gauge A = 1

2 (B × r) = Aθ θ̂ with
Aθ = Br

2 . It is straightforward to demonstrate that the vector
potential affects only ∂θ :

−i∂θ −→ −i∂θ − �(r). (B4)

Here, �(r) = Br2/�0 represents the normalized magnetic
flux with respect to the flux quantum �0 = h/e. Subsequently,
the TI Hamiltonian changes to

HTI −→ HTI + HM, (B5)

where HM is the additional term originating from the magnetic
flux, taking the form

HM = B2

r2
[�2(r) + 2iB2�(r)∂θ ]s0σz − A2�(r)

r
sθσx. (B6)

Finally, the TI Hamiltonian with magnetic flux and electro-
static potential in cylindrical coordinates takes the form

He = HTI + HM − eφ(r). (B7)

Notably, we have [He, Ĵe
z ] = 0 with Ĵe

z = −i∂θ + 1
2 sz. Im-

portantly, the angular dependence of He can be eliminated
using a unitary transformation H̃e = UHeU †, where U =
exp[−i( je − 1

2 sz )θ ]. Consequently, H̃e becomes block diago-
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nal, expressed as

H̃e =
⊕
je,kz

H je
TI (r, kz ). (B8)

Notably, we replace −i∂z with kz because it is a good quantum
number. Then we can divide the H je

TI (r, kz ) into three parts as

H je
TI (r, kz ) = H je

r (r) + H je
M (r) + H je

kz
(kz ). (B9)

All the kz terms are included in H je
kz

(kz ), expressed

as H je
kz

(kz ) = (C0 + D1k2
z )s0σ0 + (m0 + B1k2

z )s0σz +
A1kzszσx.H

je
M (r) is the flux term obtained from the

transformation UHMU †, which takes the form

H je
M (r) = B2

�2(r)

r2
s0σz − 2B2�(r)

r2

(
j − 1

2
sz

)
σz

−A2�(r)

r
syσx, (B10)

and H je
r (r) is given by

H je
r (r) = εr − eφ(r) +

⎡
⎢⎢⎢⎢⎣

Mλ je − 1
2 0 0 P+

je

0 −Mλ je − 1
2 P+

je
0

0 P−
je

Mλ je + 1
2 0

P−
je

0 0 −Mλ je + 1
2

⎤
⎥⎥⎥⎥⎦, (B11)

where εr = −D2(∂2
r + 1

r ∂r − (λ je + 1
2 )2

r2 ), Mλ je ± 1
2 = −B2(∂2

r +
1
r ∂r − (λ je ± 1

2 )2

r2 ), and P±
je

= −iA2(∂r ± λ je ± 1
2

r ). Notably, λ je =
je − �(r), which can be regarded as the flux modulated an-
gular momentum. Consequently, the blocks with the ±λ je
have the same eigenvalues. For instance, when �(r) = 1/2,
the surface subbands in the je = 1/2 (λ je = 0) block are gap-
less nondegenerate bands, while the subbands within je =
−1/2 (λ je = −1) and je = 3/2 (λ je = 1) blocks are degener-
ate with the same eigenvalues.

APPENDIX C: BESSEL EXPANSION

In the main text, we have transformed the Hamiltonian He

in the block diagonal form according to a unitary transforma-
tion H̃e = UHeU †. Finally, H̃e is block diagonal which can be
written as

H̃e =
⊕
je,kz

H je
TI (r, kz ). (C1)

For the numerical diagonalization of the Hamiltonian within
each je block, we have employed the Bessel expansion. The
Bessel functions satisfy the orthogonality relation:

1

(Nm
q )2

∫ R0

0
Jm

(
αm

q′
r

R0

)
Jm

(
αm

q

r

R0

)
r dr = δqq′ , (C2)

Here, m denotes the orbital angular momentum and αm
q rep-

resents the qth zero of the m-order Bessel function Jm(x).
The normalized factor is denoted as Nm

q = 1√
2
R0Jm+1(αm

q ).
For convenience, we introduce the normalized Bessel func-
tions |Jq

m〉 = Jm(αm
q

r
R0

)/Nm
q . These normalized functions |Jq

m〉
with the same m but different zeros constitute a complete or-
thogonal basis, suitable for the expansion of the Hamiltonian
H je

TI (r, kz ). Because |Jq
m〉 have an infinite number of zeros, a

truncation is needed. This truncation involves selecting a finite
set of zeros, up to a truncated zero αm

ntru
. In this context, the

dimension of the discrete Hamiltonian within each je block
becomes 4 × ntru. When ntru is chosen sufficiently large, this

truncation introduces minimal error within the low-energy
regime (Fig. 7).

