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Giant magnetoresistance in weakly disordered non-Galilean invariant conductors
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We develop a hydrodynamic description of electron magnetotransport in conductors without Galilean invari-
ance in the presence of a weak long-range disorder potential. We show that magnetoresistance becomes strong
(of order 100%) at relatively small fields, at which the inverse square of the magnetic length becomes comparable
to disorder-induced variations of the electron density. The mechanism responsible for this anomalously strong
magnetoresistance can be traced to the appearance of magnetic friction force in liquids with nonvanishing intrin-
sic conductivity. We derive general results for the galvanomagnetic and thermomagnetic kinetic coefficients, and
obtain their dependence on the intrinsic dissipative properties of the electron liquid and the correlation function
of the disorder potential. We apply this theory to graphene close to charge neutrality and cover the crossover to
a high-density regime.
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I. INTRODUCTION

The study of electron transport in solids has been a cen-
tral theme in condensed matter physics. Peierls [1] showed
long ago that metallic conductivity can be understood semi-
classically, despite the quantum degeneracy of the electron
liquid in metals. The reason is that the mean free path of the
electrons exceeds their quantum de Broglie wavelength. The
semiclassical theory of electron transport [2–4] explains the
vast majority of transport phenomena in metals and semicon-
ductors. In the simplest version of this theory, the evolution of
the electron distribution function is described by the Boltz-
mann transport equation, in which collisions of electrons
with impurities, phonons, and other electrons are described
by independent collision integrals. The resulting resistivity is
proportional to the sum of partial momentum relaxation rates
due to electron-impurity (e-i), electron-phonon (e-ph), and
umklapp electron-electron (e-e) collisions. This is in agree-
ment with the phenomenological Matthiessen’s rule, which is
observed in most metals.

A departure from this paradigm has been observed re-
cently in several high-mobility systems with low carrier
density [5–22] and in a variety of materials with strong
electron correlations, which are collectively called strange
metals [23–25]. In a certain range of temperatures, the rate of
umklapp e-e collisions in these systems is negligible, while
the rate of momentum-conserving e-e collisions is appreciable
and appears to significantly affect the electrical resistivity.

It is important to note that the apparent independence of re-
sistivity from the rate of momentum-conserving e-e collisions
in the framework of the Boltzmann transport equation is not
a consequence of the semiclassical approximation, but results
from the simplified treatment of disorder and e-e collisions.
The description of e-i, e-ph, and e-e collisions by correspond-
ing scattering integrals assumes that these scattering processes

are instantaneous, local, and uncorrelated. In systems where
the characteristic spatial scale ξ of the external potential
exceeds the mean free path lee due to momentum-conserving
e-e collisions, the external potential still relaxes electron mo-
mentum but this relaxation is significantly affected by the
rate of momentum conserving e-e collisions. In this case,
the motion of the electron liquid may be described using the
hydrodynamic equations [26–28]; see also reviews [29–35]
and references therein.

The first example of hydrodynamic electron transport—the
Poiseuille flow of electron liquid through a clean channel
with a rough boundary—was theoretically considered by
Gurzhi [36] and was subsequently observed in the experi-
ments of Refs. [5,6]. A similar situation arises in other finite
geometries, such as mesoscopic graphene flakes [12,18], point
contacts [37–39], and Hall-bar devices [9,10,40]. In addition,
Corbino geometry has lately attracted significant interest both
in experiment [41–46] and theory [47–49]. It is important
to note that in all of these situations the momentum of the
electron liquid relaxes via the viscosity-mediated outflow to
the sample boundary.

The bulk momentum in the hydrodynamic regime is
commonly described by two approaches: (1) momentum
relaxation due to short range disorder phenomenologically
described by introducing a friction coefficient into the hy-
drodynamic equations [36] and (2) long-range disorder, in
comparison to the equilibration length, ξ � lee, which results
in spatially inhomogeneous flow [26–28]. In the intermediate
regime, where the disorder correlation radius ξ is comparable
to lee, electron transport can be described by the Boltzmann
transport equation, provided the disorder is not accounted for
by a collision integral, but as an external force modifying the
classical trajectories of the electrons [50]. Note that in the case
of long range disorder, the resistivity depends not only on the
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disorder strength but also on the intrinsic kinetic coefficients
of the electron liquid: viscosity and thermal conductivity [28].

Magnetotransport in the regime of electron hydrodynamics
attracted significant recent attention [51–70]. Hydrodynamic
effects become especially strong in systems with long range
disorder [60,61,64]. In this case the collective character of mo-
mentum relaxation in the hydrodynamic regime significantly
affects the magnitude and physical mechanism of magnetore-
sistance (MR). It arises primarily from the modification of the
hydrodynamic flow of the electron liquid by the Lorentz force.
The MR becomes strong at relatively weak fields where the
cyclotron radius Rc is still much longer than lee and therefore
bending of electron trajectories by the magnetic field is still
negligible.

The consideration in Ref. [60] assumed Galilean invariance
of the electron liquid. In this case, the current density is given
by the momentum density of the electron liquid multiplied
by e/m, where m is the electron band mass. In the present
article, we develop a theory of hydrodynamic magnetotrans-
port in systems, in which the electron liquid does not possess
Galilean invariance. We show that, in this case, in addition to
modification of the flow by the Lorentz force a qualitatively
different mechanism of magnetoresistance arises. Because of
the presence of intrinsic conductivity in non-Galilean invari-
ant liquids, the motion of the electron liquid relative to the
magnetic field lines produces additional dissipation.

