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Optimization of metasurfaces for lasing with symmetry constraints on the modes
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The development of active metasurface systems, such as lasing metasurfaces, requires the optimization of
multiple modes at the absorption and lasing wavelength bands, including their quality factor, mode profile,
and angular dispersion. Often, these requirements are contradictory and impossible to obtain with conventional
design techniques. Importantly, the properties of the eigenmodes of a metasurface are directly linked to their
symmetry, which offers an opportunity to explore mode symmetry as an objective in optimization routines
for active metasurface design. Here we propose and numerically demonstrate a multiobjective optimization
technique based on symmetry projection operators to quantify the symmetry of the metasurface eigenmodes.
We present, as an example, the optimization of a lasing metasurface based on up-converting nanoparticles. Our
technique allows us to optimize the absorption mode dispersion, as well as the directionality of the lasing
emission, and therefore offers advantages for novel lasing systems with high directionality and low lasing
threshold.
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I. INTRODUCTION

Active metasurfaces (MSs) have received a great deal of
interest over recent years and particularly with applications
such as micro- and nanolasers [1–5]. Various MS lasers have
been demonstrated, including vortex lasers [6–9] and micro-
lasers with strong directional light emission [9]. Most MS
lasers have utilized optical pumping, where the MS proper-
ties have to be optimized simultaneously for both the pump
and emission wavelengths. However, techniques for rigorous
design have remained largely unexplored.

Recently MS lasers have been demonstrated using up-
converting nanoparticles (UCNPs) [5], which contain a matrix
of lanthanides with appropriate sequential two-photon tran-
sitions [10]. In contrast to conventional MS lasers, the
absorption band of the UCNPs is at longer wavelengths than
the lasing spectral band [Fig. 1(a)]. This active metasurface
system offers unique design complexity, as the lasing band
is covered with higher-order modes. The work of Ref. [5]
achieved lasing at the desired transition using a plasmonic
MS. However, the plasmonic MS was only resonant at the
lasing wavelength, having no enhancement for the absorp-
tion. Furthermore, the mode volume in the gain medial for
plasmonic MSs is relatively low, therefore limiting the lasing
threshold.

Dielectric MSs were therefore explored as a possible al-
ternative. A recent work has studied Si dielectric MSs [11]
covered with Tm UCNPs. The close proximity of the pump
and lasing wavelengths in such Tm:UCNPs allowed for a
conventional design approach where the electric and magnetic
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dipole Mie resonances were used to enhance both the absorp-
tion and emission bands. Alternatively, another recent work
used TiO2 for the resonators [12] and enhanced two different
but closely spaced emission transitions of Yb/Er UCNPs at
660 and 540 nm. It is also possible to introduce more com-
plicated engineering of the up-conversion emission, such as
the Rashba effect, with MSs [13]. However, there is still an
outstanding problem of how to design MSs that enhance both
the absorption and atomic transitions of UCNP systems with
distinct and widely spaced transition wavelengths.

Symmetry has recently become an important element of
such complex MS design, finding uses in the engineering
of resonant leaky modes (such as quasibound states in the
continuum) [14,15], chirality [16], geometric phase [17,18],
and the effective permittivity and permeability of MSs [19].
The properties of the individual modes themselves can also be
determined by symmetry, such as in the engineering of Dirac
cones from the overlap of modes of certain symmetries [20].
At the same time, inverse design methods are becoming in-
creasingly important for the engineering of specific responses
[21,22]. It is clear then that an important advance can be
made in the development of metasurfaces if one is able to
introduce symmetry constraints on both the MS design and
the selection of modes in inverse design algorithms. While one
can specify the symmetry of a MS in an optimization routine,
in order to control the symmetry of the modes one requires
a method to quantify the symmetry of vector fields obtained
from simulations.