APPENDIX D: CHARGE DENSITY

In our calculations, the Hamiltonian of the topological
insulator (TI) is described by a four-band k · p model, which
includes both conduction and valence bands. In Fig. 8, we
present a schematic diagram of the TI nanowire’s band struc-
ture. We define ρoc(r) as the occupied charge density, obtained
by integrating over all occupied eigenstates, while ρval(r)
represents the density originating from the entire valence
band. The density of free electrons or holes is given by
ρ(r) = ρoc(r) − ρval(r). When the Fermi level is situated at
the neutral point, the TI nanowire behaves as an insulator
and we have ρoc(r) − ρval(r) = 0. However, when the Fermi
level is located within the conduction (valence) bands, we
have ρoc(r) − ρval(r) > (<)0, indicating electron (hole) dop-
ing. The growth of a TI with SC films induces electron doping

FIG. 7. (a) Electron band structure of TI nanowire. The green,
blue, and black lines correspond to the case when ntru = 25, 45, 60,
respectively. (b) Zoom view of the region depicted by the red box
in panel (a). It is noted that the band structure converges to sta-
ble values when ntru is sufficiently large. In our calculations, we
choose ntru = 45. Parameters used in this plot: φ = 0, W = 0.3, and
R = 50 nm.
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FIG. 8. Schematic diagram of the three typical cases of the band structure of TI nanowire: (a) insulating, (b) electron doping, and (c) hole
doping. The red and gray bands correspond to TI surface states and bulk states, respectively. The blue dash line represents the Fermi level.
ρoc(r) is defined as the occupied charge density, which is obtained by integrating over the whole occupied eigenstates. ρval(r) is the density
stemming from the whole valence band. The free electrons or holes are obtained by ρ(r) = ρoc(r) − ρval(r).

from the SC to the TI, causing an upward shift of the Fermi
level into the conduction band [58,65].

APPENDIX E: SCHRÖDINGER-POISSON METHOD

To obtain the electrostatic potential φ(r), we employ the
Schrödinger-Poisson method. Initially, we introduce an initial
potential φ0(r) = 0.1 eV into the Hamiltonian H je

TI (r, kz ) and
solve the Schrödinger equation within each je block:

H je
TI (r, kz )ψ je

nz,kz
(r) = E je

nz,kz
ψ

je
nz,kz

(r). (E1)

This yields a set of eigenenergies E je
nz,kz

and eigenstates

ψ
je

nz,kz
(r). Here, nz denotes the index of transverse modes.

The charge density ρ1 with potential φ0(r) is obtained by
integrating over the occupied eigenstates:

ρ1(r) = −e

(2π )2

∑
n, je

∫
dkz

[∣∣ψ je
nz,kz

(r)
∣∣2

fT − ρval(r)
]
. (E2)

Finally, a new potential φ1(r) is determined by solving the
Poisson equation:

1

r
∂rφ1(r) + ∂2

r φ1(r) = −ρ1(r)

ε0εr
. (E3)

It is worth noting that φ1(r) generally deviates from the
initial potential φ0(r). The discrepancy is quantified by the
error:

σ1 =
∑

m |φ1(rm) − φ0(rm)|2
Nm

. (E4)

Here, σ1 is indexed by the iteration number, m denotes
the site index, and Nm is the number of sites. The SP
problem necessitates a self-consistent solution involving the
iterative equations, Eqs. (E1) and (E3), until the error of
the ith iteration σi becomes smaller than the critical value
σc. The output φi(r) after convergence is the final self-
consistent potential. In our approach, we utilize the linear
iteration. The input potential at each iteration is a mixture
of the input and output potentials from the previous iteration

[38,56]:

φin
i (r) = κφout

i−1(r) + (1 − κ )φin
i−1(r). (E5)

In our calculations, we set κ = 0.1 and σc = 10−8 eV. The
iteration error σi significantly diminishes as the number of
iterations increases [Fig. 9(a)]. The potential convergence is
observable after approximately 40 iterations, as illustrated by
the black solid and dashed lines [Fig. 9(b)].