The goal of this paper is to develop a hydrodynamic the-
ory of electron magnetotransport in systems with long-range
disorder, without assuming Galilean invariance of the electron
liquid. We obtain general results for the magnetotransport co-
efficients and apply them to graphene near charge neutrality.

The paper is organized as follows. In Sec. II, we formulate
the magnetohydrodynamic description of the electron liquid
without Galilean invariance in the presence of a long-range
disorder. In Sec. III, we present the linear-response analysis
and derive analytical results for the transport coefficients in
terms of intrinsic dissipative properties of the electron liq-
uid and the correlation function of the disorder potential. In
Sec. IV, we apply the results to graphene near charge neutral-
ity. In Sec. V, we summarize the main results. Throughout the
paper, we use the natural system of units in which Boltzmann
and Planck constants are set to unity kB = h̄ = 1.

II. MAGNETOHYDRODYNAMIC DESCRIPTION

We consider a two-dimensional (2D) electron system. The
hydrodynamic equations describe evolution of the electron
liquid at time scales longer than the inelastic relaxation time
τee due to electron-electron (e-e) collisions and spatial scales
longer than the corresponding relaxation length lee. At such
scales the liquid comes to a local thermal equilibrium and
its state is described by the densities of quantities, which
are conserved by e-e collisions, i.e., the densities of parti-
cles n, energy ε, and momentum p. Therefore, hydrodynamic
equations describe evolution of n, ε, and p. Due to local
equilibrium of the electron liquid, the evolution equation for
energy density can be replaced by the equivalent evolution
equation for the entropy density s [71]. In this form the hy-
drodynamic equations for an electron liquid moving in a static

external potential U (r) become
∂t n = −∇ · j, (1a)

∂t p = −∇ · �̂ − n ∇(eφ + U ) + e

c
[j × H], (1b)

∂t s = −∇ · js + ς. (1c)

Here and in what follows, we denote vector quantities by
boldface symbols and denote Cartesian indices by Latin sub-
scripts. In Eq. (1b) φ is the electric potential related to the
electron density by the Poisson equation and �̂ denotes the
momentum flux tensor of the electron liquid. The last term
of Eq. (1b) describes the Lorentz force exerted on the liquid
by the applied magnetic field H. Below, we focus on the sta-
tionary magnetotransport and assume that the magnetic field
is applied along the positive z axis, which is normal to the
sample plane, H = H ẑ. In Eq. (1c), js is the entropy flux and
ς is the local rate of entropy production due to e-e collisions.

The fluxes of particles j, entropy js, and momentum �̂ may
be separated into the equilibrium (convective) and nonequilib-
rium (dissipative) components,

j = nu + j′, (2a)

js = su + j′s, (2b)

�i j = Pδi j − σ ′
i j, (2c)

where u and P are, respectively, the local hydrodynamic ve-
locity and pressure. The first terms in the right hand side in
the above equations denote the equilibrium components of
fluxes of conserved quantities. The primed quantities denote
the dissipative parts of the fluxes of conserved quantities and
are proportional to gradients of the equilibrium parameters: u,
T , and P.

The viscous stress tensor σ ′
i j in Eq. (2c) is given by [71]

σ ′
i j = η(∂iu j + ∂ jui ) + (ζ − η)δi j∂kuk, (3)

where η and ζ are, respectively, shear and bulk viscosities.
To make the presentation more compact, we combine the

particle and entropy fluxes into a two-component column vec-
tor

�J =
(

j
js

)
. (4)

We denote the column-vector quantities by arrows above them
and use boldface letters to denote the usual spatial vectors.
Following the notations of Ref. [72], we denote densities of
thermodynamic variables by �x and combine the particle and
entropy densities into a column vector

�x =
(

n
s

)
. (5)

In these notations the constitutive relations Eqs. (2a) and (2b)
for the particle and entropy currents can be written in the form

�J = �xu − ϒ̂ �X′, (6)

where ϒ̂ is the matrix of intrinsic kinetic coefficients, which
characterizes the dissipative properties of the electron liq-
uid, and the column vector �X′ represents the thermodynamic
forces conjugate to the variables �x [72]. The column vector
of thermodynamic forces consists of the electromotive force
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(EMF) and the temperature gradient and can be written in the
form [73]

�X′ = �X − e

c
[u × H]

(
1
0

)
. (7)

The second term above describes the contribution to EMF
caused by the Lorentz force exerted by a magnetic field in
a moving liquid [74]. The first term can be written as a pure
gradient and is given by

�X =
(−eE

∇T

)
. (8)

Here eE represents the potential part of the EMF given by the
gradient of electrochemical potential

eE ≡ −∇(μ + eφ + U ), (9)

with μ being the chemical potential. The appearance of the
hydrodynamic velocity in the electromotive force in Eq. (7)
corresponds to evaluating the electric field in the reference
frame moving with the liquid.

The entropy production rate ς in Eq. (1c) can be expressed
in terms of the viscous stresses and thermodynamic force �X′
in the form

ς = 1

2

∫
σ ′

i j (∂iu j + ∂ jui )dr +
∫

�X′T ϒ̂ �X′dr. (10)

The superscript T denotes transposition and the spatial inte-
gration extends over the two-dimensional system area.