We therefore require new dielectric MS designs that in-
crease the absorption, provide a high-quality factor at the
lasing band, and optimize the overlap between the two
modes. However, this multiobjective optimization is not easy
to achieve with conventional routines and requires novel
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FIG. 1. (a) Conceptual diagram of lasing up-conversion. (b) The
design of the MS. (c) Abbreviated energy-level diagram for Yb
and Er, showing energy donated by Yb to Er in gray lines and
phonons with a wavy line. (d) (left) Gaussian model of the Yb atom
transition at 980 ± 35 nm (right) acceptable dispersions for the MS
eigenmodes at 980 ± 35 nm. The gray region shows the FWHM.

approaches. As noted above, many properties of MSs are
determined by the symmetry of the structure [19,23], and
the symmetry of the eigenmodes also plays a critical role in
determining their dispersion, such as in the formation of Dirac
cones [20,24].

In this work we propose and numerically demonstrate
an approach that is based on projection operators (also
known as projectors) to apply symmetry constraints to
the excited modes at the different wavelengths and derive
efficient designs for MS lasers. We demonstrate this tech-
nique for the example of UCNP-based MS lasers, where
our technique allows us to select modes with a particular,
symmetry-dependent dispersion by quantifying numerically
the symmetry of the eigenmodes. We also use the technique
to avoid unwanted MS properties by rejecting overlapping
eigenmodes with undesirable symmetry combinations.

II. DESIGN

Extending the work of Ref. [5], we designed a MS laser
that absorbs at 980 nm and emits at 660 nm [Fig. 1(a)].
The active medium for the UCNP MS laser is a layer of
nanoparticles consisting of a matrix of Yb3+ and Er3+atoms
that infiltrate the TiO2 MS [Fig. 1(b)]. The Yb3+atoms have
a larger cross section than the Er3+atoms, as well as a single
transition at 980 nm that corresponds to two transitions in the
Er3+atoms [Fig. 1(c)]. The matrix of Yb and Er atoms in each
nanoparticle facilitates the excitation of the Er atom by Yb

atoms. Specifically, two Yb3+atoms can excite the Er3+atoms
to a higher level, which, following multiphonon relaxation,
can relax to the ground state via 660-nm emission [10]. For
UCNPs alone, the FWHM of the absorption band is typically
10–20 nm, but with dye sensitization, this can be broadened
[25–27]. In this work we take the absorption transition to
have a bandwidth of 980 ± 35 nm. It has been demonstrated
[5] that one can cause the 660-nm transition to be preferred
over the others that are possible by infiltrating a plasmonic
MS that has a resonance at 660 nm. In this previous work,
however, there was no MS resonance at the wavelength of
the Yb3+ transition, and so the absorption was not optimized.
Furthermore, plasmonic resonances have a low field volume
and hence, only UCNPs at the surface of the resonators would
have been activated.

The MS design, therefore, requires the optimization of
multiple objectives at both the lasing and absorption bands.
At the lasing band we require the following:

(1) Minimization of the detuning between the lasing wave-
length and the wavelength of the highest quality factor mode,
since the highest Q MS mode will dominate lasing;

(2) That the quality factor of the mode reduces away from
the � point to ensure normal emission;

(3) Maximization of the ratio of the mode’s intensity
within the UCNPs to that of the whole unit cell, since only
the electromagnetic energy within the UCNPs will enhance
the lasing of the UCNPs.

At the absorption band we require the following:
(4) Maximization of the ratio of the absorption mode’s

intensity within the UCNPs to the intensity in the whole unit
cell.

(5) Maximization of the power absorbed within the UCNP
region.

(6) Low angular dispersion for the absorption mode so that
the acceptance angle for the absorption band is at least as large
as the numerical aperture of the optical system [e.g., ±5◦, see
Fig. 1(d)].

For objective 1 and objectives 3 to 5, we formulated fig-
ures of merit (see Sec. IV) and multiplied them together to
obtain the final figure of merit. For objective 2 the most
common cause of high-Q modes not reducing in quality factor
away from the � point is the overlap of modes of certain sym-
metries (see Sec. IV), and so if we detect such a mode overlap
via the technique outlined in this paper, then a figure of merit
(FOM) of zero is returned.

Objectives 3 to 5 require a large proportion of the mode
fields to be outside of the resonators, which can be achieved
by targeting lattice modes. We therefore use a band folding
design for the MS, as depicted in Fig. 2(a), as this design
increases the number of lattice modes at the � point [28].
This particular band folding design has alternating radii of
the resonators in a staggered pattern [Fig. 2(a)], which causes
modes to be band folded from the M points to the center of
the first Brillouin zone [Fig. 2(b)].