APPENDIX F: ACCUMULATION LAYER

The band bending effect-induced electrostatic potential
confines the bulk states and surface states to an accumulation
layer near the TI-SC interface, with a characteristic width
of approximately 30 nm. Consequently, the TI nanowire can
be approximately divided into two regions: the accumulation
layer and the insulating core. Remarkably, we find that the ac-
cumulation layer has a fixed thickness of approximately 30 nm
and does not increase with the radius of the TI nanowire.
This can be explained by the distribution of the confinement

FIG. 9. (a) Error of Schrödinger-Poisson equations as a function
of the number of iterations. (b) The distribution of the electrostatic
energy −eφ(r) as the number of iterations increases. The conver-
gence occurs when the iterations number i > 40 with the error
σ < 10−7 eV; see the black solid and dashed lines.
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FIG. 10. (a) Distribution of the electrostatic energy −eφ(r) with different R0. The black, red, and blue lines correspond to R0 = 50, 60,

70 nm, respectively. For the convenience of comparison, we align the three different φ(r) at the boundary of the nanowire, i.e., at the point r =
R0. The distribution of the three potentials near the boundary (r = R0) is nearly identical, ensuring a consistent thickness for the accumulation
layer. (b)–(d) The density distribution of the occupied states at the Fermi level with R0 = 50, 60, 70 nm, respectively. The blue (black) lines
correspond to surface states (bulk states). The accumulation layer has a fixed thickness of approximately 30 nm, as indicated by the red dashed
line.

potential [Fig. 10(a)]. For the convenience of comparison,
we align the three different radii φ(r) at the boundary of
the nanowire, i.e., at the point r = R0. It is evident that the
distribution of the three potentials near the boundary (r = R0)
is nearly identical, ensuring a consistent thickness for the ac-
cumulation layer [Fig. 10(b)]. Enlarging the nanowire radius
will primarily increase the size of the insulating core region.
Within this region, due to the absence of charge carriers, the
potential remains notably flat.

In a TI-SC hybrid system, a thinner accumulation layer im-
plies a stronger coupling between the TI and the SC, thereby

resulting in a more significant proximity effect. Since the
thickness of the accumulation layer remains constant irre-
spective of the radius R0, this property offers an advantage
in terms of flexibility in fabricating nanowires under various
conditions. Furthermore, in the presence of magnetic flux, the
differing flux-penetration areas between the bulk states and
surface states induce a notable reduction in min [Fig. 5(a)].
By increasing the value of R0, the relative area between the
accumulation layer and the nanowire can be effectively re-
duced. As a consequence, this leads to an enhancement of
min [Fig. 5(b)].

[1] A. Kitaev, Fault-tolerant quantum computation by anyons,
Ann. Phys. (NY) 303, 2 (2003).

[2] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das
Sarma, Non-Abelian anyons and topological quantum compu-
tation, Rev. Mod. Phys. 80, 1083 (2008).

[3] X.-L. Qi and S.-C. Zhang, Topological insulators and supercon-
ductors, Rev. Mod. Phys. 83, 1057 (2011).

[4] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Majorana
fermions and a topological phase transition in semiconductor-
superconductor heterostructures, Phys. Rev. Lett. 105, 077001
(2010).

[5] Y. Oreg, G. Refael, and F. von Oppen, Helical liquids and
majorana bound states in quantum wires, Phys. Rev. Lett. 105,
177002 (2010).

[6] J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma,
Generic new platform for topological quantum computation
using semiconductor heterostructures, Phys. Rev. Lett. 104,
040502 (2010).

[7] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M.
Bakkers, and L. P. Kouwenhoven, Signatures of majorana
fermions in hybrid superconductor-semiconductor nanowire de-
vices, Science 336, 1003 (2012).

[8] M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, and
H. Q. Xu, Anomalous zero-bias conductance peak in a Nb-InSb
nanowire-Nb hybrid device, Nano Lett. 12, 6414 (2012).

[9] L. P. Rokhinson, X. Liu, and J. K. Furdyna, The frac-
tional a.c. Josephson effect in a semiconductor-superconductor
nanowire as a signature of Majorana particles, Nat. Phys. 8, 795
(2012).

[10] J. Wiedenmann, E. Bocquillon, R. S. Deacon, S. Hartinger,
O. Herrmann, T. M. Klapwijk, L. Maier, C. Ames, C. Brüne,
C. Gould, A. Oiwa, K. Ishibashi, S. Tarucha, H. Buhmann,
and L. W. Molenkamp, 4π -periodic Josephson supercurrent in
HgTe-based topological Josephson junctions, Nat. Commun. 7,
10303 (2016).

[11] Z. Cao, S. Chen, G. Zhang, and D. E. Liu, Recent progress on
Majorana in semiconductor-superconductor heterostructures–
engineering and detection, Sci. China: Phys. Mech. Astron. 66,
267003 (2023).

[12] G. Kells, D. Meidan, and P. W. Brouwer, Near-zero-energy end
states in topologically trivial spin-orbit coupled superconduct-
ing nanowires with a smooth confinement, Phys. Rev. B 86,
100503(R) (2012).

[13] E. J. H. Lee, X. Jiang, R. Aguado, G. Katsaros, C. M. Lieber,
and S. De Franceschi, Zero-bias anomaly in a nanowire quan-
tum dot coupled to superconductors, Phys. Rev. Lett. 109,
186802 (2012).