We discuss next the matrix ϒ̂ of kinetic coefficients of the
electron liquid introduced in Eq. (6). We consider the regime
of semiclassically weak magnetic fields, where lee is shorter
than the cyclotron radius Rc of a typical thermal electron. For
example, for electrons in single layer graphene near charge
neutrality, this is justified provided the magnetic length lH =√

c/eH exceeds the thermal de Broglie wavelength lT = v/T .
In this regime the kinetic coefficient of the liquid may be
assumed to be equal to their values at H = 0. With this ac-
curacy the liquid has vanishing intrinsic Hall response. Thus
the intrinsic conductivity σ , the intrinsic thermal conductivity
κ , and the intrinsic thermoelectric coefficient γ have purely
scalar character. The 2 × 2 matrix ϒ̂ of kinetic coefficients in
the column-vector space is given as follows [76]:

ϒ̂ =
(

σ/e2 γ /T

γ /T κ/T

)
. (11)

In linear response, we may neglect the entropy production
and set ς → 0 in Eq. (1c). Then in the stationary case the con-
tinuity equation (1a) and the entropy evolution equation (1c)
reduce to the continuity equations for the column vector cur-
rent. Using Eqs. (6) and (7) the latter can be expressed in the
form

∇ ·
([

�x + 1

l2
H

�γ ẑ×
]

u − ϒ̂ �X
)

= 0. (12)

Here we introduced a shorthand notation

�γ =
(

σ
e2

γ

T

)
. (13)

Using Eqs. (2c), (3), and the thermodynamic relation

∇P = n∇μ + s∇T, (14)

the momentum balance equation (1b) may be expressed in the
column vector notations as[

�x + 1

l2
H

�γ ẑ×
]T

�X′ = (∇ · η∇)u + ∇[ζ (∇ · u)]. (15)

The system of hydrodynamic equations (1) and consti-
tutive relations (2), together with Eq. (6), presented in this
section does not assume Galilean invariance and provides
a general description of the flow of electron liquid in an
external random potential at small velocities. For the Galilean-
invariant liquids �J = �xu and σ = γ = 0. In this case Eq. (10)
reproduces the well known result for the energy dissipation
rate in Galilean-invariant liquids [71] and a textbook form of
Eq. (15) for the force balance condition [73].

Within the accuracy of our approximation, the effect of
the magnetic field on thermoelectric transport arises from
two different mechanisms: (i) modification of the flow by the
Lorentz force in Eq. (1b) (this changes the convective parts
of charge and heat currents) and (ii) the fact that the EMF ap-
pearing in Eqs. (6) and (7) also contains the Lorentz force (this
changes the dissipative parts of charge and heat currents). For
Galilean-invariant liquids, which are characterized by the van-
ishing intrinsic conductivity σ and thermoelectric coefficient
γ , only the first of these mechanisms is at play. Hydrodynamic
magnetoresistance for Galilean-invariant electron liquids was
studied in Ref. [60]. We show below that the second mech-
anism arising in the absence of Galilean invariance leads to
new effects, which become especially pronounced at charge
neutrality. Therefore, we expect that the predictions of the
theory developed below may be tested in graphene devices
at low carrier density.

We close this section by noting that the approximate form
of the magnetohydrodynamic (MHD) equations for weakly
conducting liquids in the absence of disorder was originally
derived by Braginskii [77]. The theory presented in the present
work is analogous to that in the sense that the effect of the
electric currents on the magnetic field can be neglected. In this
approximation the magnetic field lines cannot be entrained
by the liquid. This represents a key difference with magne-
tohydrodynamics of ideally conducting fluids, in which the
magnetic field lines are frozen into the liquid by Alfvén’s
theorem [78]. Therefore, the Maxwell equations describing
the evolution of the magnetic field are not needed, which sim-
plified the treatment considerably. In this regime the motion
of the liquid relative to the magnetic field lines produces a
magnetic friction force, which is proportional to the intrinsic
conductivity of the liquid. As we show below, this force has a
significant effect on magnetoresistance near charge neutrality.

III. ELECTRON MAGNETOTRANSPORT AT
WEAK DISORDER

We now use the description presented in Sec. II to study
electron transport in the linear response regime in a disordered
system. The technical approach is the same as reported in our
earlier work [28]. Here we present generalizations needed to
account for the effect of finite magnetic field.
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First, recall that, in thermal equilibrium, the hydrodynamic
velocity vanishes. Since both the temperature and the elec-
trochemical potential μ + eφ + U are spatially uniform the
thermodynamic force �X vanishes. As a result the force balance
condition is trivially satisfied. Away from equilibrium one
needs to find a nonvanishing spatial distribution of the hydro-
dynamic velocity u(r) and the thermodynamic force �X(r) that
solve the system of equations (12) and (15). In linear response
the number density and entropy density in the column vector
�x(r), as well as the dissipative coefficients of the liquid, ϒ̂ (r),
η(r), and ζ (r), are given by their equilibrium values. Once the
solutions u(r) and �X(r) are found, we obtain the macroscopic
densities and entropy flux via the relation

〈�J〉 = 〈�x(r)u(r) − ϒ̂ (r) �X′(r)〉, (16)

where 〈. . .〉 ≡ 1
A

∫
dr . . . denotes spatial average over the sys-

tem area A.
In the present approach the disorder potential manifests

itself via the spatial dependence of the equilibrium number
and entropy densities, n(r) and s(r), the matrix of kinetic
coefficients, ϒ̂ (r), and the viscosities η(r) and ζ (r). To fur-
ther simplify our discussion, we assume that these quantities
are weakly inhomogeneous and use perturbation theory in
disorder to derive analytical results for the macroscopic ther-
moelectric conductivity matrices ϒ̂ and �̂. The latter link
the macroscopic fluxes 〈�J〉 = 〈(j, js)T 〉 to the average electric
field and the temperature gradient in the system �X0 ≡ 〈�X〉:

〈�J〉 = −ϒ̂ �X0 − �̂(ẑ × �X0). (17)

As explained in Sec. II, we neglect the dependence of the
kinetic coefficients of the liquid on the magnetic field as the
correction to the transport coefficient is small in the hydrody-
namic regime in a parameter of a ratio lee/ξ 
 1.