We chose this band-folding design out of the many possible
because its simple geometry allows several key properties of
projection operators to be clearly illustrated (see Supplemen-
tal Material (SM) S3 and S4 [29]). It should be noted that more
objectives could be added to the routine, such as the overlap of
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FIG. 2. (a) Unit-cell changes as the radii of the cylinders are
made nonuniform. (b) The M point of the first Brillouin zone (FBZ)
of the original (uniform radii) MS is folded to the � point of the FBZ
of the modified (nonuniform radii) MS.

the fields at the absorption and lasing bands, so that individual
nanoparticles are excited at both bands, as well as the pro-
portion of the emission into the zeroth diffraction order. The
latter also applies to the absorption band since, by reciprocity,
that will improve the mode’s coupling to normally incident
radiation. Adding these extra objectives, however, requires
the addition of extra degrees of freedom by allowing each
resonator’s radius to vary independently. But this alternative
band folding design would make the explanation of projection
operators cumbersome.

Our design uses TiO2 for the resonators on a quartz sub-
strate with a 23-nm-thick indium tin oxide (ITO) layer to aid
the lithography process, which are all materials commonly
used for MS applications at visible wavelengths [30,31]. The
height of the UCNP layer is set to be 100 nm higher than the
resonators (since one occasionally encounters a mode with a
significant proportion of the field just above the resonators),
and all other design parameters are set by the optimization
routine.

For objective 6, it is possible to create modes with perfectly
flat dispersion with Lieb and kagome [32–34] lattices, but
these modes exist mostly in the resonators and hence con-
tradict objectives 3 to 5. These modes are also dominated by
nearest-neighbor interactions and, therefore, will not have the
coherence across the lattice required for lasing. It is also possi-
ble to create relatively flat dispersion by tuning the parameters
of the MS so that the interaction between multiple modes will
give a flat mode. Optimizing for this, however, would require
multiple simulations to check the dispersion of the modes and
is thus not practical because of time considerations.

We have therefore opted for a compromise solution of only
considering modes at the absorption band of a certain symme-
try, known as C4v E symmetry (as explained in Sec. III). These
modes are doubly degenerate and polarization independent at
the � point. The P-polarized mode has low dispersion along
the � − X direction, and both S and P polarizations have
relatively low dispersion along the � − M direction. Although
there is dispersion present, this dispersion only has to be
less than the bandwidth of the absorptive transition in the
UCNPs [Fig. 1(d)], and for P-polarized light along the � − X
direction, this can create an acceptance angle of up to 15◦.

To target only modes of a particular symmetry requires a
method to quantify the symmetry of the modes returned by an

TABLE I. The character table for the C4v point group. Each row
is a different irreducible representation, the name of which is given
in the first column.

C4v E 2C4 C2 2σv 2σd

A1 1 1 1 1 1
A2 1 1 1 −1 −1
B1 1 −1 1 1 −1
B2 1 −1 1 −1 1
E 2 0 −2 0 0

eigenfrequency study. In the following section we outline our
technique for quantifying the symmetry of vector and scalar
fields with respect to any irreducible representation of any
symmetry group.

III. THE APPLICATION OF PROJECTION OPERATORS
TO PHOTONIC SYSTEMS

The MS design has the symmetry of the C4v point group
[35,36], which gives all of the ways in which the MS can be
transformed (but not deformed) such that it looks the same.
For C4v this means that there are three rotation symmetries:
π/2, known as C2; as well as both π/4 and 3π/4 rotations
which are both known as C4. There are also four mirror
symmetries: horizontal and vertical, known as σv; and two
diagonal mirrors, known as σd . Every point group also has
the identity symmetry that does nothing, known as E . Each of
these symmetries can be either symmetric or antisymmetric,
but only certain combinations of symmetry and antisymmetry
are possible. These possible combinations, known as irre-
ducible representations, are given in the character table for
C4v shown in Table I, where a value of 1 indicates symmetry
and −1 antisymmetry and 0 that this symmetry is not present.
Note that the E irreducible representation is two-dimensional,
which gives rise to its more complicated character. All that is
required to know for the purposes of this paper is that the E
irreducible representation has the same symmetry as a vector.
The E irreducible representation should not be confused with
the E (identity) symmetry operation.