[14] C.-X. Liu, J. D. Sau, T. D. Stanescu, and S. Das Sarma, An-
dreev bound states versus Majorana bound states in quantum
dot-nanowire-superconductor hybrid structures: Trivial versus

075408-10

https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.104.040502
https://doi.org/10.1126/science.1222360
https://doi.org/10.1021/nl303758w
https://doi.org/10.1038/nphys2429
https://doi.org/10.1038/ncomms10303
https://doi.org/10.1007/s11433-022-1999-x
https://doi.org/10.1103/PhysRevB.86.100503
https://doi.org/10.1103/PhysRevLett.109.186802


ELECTROSTATIC ENVIRONMENT AND MAJORANA BOUND … PHYSICAL REVIEW B 109, 075408 (2024)

topological zero-bias conductance peaks, Phys. Rev. B 96,
075161 (2017).

[15] C. Moore, T. D. Stanescu, and S. Tewari, Two-terminal
charge tunneling: Disentangling Majorana zero modes from
partially separated Andreev bound states in semiconductor-
superconductor heterostructures, Phys. Rev. B 97, 165302
(2018).

[16] A. Vuik, B. Nijholt, A. R. Akhmerov, and M. Wimmer, Re-
producing topological properties with quasi-Majorana states,
SciPost Phys. 7, 061 (2019).

[17] J. Chen, B. D. Woods, P. Yu, M. Hocevar, D. Car, S. R. Plissard,
E. P. A. M. Bakkers, T. D. Stanescu, and S. M. Frolov, Ubiq-
uitous non-majorana zero-bias conductance peaks in nanowire
devices, Phys. Rev. Lett. 123, 107703 (2019).

[18] O. A. Awoga, J. Cayao, and A. M. Black-Schaffer, Supercurrent
detection of topologically trivial zero-energy states in nanowire
junctions, Phys. Rev. Lett. 123, 117001 (2019).

[19] C. Jünger, R. Delagrange, D. Chevallier, S. Lehmann, K. A.
Dick, C. Thelander, J. Klinovaja, D. Loss, A. Baumgartner, and
C. Schönenberger, Magnetic-field-independent subgap states in
hybrid rashba nanowires, Phys. Rev. Lett. 125, 017701 (2020).

[20] E. Prada, P. San-Jose, M. W. A. de Moor, A. Geresdi, E. J. H.
Lee, J. Klinovaja, D. Loss, J. Nygård, R. Aguado, and L. P.
Kouwenhoven, From Andreev to Majorana bound states in hy-
brid superconductor-semiconductor nanowires, Nat. Rev. Phys.
2, 575 (2020).

[21] M. Valentini, F. Peñaranda, A. Hofmann, M. Brauns, R.
Hauschild, P. Krogstrup, P. San-Jose, E. Prada, R. Aguado,
and G. Katsaros, Nontopological zero-bias peaks in full-shell
nanowires induced by flux-tunable Andreev states, Science 373,
82 (2021).

[22] P. Szumniak, D. Chevallier, D. Loss, and J. Klinovaja, Spin and
charge signatures of topological superconductivity in Rashba
nanowires, Phys. Rev. B 96, 041401(R) (2017).

[23] D. Chevallier, P. Szumniak, S. Hoffman, D. Loss, and J.
Klinovaja, Topological phase detection in Rashba nanowires
with a quantum dot, Phys. Rev. B 97, 045404 (2018).

[24] C. Fleckenstein, F. Domínguez, N. Traverso Ziani, and B.
Trauzettel, Decaying spectral oscillations in a Majorana wire
with finite coherence length, Phys. Rev. B 97, 155425
(2018).

[25] L. Chen, Y.-H. Wu, and X. Liu, Superconducting spin properties
of Majorana nanowires and the associated spin-orbit coupling
driven transverse supercurrent, Phys. Rev. B 99, 165307 (2019).

[26] H. F. Legg, D. Loss, and J. Klinovaja, Superconducting diode
effect due to magnetochiral anisotropy in topological insulators
and Rashba nanowires, Phys. Rev. B 106, 104501 (2022).

[27] J. Gramich, A. Baumgartner, and C. Schönenberger, Andreev
bound states probed in three-terminal quantum dots, Phys. Rev.
B 96, 195418 (2017).

[28] T. O. Rosdahl, A. Vuik, M. Kjaergaard, and A. R. Akhmerov,
Andreev rectifier: A nonlocal conductance signature of topolog-
ical phase transitions, Phys. Rev. B 97, 045421 (2018).