A. Perturbation theory in disorder

We express the densities of conserved quantities �x(r) and
intrinsic kinetic coefficients ϒ̂ (r) describing the equilibrium
state of the liquid in the form

�x(r) = �x0 + δ�x(r), ϒ̂ (r) = ϒ̂0 + δϒ̂ (r), (18)

where the uniform components are denoted by the subscript 0
and the spatial variations are small: δ�x(r) 
 �x0 and δϒ̂ (r) 

ϒ̂0. The resulting hydrodynamic velocity u(r) and the ther-
modynamic force �X(r) are thus also weakly inhomogeneous,

u(r) = u0 + δu(r), �X(r) = �X0 + δ �X(r), (19)

with δu(r) 
 u0 and δ �X(r) 
 �X0.
We seek the solutions to δu(r) and the driving force δ �X(r)

as perturbations to their uniform counterparts. The solution
scheme can be summarized as follows. Working in the Fourier
representation, we express the inhomogeneous part of the flow
velocity field δu and forces δ �X in terms of their uniform coun-
terparts from the continuity equation for the column current,
Eq. (12), and the momentum balance equation, Eq. (15). This
enables us to express the spatial average of the currents in
terms of �X0 and u0 with the aid of Eq. (16). Furthermore,
the spatial average of the momentum balance equation (15)
imposes a linear relation between �X0 and u0. Finally, with this

relation we express the macroscopic current �J in the form of
Eq. (17) and extract transport coefficients.

To implement this scheme, it is convenient to work in the
Fourier representation by defining the Fourier amplitude of a
given quantity O(r) in the standard way,

Oq =
∫

dr O(r) e−iq·r. (20)

To the first order in perturbation in the inhomogeneity,
Eq. (15) yields the following condition for the Fourier har-
monics with nonzero wave vector:

0 = ηq2uq + ζq(q · uq)

+
[

σ0

l4
H e2

− n0

l2
H

ẑ×
]

uq +
[
�xT0 + 1

l2
H

�γT
0 ẑ×

]
�Xq

+
[
�xTq + 1

l2
H

�γT
q ẑ×

]
�X0 +

[
σq

l4
H e2

− nq

l2
H

ẑ×
]

u0. (21)

The continuity equation (12) for particle and entropy currents
is given by

0 = �x0(q · uq) − ϒ̂0 (q · �Xq) − 1

l2
H

�γ0 (ẑ · [q × uq])

+ �xq(q · u0) − 1

l2
H

�γq (ẑ · [q × u0]) − ϒ̂q (q · �X0). (22)

The system of Eqs. (21) and (22) determines the inhomo-
geneous components of the hydrodynamic velocity, uq, and
the thermodynamic forces, �Xq, in terms of their macroscopic
counterparts, u0 and �X0. However, since the macroscopic flow
is characterized by only two macroscopic currents (particle
and entropy flux, 〈j〉, 〈js〉), the average velocity u0 is deter-
mined by the macroscopic thermodynamic forces �X0. The
relation between them can be obtained by considering the uni-
form Fourier component of the force balance equation (15),
which can be cast in the form

〈�xT �X〉 + 1

l2
H

ẑ × 〈�γT �X〉 + 1

l4
H

〈σu〉
e2

− 1

l2
H

ẑ × 〈nu〉 = 0.

(23)
In order to find the solutions for uq and �Xq from Eqs. (21)

and (22), it is useful to decompose them into longitudinal (l)
and transverse components (t) relative to q. Notice that in two
dimensions we can decompose all vector quantities into the
longitudinal and transverse parts as follows:

Vq = Vl
q + Vt

q = q
q

V l
q + ẑ × q

q
V t

q , (24)

where

V l
q = 1

q
(q · Vq), V t

q = 1

q
(ẑ · [q × Vq]). (25)

Taking this into account, the solution of the system of linear
Eqs. (21) and (22) is given by

�X l
q = ϒ̂−1

0 �xT0 ⊗ �x0ϒ̂
−1
0 − λH

q ϒ̂−1
0

λH
q

ϒ̂q �X l
0

+ 1

l2
H

ϒ̂−1
0

(
1

ηq2 �γ0 ⊗ �xTq + 1

λH
q

�x0 ⊗ �γT
q

)
�X t

0
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+
(
λH

q − σq

e2l4
H

)
ϒ̂−1

0 − ϒ̂−1
0 �x0 ⊗ �xT0 ϒ̂−1

0

λH
q

�xqul
0

− 1

λH
q

ϒ̂−1
0 �xT0 ⊗ �xT

q �X l
0 − 1

l2
H

ϒ̂−1
0 �γqut

0, (26a)

ut
q = − 1

ηq2 �xTq �X t
0, (26b)

ul
q = −

(
�xT0 ϒ̂−1

0 �xq + σq

e2l4
H

)
ul

0

λH
q

+ (
�xT0 ϒ̂−1

0 ϒ̂q − �xTq
) �X l

0

λH
q

+ �γT
q �X t

0

λH
q l2

H

. (26c)

Here λH
q is given by

λH
q = λq + σ0

e2l4
H

, λq = (η + ζ )q2 + �xT0 ϒ̂−1
0 �x0. (27)

In the above expressions we used the standard notation for
the direct product of two vectors �a ⊗ �bT that defines a cor-
responding matrix. From the obtained solution one should
note that the transverse (vortical) component of the velocity
is unaffected by the magnetic field. This assumes that we take
�X and the wave vector q to be independent of the magnetic
field.