If we have a scalar field with a certain symmetry, such
as that shown in Fig. 3(a), then we can describe this scalar
field with a vector |ψ〉 where each element of the vector
represents a different data point in the field. That is, if we have
n data points then |ψ〉 will be an n-dimensional vector. It is a
remarkable fact that it is possible to define a hyperplane in this
n-dimensional space such that every and only vectors in this
hyperplane represent fields with a given symmetry. This then
means that we can tell if a scalar field has a given symmetry by
seeing if the vector has any projection onto the corresponding
hyperplane. The way to do this, of course, is with the linear
algebra of projection operators, or projectors, which act on a
vector to give the projection of that vector onto a plane.

For example, if we wish to see if |ψ〉 has any C4v A1 sym-
metry, then we multiply it by the projector for this symmetry,
which we denote by P̂(A1 )

4v . If there are n data points then P̂(A1 )
4v

is an n×n matrix. The resulting vector,

|ψ ′〉 = P̂(A1 )
4v |ψ〉,
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FIG. 3. (a) |E| (V/m) for one of the nonoptimized modes in the
MS, |ψA1 〉, across four unit cells. (b) Effect of the C4v A1 projector

on the scalar field in (a), P̂(A1 )
4v |ψA1 〉. (c) Effect of the C4v B1 projector

on the scalar field in (a), P̂(B1 )
4v |ψA1 〉. (d) Effect of the C4v B2 projec-

tor on the scalar field in (a), P̂(B2 )
4v |ψA1 〉.

must of necessity represent a field with C4v A1 symmetry,
since the projection operator gives the projection onto this
symmetry.

By using matrix multiplication, there is clearly a memory
cost in creating an n×n matrix for n data points, but for
dielectric MSs, this is not a problem for two reasons: Firstly, it
is not necessary to take a three-dimensional (3D) cube of data
points, since we can use a two-dimensional approximation
with MS modes. That is, since the lattice modes in a MS have
either transverse electric or transverse magnetic fields [37],
we can characterize the vector field symmetry by taking a 2D
slice through the MS. (For low-order modes, this approxima-
tion holds despite the asymmetry introduced by the substrate).
Secondly, a large number of data points are not required to test
the symmetry of a MS—we use n = 432 data points, but fewer
would suffice.

For cases where more data points are required, it would
be possible to replace the matrix multiplication with vector
multiplication, but a time cost would be incurred in doing so.
Note that this is not simply a matter of rotating or reflecting
a matrix, since multiple symmetry operations must be tested
for in a normalized way. Furthermore, for a nonsquare lattice,
such as C6 symmetry, one no longer has a square array of
values, and there are nontrivial operations such as a π/6 rota-
tion, etc. These resource problems are well known in imaging
where projectors are used to calculate the null space of an
imaging system [38], and there is a subfield of designing
algorithms to efficiently create projection operators. In our
case, however, it is not the creation of the projector that is
the largest cost (since this is a one-off calculation) but rather
the memory-time tradeoff in the application of the projector.

To give a more precise example of the application of
projection operators, in Fig. 3(a) we can see the norm of

the E field for a nonoptimized mode across four unit cells.
This scalar field has the same symmetry as the C4v A1 ir-
reducible representation, and so we refer to it as |ψA1〉. If
we apply a C4v A1 projector to this field (P̂(A1 )

4v |ψA1〉) we get
the result shown in Fig. 3(b), which is hardly distinguishable
from Fig. 3(a). We will therefore get a value close to unity
(η = 0.9777) for the symmetry parameter defined as

η = 〈ψ |P̂(A1 )
4v |ψ〉

〈ψ |ψ〉 , (1)

which is a measure of what proportion of the vector projects
onto the hyperplane of C4v A1 symmetry. Note that we will not
get η = 1 exactly due to mesh asymmetries, mode coupling,
etc.