[29] J. Danon, A. B. Hellenes, E. B. Hansen, L. Casparis, A. P.
Higginbotham, and K. Flensberg, Nonlocal conductance spec-
troscopy of andreev bound states: Symmetry relations and BCS
charges, Phys. Rev. Lett. 124, 036801 (2020).

[30] G. C. Ménard, G. L. R. Anselmetti, E. A. Martinez, D. Puglia,
F. K. Malinowski, J. S. Lee, S. Choi, M. Pendharkar, C. J.
Palmstrøm, K. Flensberg, C. M. Marcus, L. Casparis, and A. P.

Higginbotham, Conductance-matrix symmetries of a three-
terminal hybrid device, Phys. Rev. Lett. 124, 036802 (2020).

[31] H. Pan, J. D. Sau, and S. Das Sarma, Three-terminal non-
local conductance in Majorana nanowires: Distinguishing
topological and trivial in realistic systems with disorder and
inhomogeneous potential, Phys. Rev. B 103, 014513 (2021).

[32] D. I. Pikulin, B. van Heck, T. Karzig, E. A. Martinez, B.
Nijholt, T. Laeven, G. W. Winkler, J. D. Watson, S. Heedt,
M. Temurhan, V. Svidenko, R. M. Lutchyn, M. Thomas, G.
de Lange, L. Casparis, and C. Nayak, Protocol to identify a
topological superconducting phase in a three-terminal device,
arXiv:2103.12217.

[33] J.-Y. Wang, N. van Loo, G. P. Mazur, V. Levajac,
F. K. Malinowski, M. Lemang, F. Borsoi, G. Badawy, S.
Gazibegovic, E. P. A. M. Bakkers, M. Quintero-Pérez, S. Heedt,
and L. P. Kouwenhoven, Parametric exploration of zero-energy
modes in three-terminal InSb-Al nanowire devices, Phys. Rev.
B 106, 075306 (2022).

[34] A. Pöschl, A. Danilenko, D. Sabonis, K. Kristjuhan, T.
Lindemann, C. Thomas, M. J. Manfra, and C. M. Marcus,
Nonlocal conductance spectroscopy of Andreev bound states in
gate-defined InAs/Al nanowires, Phys. Rev. B 106, L241301
(2022).

[35] A. Banerjee, O. Lesser, M. A. Rahman, C. Thomas, T. Wang,
M. J. Manfra, E. Berg, Y. Oreg, A. Stern, and C. M. Marcus,
Local and nonlocal transport spectroscopy in planar josephson
junctions, Phys. Rev. Lett. 130, 096202 (2023).

[36] A. Cook and M. Franz, Majorana fermions in a topological-
insulator nanowire proximity-coupled to an s-wave supercon-
ductor, Phys. Rev. B 84, 201105(R) (2011).

[37] A. M. Cook, M. M. Vazifeh, and M. Franz, Stability of
Majorana fermions in proximity-coupled topological insulator
nanowires, Phys. Rev. B 86, 155431 (2012).

[38] H. F. Legg, D. Loss, and J. Klinovaja, Majorana bound states
in topological insulators without a vortex, Phys. Rev. B 104,
165405 (2021).

[39] S. G. Schellingerhout, E. J. de Jong, M. Gomanko, X. Guan, Y.
Jiang, M. S. M. Hoskam, S. Koelling, O. Moutanabbir, M. A.
Verheijen, S. M. Frolov, and E. P. A. M. Bakkers, Growth of
PbTe nanowires by molecular beam epitaxy, Mater. Quantum
Technol. 2, 015001 (2022).

[40] Z. Cao, D. E. Liu, W.-X. He, X. Liu, K. He, and H.
Zhang, Numerical study of PbTe-Pb hybrid nanowires for en-
gineering Majorana zero modes, Phys. Rev. B 105, 085424
(2022).

[41] Y. Jiang, S. Yang, L. Li, W. Song, W. Miao, B. Tong, Z. Geng,
Y. Gao, R. Li, F. Chen, Q. Zhang, F. Meng, L. Gu, K. Zhu,
Y. Zang, R. Shang, Z. Cao, X. Feng, Q.-K. Xue, D. E. Liu
et al., Selective area epitaxy of PbTe-Pb hybrid nanowires
on a lattice-matched substrate, Phys. Rev. Mater. 6, 034205
(2022).

[42] Z. Geng, Z. Zhang, F. Chen, S. Yang, Y. Jiang, Y. Gao, B.
Tong, W. Song, W. Miao, R. Li, Y. Wang, Q. Zhang, F. Meng,
L. Gu, K. Zhu, Y. Zang, L. Li, R. Shang, X. Feng, Q.-K. Xue
et al., Observation of Aharonov-Bohm effect in PbTe nanowire
networks, Phys. Rev. B 105, L241112 (2022).