Next we simplify the general expressions obtained above
for the experimentally relevant case of long range disorder.
Specifically, when the correlation length of disorder satisfies

ε ≡ 1

ξ 2

η + ζ

�xT0 ϒ̂−1
0 �x0


 1, (28)

we can drop the q dependence in λH
q . In accordance with the

long-range disorder condition, the number density satisfies the
following constraint:

n2
0 � kξ 2λ0√

η(η + ζ )
. (29)

It is worthwhile to notice that, under the condition of Eq. (28),
the hydrodynamic flow is primarily of a vortical character (the
magnitude of ut exceeds that of ul ) on spatial scales of order ξ .
Furthermore, under a weak magnetic field, l2

H s0 � 1, the field
dependence in λH

q is also insignificant. Then we get simplified
expressions

�X l
q = K̂

(
�xqul

0 − ϒ̂q �X l
0

) − 1

λ0
ϒ̂−1

0 �xT0 ⊗ �xT
q �X l

0

+ 1

l2
H

ϒ̂−1
0

1

ηq2 �γ0 ⊗ �xTq �X t
0 − 1

l2
H

ϒ̂−1
0 �γqut

0, (30a)

ut
q = − 1

ηq2 �xTq �X t
0, (30b)

ul
q = −

(
�xT0 ϒ̂−1

0 �xq + σq

e2l4
H

)
ul

0

λ0

+ (
�xT0 ϒ̂−1

0 ϒ̂q − �xTq
) �X l

0

λ0
+ �γT

q �X t
0

λ0l2
H

, (30c)

where we introduced the matrix

K̂ = ϒ̂−1
0 − 1

λ0
ϒ̂−1

0 �x0 ⊗ �xT0 ϒ̂−1
0 . (31)

It is clear that ul
q 
 ut

q for the long wavelength fluctuations,
q → 0. In this approximation, which can be termed as the
incompressible liquid approximation, substituting Eqs. (30a)
and (30b) into the force balance equation (23) yields the
following relation between u0 and �X0:

�xTe �X0 + 1

l2
H

[
ẑ × �γT

0
�X0

] = −
(

k + 1

l4
H

σ0

e2

)
u0 + n0

l2
H

[ẑ × u0].

(32)

Here the effective friction coefficient can be expressed in
terms of the matrix K̂ from Eq. (31)

k = 1

2

∫
q
�xT−qK̂�xq. (33)

The disorder-renormalized density �xe in the first term on the
left hand side of Eq. (32) is given by

�xe = �x0 − 1

2
〈δϒ̂K̂δ�x〉 − 1

2λ0
〈δ�x ⊗ δ�xT 〉ϒ̂−1

0 �x0. (34)

Equation (32) expresses the force balance condition. The first
term on the left hand side (LHS) corresponds to the force ex-
erted on the liquid by the external electric field and thermally
induced pressure gradient. The second term on the right hand
side (RHS) is the Lorentz force due to the flow. Finally, the
second term on the LHS and the first term on the RHS describe
the two friction forces that act on the liquid. The first one is
the disorder-induced friction force −ku0 whose magnitude is
proportional to the disorder strength and the velocity in the
laboratory frame. The second one is the magnetic friction
force. Substituting Eq. (13) into the second term on the RHS
it is easy to see that this force has the form −kH (u0 − c E×H

H2 ).
It tries to bring the liquid to the frame moving with velocity
c E×H

H2 of the magnetic field lines. The corresponding friction
coefficient,

kH = σ0

e2l4
H

, (35)

is quadratic in the magnetic field and is proportional to the
intrinsic conductivity of the electron liquid. In the limiting
case of an ideally conducting liquid the friction force diverges
and one recovers the result of Alfvén’s theorem on frozen-in
magnetic field lines in magnetohydrodynamics [73,78], ac-
cording to which the motion of a perfectly conducting liquid
perpendicular to the magnetic field lines is forbidden.

In a steady state these two friction forces are balanced by
the external force acting on the liquid. From Eq. (32) we find
as a result

u0 = −
[
(k + kH ) + n0

l2
H

ẑ × ][
�xTe �X0 + 1

l2
H

ẑ × �γT
0

�X0
]

(k + kH )2 + n2
0/l4

H

. (36)

Note that in this expression the denominator changes sig-
nificantly while the magnetic field is still small, l−4

H ∼
〈δn2〉2/[〈δn2〉 + n2

0], and still satisfies our assumptions. Also
it can be readily verified that, in the clean limit, namely tak-
ing k → 0 and simultaneously �xe → �x0, one reproduces the
corresponding hydrodynamic velocity in the pristine system.
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B. Macroscopic conductivity matrix

The macroscopic current, given by Eq. (16), can be written
in the form

〈�J〉 =
〈
�xu − ϒ̂ �X − �γ e

c
[H × u]

〉

=
[
�x0 + 1

l2
H

�γ0 ẑ×
]

u0 − ϒ̂0 �X0 + 〈δ�xδu〉

− 〈δϒ̂δ �X〉 + 1

l2
H

ẑ × 〈δ �γ δu〉. (37)

In keeping with our approximation, the spatial variations δu
and δ �X may be evaluated in terms of u0 and �X0 to zeroth order
accuracy in the magnetic field. However, the relation between
u0 and �X0 is now given by Eq. (36). Substituting the linear
response solutions from Eq. (30) into Eq. (37), we can express
the macroscopic particle and entropy current in terms of u0

and �X0 in the form

〈�J〉 =
[
�xe + 1

l2
H

�γ0ẑ×
]

u0 −
[
ϒ̂0 +

∫
d2q

8π2

1

ηq2 �x−q ⊗ �xTq
]

�X0.