If, on the other hand, we use the projector for C4v B1

symmetry, then we get the result in Fig. 3(c), which shows
P̂(B1 )

4v |ψA1〉. The symmetry parameter, in this case, has a value
of η = 2×10−6. Or for C4v B2 symmetry we get the result
shown in Fig. 3(d), which shows P̂(B2 )

4v |ψA1〉. In this case η =
7×10−4. It should be noted that in both Figs. 3(c) and 3(d) the
resulting patterns have C4v B1 and B2 symmetry, respectively,
which must be the case since the projectors return a vector in
the hyperplane of these symmetries.

These examples demonstrate that if we apply the projector
for an orthogonal symmetry then the symmetry parameter will
be zero. while applying the projector for the same symmetry
will give a symmetry parameter value of 1. Since the irre-
ducible representations of a particular group are all orthogonal
and every uncoupled mode conforms to one of the irreducible
representations of the MS point group [37], we have therefore
formulated a numerical method that distinguishes between the
field profiles by their symmetry.

We can use projection operators to characterize the sym-
metry of the field if we first select a basis for the data that is
suitable for use with projection operators [39,40]. The key to
this process is the design of the basis, which we refer to as the
symmetrization of the data.

The first requirement for symmetrization is on the distribu-
tion of the data points, which must match the symmetry to be
tested. That is, if we wish to test for π/2 rotation symmetry
[where the rotation matrix is R(π/2)], then for the data point
located at �q there must be a corresponding data point located
at R(π/2)�q to compare it to. We can achieve this by creating
a lattice of data points from lattice vectors that are a given
fraction of the MS lattice vectors. For scalar fields, this alone
is sufficient to apply projection operators (see SM S1 [29]).

For a vector field, however, the vector components must
also be symmetrized. That is, to test for π/2 rotation symme-
try, we must also test that the vector field at R(π/2)�q is rotated
by π/2 radians. To achieve this we define the vector field axes
differently for each data point, where we denote the axes at
point �q by x̂q, ŷq, and ẑq. Taking the MS to lie in the x-y plane,
the ẑq axis at �q is left unchanged, but the x̂q and ŷq axes are
rotated in the x-y plane such that the x̂q axis is parallel to the
component of �q in the x-y plane. With this symmetrization,
the x and z components have the correct symmetry but the y
components have mirror symmetries opposite to that desired.
This difference must be taken into account when applying
projection operators to the y component, and as a result,

075406-4



OPTIMIZATION OF METASURFACES FOR LASING WITH … PHYSICAL REVIEW B 109, 075406 (2024)

Eq. (1) becomes more complicated (see SM S2 [29]). In the
rest of the paper, we will continue to use the simpler equation,
Eq. (1), for scalar fields, with the understanding that the more
complicated vector equation must be substituted when dealing
with vector fields.

Whether or not the value for η is a discrete 0 or 1 or
a continuous value from 0 to 1 depends both on the mode
and the projector used. The symmetry of the modes of a
MS with point group G must have the symmetry of one of
the irreducible representations g ∈ G. Therefore if we use the
projector P̂(g)

G we will have either

η = 〈ψg|P̂(g)
G |ψg〉

〈ψg|ψg〉 (2)

= 1 (3)

or

η = 〈ψg′ |P̂(g)
G |ψg′ 〉

〈ψg′ |ψg′ 〉 g′ �= g (4)

= 0, (5)

within numerical error (including factors such as mesh asym-
metry).

There are two cases where the value of η will be continuous
in the range [0,1]. Firstly, if two modes are coupled then the
symmetry of each will be a mixture of the two uncoupled
symmetries, and hence one will obtain a fractional value for
each of these irreducible representations. Secondly, we have
as a property of projectors [40] that

∑
g∈G

P̂(g)
G = 1,

which means that each point group spans the entire space
of possible fields. That is, any random field can be decom-
posed into the irreducible representations of any point group.
This then means that we are not limited to the projector that
matches the point group of a MS, and we can use any projector
at all to quantify the symmetry of a mode. However, if the
projector has a different point group to the MS, then its modes
are not guaranteed to match one of the irreducible representa-
tions of the projector point group and hence we might obtain
a fractional value.