[43] S. C. ten Kate, M. F. Ritter, A. Fuhrer, J. Jung, S. G.
Schellingerhout, E. P. A. M. Bakkers, H. Riel, and F. Nichele,
Small charging energies and g-factor anisotropy in PbTe quan-
tum dots, Nano Lett. 22, 7049 (2022).

075408-11

https://doi.org/10.1103/PhysRevB.96.075161
https://doi.org/10.1103/PhysRevB.97.165302
https://doi.org/10.21468/SciPostPhys.7.5.061
https://doi.org/10.1103/PhysRevLett.123.107703
https://doi.org/10.1103/PhysRevLett.123.117001
https://doi.org/10.1103/PhysRevLett.125.017701
https://doi.org/10.1038/s42254-020-0228-y
https://doi.org/10.1126/science.abf1513
https://doi.org/10.1103/PhysRevB.96.041401
https://doi.org/10.1103/PhysRevB.97.045404
https://doi.org/10.1103/PhysRevB.97.155425
https://doi.org/10.1103/PhysRevB.99.165307
https://doi.org/10.1103/PhysRevB.106.104501
https://doi.org/10.1103/PhysRevB.96.195418
https://doi.org/10.1103/PhysRevB.97.045421
https://doi.org/10.1103/PhysRevLett.124.036801
https://doi.org/10.1103/PhysRevLett.124.036802
https://doi.org/10.1103/PhysRevB.103.014513
https://arxiv.org/abs/2103.12217
https://doi.org/10.1103/PhysRevB.106.075306
https://doi.org/10.1103/PhysRevB.106.L241301
https://doi.org/10.1103/PhysRevLett.130.096202
https://doi.org/10.1103/PhysRevB.84.201105
https://doi.org/10.1103/PhysRevB.86.155431
https://doi.org/10.1103/PhysRevB.104.165405
https://doi.org/10.1088/2633-4356/ac4fba
https://doi.org/10.1103/PhysRevB.105.085424
https://doi.org/10.1103/PhysRevMaterials.6.034205
https://doi.org/10.1103/PhysRevB.105.L241112
https://doi.org/10.1021/acs.nanolett.2c01943


CHEN, PAN, CAO, LIU, AND LIU PHYSICAL REVIEW B 109, 075408 (2024)

[44] X.-H. Pan, L. Chen, D. E. Liu, F.-C. Zhang, and X. Liu, Ma-
jorana zero modes induced by the meissner effect at small
magnetic field, Phys. Rev. Lett. 132, 036602 (2024).

[45] H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, X.-L. Qi, S.-C.
Zhang, Z.-X. Shen, and Y. Cui, Aharonov-Bohm interference in
topological insulator nanoribbons, Nat. Mater. 9, 225 (2010).

[46] Y. Zhang and A. Vishwanath, Anomalous aharonov-bohm con-
ductance oscillations from topological insulator surface states,
Phys. Rev. Lett. 105, 206601 (2010).

[47] F. Xiu, L. He, Y. Wang, L. Cheng, L.-T. Chang, M. Lang, G.
Huang, X. Kou, Y. Zhou, X. Jiang, Z. Chen, J. Zou, A. Shailos,
and K. L. Wang, Manipulating surface states in topological
insulator nanoribbons, Nat. Nanotechnol. 6, 216 (2011).

[48] S. Cho, B. Dellabetta, R. Zhong, J. Schneeloch, T. Liu, G.
Gu, M. J. Gilbert, and N. Mason, Aharonov-Bohm oscilla-
tions in a quasi-ballistic three-dimensional topological insulator
nanowire, Nat. Commun. 6, 7634 (2015).

[49] F. Münning, O. Breunig, H. F. Legg, S. Roitsch, D. Fan,
M. Rößler, A. Rosch, and Y. Ando, Quantum confinement
of the Dirac surface states in topological-insulator nanowires,
Nat. Commun. 12, 1038 (2021).

[50] H. F. Legg, M. Rößler, F. Münning, D. Fan, O. Breunig,
A. Bliesener, G. Lippertz, A. Uday, A. A. Taskin, D. Loss,
J. Klinovaja, and Y. Ando, Giant magnetochiral anisotropy
from quantum-confined surface states of topological insulator
nanowires, Nat. Nanotechnol. 17, 696 (2022).

[51] M. Rößler, D. Fan, F. Münning, H. F. Legg, A. Bliesener, G.
Lippertz, A. Uday, R. Yazdanpanah, J. Feng, A. Taskin, and
Y. Ando, Top-down fabrication of bulk-insulating topological
insulator nanowires for quantum devices, Nano Lett. 23, 2846
(2023).