(38)

Keeping in mind that the average velocity u0 is not indepen-
dent of the thermodynamic force �X0, but is related by Eq. (36),
we obtain the relation between the macroscopic vector current
and the driving forces �X0,

〈�J〉 = −
[
(k + kH ) + n0

l2
H

ẑ × ]
(k + kH )2 + n2

0/l4
H

[
�xe ⊗ �xTe − 1

l4
H

�γ0 ⊗ �γT
0

]
�X0

−
[− n0

l2
H

+ (k + kH )ẑ × ]
l2
H

[
(k + kH )2 + n2

0/l4
H

] [
�xe ⊗ �γT

0 + �γ0 ⊗ �xTe
] �X0

−
[
ϒ̂0 +

∫
q

1

2ηq2 �x−q ⊗ �xTq
]

�X0. (39)

Equation (39) is the central result that allows us to extract
various kinetic coefficients of interest.

IV. GRAPHENE NEAR CHARGE NEUTRALITY

We shall apply the main results to study the field depen-
dence of the kinetic coefficients of graphene near the charge
neutrality point. The applicability of our long range approx-
imation translates to ξ � lT ≡ v/T , where v is the band
velocity of graphene and ξ is the correlation length of the
disorder potential. One can further make simplifications to k
and �xe by neglecting terms that are small in the ratio n0/s0. We
get

k = e2

σ0

〈δn2〉
2

, �xe =
(

n0

s0 − e2

2σ0T 〈δn δγ 〉
)

. (40)

The constraint on the number density, Eq. (29), reads

|n0| � ξ

lT

√
〈δn2〉. (41)

We are now prepared to evaluate the magnetotransport
coefficients. To this end, by rewriting Eq. (39) in the form

Eq. (17), we can easily infer the matrix elements of the con-
ductivity matrices. Indeed, for (ϒ̂ )i j they read

ϒ11 = σ0

e2

[
1 + χσ + (x2 − h2�)

�

]
, (42a)

ϒ12 = ϒ21 = n0s0

k�
, (42b)

ϒ22 = κ

T
+ s2

0(1 + h2)

k�
, (42c)

and for (�̂)i j they read

�11 = σ0

e2

xh

�
(1 + �), (43a)

�12 =
√

σ0

e2

s2
0

k

h�

�
, (43b)

�22 = s2
0

k

xh

�
. (43c)

Here we introduced several dimensionless parameters to
quantify particle density (x), characteristic strength of mag-
netic field (h), and measure of viscous effects (χ ) normalized
in units of density variation induced by long-range disorder,
defined respectively as follows:

x =
√

2n0√
〈δn2〉

, h = σ0

e2

√
2

l2
H

√
〈δn2〉

,

χ = 1

2η

∫
q

|nq|2
q2

, χσ = e2χ

σ0
. (44)

To make expressions more compact we also introduced two
dimensionless functions

�(x, h) = (1 + h2)2 + x2h2, (45a)

�(x, h) = 1 + x2 + h2. (45b)

In order to understand the dependence of these quantities
on temperature, it is useful to recall that, modulo logarithmic
renormalizations, the intrinsic conductivity σ0 is practically
a constant [79,80]. Similarly, near charge neutrality, and
up to logarithmic factors, shear viscosity is given by η ∼
(T/v)2 [81]. In order to estimate the friction coefficient k, we
apply the linear screening approximation that enables one to
relate the equilibrium density modulation to the external po-
tential, nq = −νqUq/(q + r−1), where r = 1/(2πe2ν) is the
Thomas-Fermi screening radius and ν is the thermodynamic
single-particle density of states. In the hydrodynamic regime,
correlation radius of disorder ξ exceeds the Thomas-Fermi
screening radius r, since ν ∼ T/v2, near charge neutrality,
and typical wave numbers are of order q ∼ ξ−1. As a result,
for the spectral density of disorder potential that does not
have strong divergence at q → 0, e.g., encapsulation-induced
disorder, we therefore get k ∼ (e2/σ0)〈U 2〉/ξ 2e4. In the same
regime the entropy density is of the order s0 ∼ (T/v)2. It is
important to stress that our long wavelength approximation is
satisfied for the typical values of U and ξ in the temperature
range of hydrodynamic behavior. Indeed, scanning probes on
boron nitride encapsulated graphene reveal that the typical
correlation radius of density fluctuations (electron-hole charge
puddles) is somewhere in the range ξ ∼ 100 nm and local
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disorder potential is in the range of U � 5 meV [82–84].
Finally we note that dimensionless parameter h of magnetic
field strength can be large, h � 1, already at relatively small
fields.

A. Magnetoresistance and Hall effect

With these results at hand, we determine the longitudinal
σxx and Hall σxy components of the electrical conductivity
tensor. In the notations introduced above, these take the form

σxx(n0, H ) = e2ϒ11(n0, H ), (46a)

σxy(n0, H ) = e2�11(n0, H ). (46b)

At zero magnetic field, the conductivity reduces to

σxx(n0, H = 0) = σ0(1 + χσ + x2), (47)

where the correlational effect of the long range disorder en-
hances the conductivity at charge neutrality by e2χ [28].