As an example of this scenario, when one moves away
from the � point, the symmetry of the MS relative to the
incident field changes, and so if we decompose the modes over
the whole Brillouin zone with the same projector as at the �

point, then one is only guaranteed to get integer values at the
� point for uncoupled modes. The only exception is at some
point away from the � point with point-group symmetry H
which has that the irreducible representation h ∈ H is equiva-
lent to the irreducible representation g ∈ G of the � point, in
the sense that

P̂(h)
H = P̂(g)

G .

Of necessity, then, an h symmetric mode will give η = 1
for P̂(g)

G .
Note that in the application of projectors, there is some

subtlety in the choice of origin for the field (see SM S3) as

well as in the symmetry of vector fields in band-folded MSs
(see SM S4) [29].

IV. SIMULATIONS

To perform the optimization we used the surrogate opti-
mization [41] routine provided with MATLAB. This creates a
model from a number of simulations, which is then used to
select the next set of parameters to simulate, which are in turn
used to update the model. All simulations were performed in
COMSOL MULTIPHYSICS.

The FOMs for the objectives outlined in Sec. II are as
follows:

(1) We modeled the UCNP transition as a Gaussian func-
tion at 660 nm with a FWHM of 10 nm so that the FOM is the
value of this Gaussian function at the eigenmode wavelength.

(2) It has been shown [20,24] that in a C4v symmetric
structure, Dirac cones can be formed with the overlap of E
symmetric modes with either A1 and B1 or A2 and B2 sym-
metric modes. These coupled modes do not rapidly drop in Q
away from the � point and are therefore excluded using our
projection operator techniques.

(3,4) In COMSOL we integrated |E |2 over the UCNP region
and divided this by the integral of |E |2 over the whole unit
cell. This was then normalized by dividing by the ratio of the
volume of the UCNPs to the volume of the whole unit cell.
This normalization was included because the proportion of the
unit cell taken up by the UCNP region can vary from one set of
parameters to another, and we wished to avoid giving a higher
FOM for this reason.

(5) We modeled the absorption transition as a Gaussian
function at 980 nm with a FWHM of 70 nm. The MS eigen-
mode was modeled as a Lorentzian function at the eigenmode
wavelength with the quality factor returned by simulation,
scaled by the power absorption in the UCNP region for the
mode (ω

∫
nkε0|E |2dV ). Both of these functions were mul-

tiplied together, and the integral of this was taken to be the
FOM.

The total FOM for the design is then the product of these
five FOMs.

V. RESULTS

The choice of band folding for this study results in the
Wigner-Seitz unit-cell boundaries being rotated as well as
expanded. We therefore get that the orientation of the new X
and M points in the first Brillouin zone, which we denote X ′
and M ′, are rotated as well. The orientation of these points is
shown in Fig. 4(a). The optimized design is shown in Fig. 4(b),
where the periodicity is 1318 nm, the resonator height is
604 nm and that of the UCNPs is 704 nm. The two radii of
the resonators are 119 and 86 nm. Also shown in Fig. 4(b) is
the 23-nm-thick ITO layer to aid the lithography process.

At the target lasing wavelength of 660 nm, the optimization
routine returned a mode at 663 nm with a quality factor of
715 and the normalized ratio of the EM energy in the UCNP
region to that in the whole unit cell is 5.2. By comparison,
the plasmonic MS in Ref. [5] had a quality factor of 275 and
a ratio of EM energy in the UCNPs of 5.9, which compares
well with our result given that one would expect a surface
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FIG. 4. (a) Nomenclature for the different directions in the
Wigner-Seitz unit cell (a, Inset), the unit cell in real space. (b) The
optimized design with periodicity of 1318 nm, radii of 119 and
86 nm, pillar height of 604 nm, and UCNP height of 704 nm. (c), (d)
The mode selected by the optimization routine for the (c) lasing
band and (d) absorption band, where the fields have been shifted to
position a C4v symmetry point at the center.

plasmon to have little field in the resonator. At the lasing
wavelength we get that the total electromagnetic energy in
the UCNPs,

U = 1

2

∫
UCNP

n2
UCNPε0|E |2 + 1

μ0
|B|2dV

≈
∫

UCNP
n2

UCNPε0|E |2dV,

is 6.5 times higher in our design than for that in Ref. [5].
The optimization routine therefore successfully optimized for
objectives 1 and 3. Objective 2 was also met because the
routine rejected overlapping modes of E and either A1 and
B1 or A2 and B2 symmetry, which do not drop in Q away from
the � point. We were able to do this by using the symmetry
analysis technique outlined above.