[52] R. Fischer, J. Picó-Cortés, W. Himmler, G. Platero, M. Grifoni,
D. A. Kozlov, N. N. Mikhailov, S. A. Dvoretsky, C. Strunk,
and D. Weiss, 4π -periodic supercurrent tuned by an axial mag-
netic flux in topological insulator nanowires, Phys. Rev. Res. 4,
013087 (2022).

[53] M. Bai, X.-K. Wei, J. Feng, M. Luysberg, A. Bliesener,
G. Lippertz, A. Uday, A. A. Taskin, J. Mayer, and Y.
Ando, Proximity-induced superconductivity in (Bi1-xSbx)2Te3
topological-insulator nanowires, Commun. Mater. 3, 20
(2022).

[54] A. Vuik, D. Eeltink, A. R. Akhmerov, and M. Wimmer, Effects
of the electrostatic environment on the Majorana nanowire de-
vices, New J. Phys. 18, 033013 (2016).

[55] A. E. Antipov, A. Bargerbos, G. W. Winkler, B. Bauer, E. Rossi,
and R. M. Lutchyn, Effects of gate-induced electric fields on
semiconductor majorana nanowires, Phys. Rev. X 8, 031041
(2018).

[56] A. E. G. Mikkelsen, P. Kotetes, P. Krogstrup, and K.
Flensberg, Hybridization at superconductor-semiconductor in-
terfaces, Phys. Rev. X 8, 031040 (2018).

[57] J.-P. Xu, C. Liu, M.-X. Wang, J. Ge, Z.-L. Liu, X. Yang, Y.
Chen, Y. Liu, Z.-A. Xu, C.-L. Gao, D. Qian, F.-C. Zhang, and
J.-F. Jia, Artificial topological superconductor by the proximity
effect, Phys. Rev. Lett. 112, 217001 (2014).

[58] J.-P. Xu, M.-X. Wang, Z. L. Liu, J.-F. Ge, X. Yang, C.
Liu, Z. A. Xu, D. Guan, C. L. Gao, D. Qian, Y. Liu,
Q.-H. Wang, F.-C. Zhang, Q.-K. Xue, and J.-F. Jia, Ex-
perimental detection of a majorana mode in the core of a
magnetic vortex inside a topological insulator-superconductor

Bi2Te3/NbSe2 heterostructure, Phys. Rev. Lett. 114, 017001
(2015).

[59] P. Hosur, P. Ghaemi, R. S. K. Mong, and A. Vishwanath, Ma-
jorana modes at the ends of superconductor vortices in doped
topological insulators, Phys. Rev. Lett. 107, 097001 (2011).

[60] L. Chen, Z. Cao, K. He, X. Liu, and D. E. Liu, Electrostatic ef-
fects of MnBi2Te4-superconductor heterostructures in the chiral
Majorana search, Phys. Rev. B 107, 165405 (2023).

[61] H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C.
Zhang, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3

with a single Dirac cone on the surface, Nat. Phys. 5, 438
(2009).

[62] G. Rosenberg, H.-M. Guo, and M. Franz, Wormhole effect
in a strong topological insulator, Phys. Rev. B 82, 041104(R)
(2010).

[63] P. M. Ostrovsky, I. V. Gornyi, and A. D. Mirlin, Interaction-
induced criticality in Z2 topological insulators, Phys. Rev. Lett.
105, 036803 (2010).

[64] C.-X. Liu, X.-L. Qi, H. J. Zhang, X. Dai, Z. Fang, and
S.-C. Zhang, Model Hamiltonian for topological insulators,
Phys. Rev. B 82, 045122 (2010).

[65] P. Rüßmann and S. Blügel, Proximity induced superconductiv-
ity in a topological insulator, arXiv:2208.14289.

[66] M. S. Bahramy, P. D. C. King, A. de la Torre, J. Chang,
M. Shi, L. Patthey, G. Balakrishnan, P. Hofmann, R. Arita,
N. Nagaosa, and F. Baumberger, Emergent quantum confine-
ment at topological insulator surfaces, Nat. Commun. 3, 1159
(2012).

[67] M. Michiardi, F. Boschini, H.-H. Kung, M. X. Na, S. K. Y.
Dufresne, A. Currie, G. Levy, S. Zhdanovich, A. K. Mills, D. J.
Jones, J. L. Mi, B. B. Iversen, P. Hofmann, and A. Damascelli,
Optical manipulation of Rashba-split 2-dimensional electron
gas, Nat. Commun. 13, 3096 (2022).