It is instructive to look at magnetoconductivity precisely at
charge neutrality,

σxx(n0 = 0, H ) = σ0

[
χσ + 1

1 + h2

]
. (48)

We see that in a narrow interval of magnetic fields h ∼ 1 the
conductivity decreases from its zero field value σ0(1 + χσ )
to a plateau at σ0χσ . We note that the plateau value σ0χσ

coincides with the magnitude of the disorder enhancement of
zero-field conductivity at charge neutrality over its intrinsic
value. Thus magnetoconductivity measurements may enable
determination of the disorder enhancement and provide an
additional probe of density variations 〈δn2〉.

Inverting the conductivity tensor, the longitudinal and Hall
resistivity are

ρxx = σxx

σ 2
xx + σ 2

xy

, ρxy = σxy

σ 2
xx + σ 2

xy

. (49)

Substituting the expressions for σxx and σxy and retaining the
leading in H contributions we get

�ρxx ≈ 1 + χσ + χσ x2(3 + x2)

(1 + χσ + x2)2
h2, (50a)

ρxy ≈ ρH
x2(x2 + 2)

(1 + χσ + x2)2
, (50b)

where ρH = H/(n0ec) is the classical Hall resistance and the
relative magnetoresistivity is defined as

�ρxx(n0, H ) ≡ ρxx(n0, H ) − ρxx(n0, H = 0)

ρxx(n0, H = 0)
. (51)

In the limit of charge neutral graphene, n0 → 0, the above
expression simplifies to

�ρxx(H ) � 2
(σ0

e2

)2 σ0

σ0 + e2χ

1

〈δn2〉l4
H

. (52)

This result is qualitatively consistent with the experimen-
tal observations of Ref. [22] as it features strong relative
magnetoresistivity. It also shows that the effect is absent in
the Galilean invariant system where σ0 → 0. Furthermore,
Eq. (50a) shows that the effect is suppressed at higher den-
sity in agreement with the experiment. Conversely, we can

consider the high-density regime n2
0 � 〈δn2〉, which is still

consistent with the applicability condition set by Eq. (41) as
we always require ξ � lT . In this case, in accordance with
Eq. (47), the zero field resistivity ρxx(n0) ≈ σ−1

0 〈δn2〉/2n2
0.

Then using an estimate for χ ∼ ξ 2〈δn2〉/η and an expression
for k we arrive at MR in the form

�ρxx(H ) �
(σ0

e2

)2ξ 2

ηl4
H

. (53)

This reproduces an earlier result derived for the case of
Galilean invariant electron liquids [60], where the temperature
dependence of MR was predicted to follow inverse propor-
tionality with the fluid viscosity. We add that the sign of
MR was argued to remain positive across the ballistic-to-
hydrodynamic crossover [66]. It is worthwhile noticing that
the Hall coefficient in Eq. (50b) is also strongly modified by
frictional viscous effects which are the most pronounced near
charge neutrality. For completeness in Fig. 1 we plot both MR
and Hall resistivity in a broader range of parameters. In order
to highlight the magnitude of the resulting response, we plot
separately relative magnetoresistivity �ρxx at the charge neu-
trality and at several densities away from neutrality in Fig. 2.
It is clear from the plot that the effect becomes anomalously
strong, �ρxx ∼ 1, already at relatively small fields, h ∼ 1.

B. Thermomagnetic phenomena

We proceed to investigate thermal magnetotransport phe-
nomena. Setting the electric current to zero, we get the relation
between the electric field and the temperature gradient from
the first row of Eq. (17)

e〈E〉 = ϒ11ϒ12 + �11�12

ϒ2
11 + �2

11

〈∇T 〉

+ ϒ11�12 − �11ϒ12

ϒ2
11 + �2

11

ẑ × 〈∇T 〉. (54)

From the first term in the RHS of Eq. (54), the magnetother-
mal power or the Seebeck coefficient Q = 〈Ex〉/〈∇xT 〉 can be
expressed as

Q(n0, H ) = 1

e

ϒ11ϒ12 + �11�12

ϒ2
11 + �2

11

≈ Q0x2

1+χσ + x2

[
1+ (1+χσ )(1 − 2χσ ) − χ2

σ x2

(1 + χσ + x2)2
h2

]
,

(55)

where Q0 = s0/(en0) is the value (entropy per unit charge) for
the pristine electron liquid and we retained terms only to the
leading H2 correction. From the second term in the RHS of
Eq. (54), the Nernst coefficient N = 〈Ey〉/(H〈∇xT 〉) is given
by

N (n0, H ) = 1

eH

ϒ11�12 − �11ϒ12

ϒ2
11 + �2

11

. (56)

At charge neutrality, n0 → 0, matrix elements of ϒ̂i j and �̂i j

simplify greatly and we obtain

N (H ) = σ0

e2

2s0

〈δn2〉
1

1 + χσ (1 + h2)
. (57)
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FIG. 1. Magnetic field and density dependence for the magnetoresistance ρxx (n0, H ) and the Hall resistances ρxy(n0, H ) plotted for a
particular choice of a single dimensionless parameter χσ = e2χ/σ0 = 0.25. Both magnetoresistivities were normalized in units of intrinsic
resistivity ρ0 = σ−1

0 . Magnetic field was normalized by a natural scale in the problem, namely h = σ0
e2 l2

H

√
2/〈δn2〉 ∝ H , while density is plotted

in units of x = √
2n0/

√
〈δn2〉 [Eq. (44)].