A slice of the vector field taken through the center of the
resonators is shown in Fig. 4(c). Visual inspection shows that
the field is a C4v A2/B2 symmetric mode, where the ambiguity
is that explained in SM. S4 [29]. This is a high-Q quasibound
state in the continuum mode that has a finite quality factor due
to the substrate allowing coupling to the radiation channels as
well as due to material losses. Because of the requirement for
bright modes at 980 nm, there are a large number of high-Q
modes around 660 nm. It is therefore unlikely that the highest
Q mode (which will be the mode to lase, see SM S5 [29]) will
have a symmetry that perfectly matches the symmetry of the
radiation channels (a “bright” mode).

At the absorption band, the selected mode is at 981.5 nm
with a quality factor of 300 and with a ratio of the field
in the UCNPs to the whole unit cell of 6.8. The field pro-
file is shown in Fig. 4(d) and clearly has C4v E symmetry.
In Fig. 5 we can see the enhancement at around 980 nm
of the power absorbed by the UCNP material relative to a
film of UCNPs of the same height. The figures show the

FIG. 5. The enhancement relative to a thin film of UCNPs for
(a) P-polarized light along � − M ′, see Fig. 4(a), (b) S-polarized
light along � − M ′, (c) P-polarized light along � − X ′, and (d) S-
polarized light along � − X ′.

dispersion for the � − M ′ (a, b) and � − X ′ directions (c,
d), and for both P-polarized (a, c) and S-polarized (b, d)
incident light. By way of comparison, we find that a Fabry-
Perot cavity of UCNPs between SiO2 has no enhancement
due to the similar refractive indices of the UCNPs and SiO2,
and even with a Si substrate the enhancement would only be
2.23 times.

These figures show almost an order-of-magnitude enhance-
ment of the absorption at 981 nm due to the selected mode.
Note that the enhancement of the UCNP emission would be
approximately the square of this figure due to the upcon-
version process being sequential two-photon absorption. The
mode at 981 nm is a third-order transverse electric mode. In
the plots of Fig. 5 we can also see additional modes at 960 nm
that correspond to transverse magnetic third-order modes with
C4v E symmetry. Notably, the optimization routine placed
the pair of E symmetric modes with the highest absorption
at 980 nm. A possible future addition to the routine would be
to also account for other suitable modes within the bandwidth
of the absorption transition.

For the dispersion of the modes, we require that the mode
remains within the FWHM of the UCNP transition at 980 nm,
which means that the permitted wavelength range for the
modes is 945–1015 nm. (This is the wavelength range shown
in Fig. 4.) Furthermore, we require that the modes remain
within this range for up to 5◦ tilt from the normal, since this
is the acceptance angle for a typical experimental setup. For
P-polarized light along � − M ′ there is low dispersion so that
the enhancement remains very close to the target wavelength
of 980 nm. We can thus see that P-polarized light along
� − M ′ easily matches this objective due to its low dispersion.
Also, both S- and P-polarized light have an acceptance angle
of over 5◦ along � − X ′. Only S-polarized light along the
� − M ′ direction does not meet the objective, but it comes
close with an acceptance angle of 4◦. We can thus see that our
requirements for objective 6 are very close to that which was
desired.
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VI. CONCLUSION

In conclusion, we have presented a technique using projec-
tion operators that allows the symmetry of a scalar or vector
field to be quantified. As an example of the use of this tech-
nique, we have used it in an optimization routine to quantify
the symmetry of the modes returned from eigenfrequency
studies. This allowed us to select only those modes with the
symmetry that gave the response we required, and we also
excluded modes because the symmetry analysis showed an
overlap of modes that would produce effects that we wished
to avoid. As a result, we have designed a MS with resonances

at both the absorption and lasing bands of a UCNP-based MS
laser. We believe that these projection operator techniques will
be of general use wherever symmetry considerations must be
taken into account.
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