[68] D. Flötotto, Y. Ota, Y. Bai, C. Zhang, K. Okazaki, A. Tsuzuki,
T. Hashimoto, J. N. Eckstein, S. Shin, and T.-C. Chiang, Su-
perconducting pairing of topological surface states in bismuth
selenide films on niobium, Sci. Adv. 4, eaar7214 (2018).

[69] M.-X. Wang, C. Liu, J.-P. Xu, F. Yang, L. Miao, M.-Y. Yao,
C. L. Gao, C. Shen, X. Ma, X. Chen, Z.-A. Xu, Y. Liu, S.-C.
Zhang, D. Qian, J.-F. Jia, and Q.-K. Xue, The coexistence of
superconductivity and topological order in the Bi2Se3 thin films,
Science 336, 52 (2012).

[70] A. Y. Kitaev, Unpaired Majorana fermions in quantum wires,
Phys. Usp. 44, 131 (2001).

[71] F. de Juan, J. H. Bardarson, and R. Ilan, Conditions for fully
gapped topological superconductivity in topological insulator
nanowires, SciPost Phys. 6, 060 (2019).

[72] A. Kiejna and K. Wojciechowski, in Metal Surface Electron
Physics, edited by A. Kiejna and K. Wojciechowski (Pergamon
Press, Oxford, 1996), pp. 123–130.

[73] C. Caroli, P. De Gennes, and J. Matricon, Bound Fermion states
on a vortex line in a type II superconductor, Phys. Lett. 9, 307
(1964).

[74] A. A. Kopasov and A. S. Mel’nikov, Multiple topological tran-
sitions driven by the interplay of normal scattering and Andreev
scattering, Phys. Rev. B 101, 054515 (2020).

[75] P. San-Jose, C. Payá, C. M. Marcus, S. Vaitiekėnas, and
E. Prada, Theory of Caroli–de Gennes–Matricon analogs
in full-shell hybrid nanowires, Phys. Rev. B 107, 155423
(2023).

075408-12

https://doi.org/10.1103/PhysRevLett.132.036602
https://doi.org/10.1038/nmat2609
https://doi.org/10.1103/PhysRevLett.105.206601
https://doi.org/10.1038/nnano.2011.19
https://doi.org/10.1038/ncomms8634
https://doi.org/10.1038/s41467-021-21230-3
https://doi.org/10.1038/s41565-022-01124-1
https://doi.org/10.1021/acs.nanolett.3c00169
https://doi.org/10.1103/PhysRevResearch.4.013087
https://doi.org/10.1038/s43246-022-00242-6
https://doi.org/10.1088/1367-2630/18/3/033013
https://doi.org/10.1103/PhysRevX.8.031041
https://doi.org/10.1103/PhysRevX.8.031040
https://doi.org/10.1103/PhysRevLett.112.217001
https://doi.org/10.1103/PhysRevLett.114.017001
https://doi.org/10.1103/PhysRevLett.107.097001
https://doi.org/10.1103/PhysRevB.107.165405
https://doi.org/10.1038/nphys1270
https://doi.org/10.1103/PhysRevB.82.041104
https://doi.org/10.1103/PhysRevLett.105.036803
https://doi.org/10.1103/PhysRevB.82.045122
https://arxiv.org/abs/2208.14289
https://doi.org/10.1038/ncomms2162
https://doi.org/10.1038/s41467-022-30742-5
https://doi.org/10.1126/sciadv.aar7214
https://doi.org/10.1126/science.1216466
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.21468/SciPostPhys.6.5.060
https://doi.org/10.1016/0031-9163(64)90375-0
https://doi.org/10.1103/PhysRevB.101.054515
https://doi.org/10.1103/PhysRevB.107.155423


ELECTROSTATIC ENVIRONMENT AND MAJORANA BOUND … PHYSICAL REVIEW B 109, 075408 (2024)

[76] C. Li, X.-J. Luo, L. Chen, D. E. Liu, F.-C. Zhang, and X.
Liu, Controllable Majorana vortex states in iron-based super-
conducting nanowires, Nat. Sci. Rev. 9, nwac095 (2022).

[77] D. Heffels, D. Burke, M. R. Connolly, P. Schüffelgen, D.
Grützmacher, and K. Moors, Robust and fragile majorana

bound states in proximitized topological insulator nanoribbons,
Nanomaterials 13, 723 (2023).

[78] M. Stordeur, K. K. Ketavong, A. Priemuth, H. Sobotta, and
V. Riede, Optical and electrical investigations of n-type Bi2Se3

single crystals, Phys. Status Solidi B 169, 505 (1992).

075408-13

https://doi.org/10.1093/nsr/nwac095
https://doi.org/10.3390/nano13040723
https://doi.org/10.1002/pssb.2221690222