The most significant implication of this result is that in sys-
tems with broken Galilean invariance, the Nernst coefficient
remains finite at charge neutrality, which is made possible by
the finite intrinsic conductivity. However, as is clear from the
above expression, disorder is crucial to stabilize the result.

FIG. 2. Magnetic field dependence of the relative MR at charge
neutrality x = 0 and at several finite densities x = 0.25, 0.5, 1 plot-
ted in units of Eq. (44).

The field dependence is that of a Lorentzian shape. For clarity,
we plot Q and N on Fig. 3 as a function of magnetic field
for several different values of electron density and then as a
function of density for different strengths of the field.

In a similar fashion, substituting the expression for the
electric field, namely Eq. (54), into the second row of Eq. (17),
one finds the thermal conductivity and thermal Hall conduc-
tivity in terms of the matrix elements of ϒ̂ and �̂,

κxx(n0, H )

T
= ϒ22 − ϒ11

(
ϒ2

12 − �2
12

) + 2ϒ12�11�12

ϒ2
11 + �2

11

,

(58a)

κxy(n0, H )

T
= −�22 + �11

(
�2

12 − ϒ2
12

) + 2�12ϒ11ϒ12

ϒ2
11 + �2

11

.

(58b)

In the following, we focus on the limiting cases of vanish-
ing field at finite density and finite field at charge neutrality,
where analytical expressions greatly simplify:

κxx(n0, H = 0) = κ0
1 + χσ

1 + χσ + x2
, (59a)

κxx(n0 = 0, H ) = κ0
1 + χσ

1 + χσ (1 + h2)
. (59b)
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FIG. 3. Magnetic field and density dependence for the Seebeck Q(n0, H ) and the Nernst N (n0, H ) transport coefficients. The normalization
units are respectively Q0 = s0/en0 and N0 = s0/k. The choice of parameter χσ is the same as in Fig. 1.

Here κ0 = T s2
0/k; see Refs. [27,28]. In these formulas we

neglected the term in ϒ22 with intrinsic coefficient since κ 

T s2

0/k, so the thermal transport is dominated by disorder con-
tribution. In both cases thermal conductivity has a Lorentzian
shape either as a function of n0 or H . It is evident that the
correction term to the diagonal thermal conductivity at small
fields is negative. It can be readily shown that this remains true
at all densities. In particular, at high density limit, n2

0 � k, the
leading correction in H2 takes the form

�κxx ≡ κxx(n0, H ) − κxx(n0, 0)

κxx(n0, 0)
≈ −(

1 − χσ + χ2
σ

)h2

x2
.

(60)

For the thermal Hall conductivity, also known as the Righi-
Leduc effect, we get at leading order (linear in H)

κxy(n0, H ) = κ0
xh

(
1 − χ2

σ

)
(1 + χσ + x2)2

. (61)

At weak field the subsequent corrections can be organized
in powers of 1/kl4

H and it can be readily checked that the
next term is negative. Figure 4 summarizes density and field
dependence of the longitudinal and Hall thermal magnetocon-
ductivity.

V. DISCUSSION OF THE RESULTS

In this paper we have constructed a hydrodynamic de-
scription of magnetotransport for conductors lacking Galilean
invariance in the presence of long-ranged inhomogeneity.
While the effect of disorder on transport is in general non-
perturbative in this regime, we provided analytical solutions
to various transport coefficients exploring the limit of smooth
disorder with the focus on graphene near charge neutrality.
Our consideration shows that, near charge neutrality, the MR
is positive and quadratic in field. However, the quadratic
coefficient acquires a different dependence on density, shear
viscosity, and correlation length of disorder as compared to
that in Ref. [60]. Furthermore, the saturation of MR at higher
fields enables separation of intrinsic conductivity and vis-
cous contribution mediated by disorder. The Hall component
of the resistivity is given by the product of the classical
Hall resistance and a renormalization factor, which is a
function of doping density, shear viscosity, and correlation
length of disorder. The effect of viscosity and disorder on
thermal-magnetohydrodynamic transport is also analyzed. In
particular, thermal conductivity is strongly enhanced by dis-
order on top of its intrinsic value. This effect diminishes in
the magnetic field. The Nernst coefficient and thermal power
are strongly affected by viscous effects and long-range dis-
order potential. Interestingly, the Seebeck coefficient exhibits
nonmonotonic dependence on the field with a pronounced
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FIG. 4. Magnetic field and density dependence for the longitudinal κxx (n0, H ) and Hall κxy(n0, H ) thermal conductivities normalized in
units of κ0 = T s2

0/k. The choice of parameter χσ is the same as in Fig. 1.

maximum that can be probed experimentally. We hope our
results can stimulate further experimental investigations in
magnetohydrodynamic transport in electronic systems, espe-
cially graphene based devices near charge neutrality.

We note that the dependence of the transport coefficients on
the magnetic field is described by the dimensionless parameter
h, which becomes of order unity at relatively weak magnetic
fields, whose scale is set by the intrinsic conductivity and dis-
order strength, 1/l2

H ∼ e2

σ0

√
〈δn2〉. This sensitive dependence

on the magnetic field arises from the competition between
the disorder-induced and magnetic friction forces discussed
below Eq. (34). At h � 1 the friction force is dominated by
disorder, while for h � 1 magnetic friction becomes domi-
nant. For a quantitative estimate we can assume that intrinsic
conductivity σ0/e2 ∼ 1 and take density variation in the range
δn ∼ 109–1010 cm−2. This gives h ∼ 1 for the field strength of
the order of ∼10–100 mT, respectively. Already at such small
fields resistance increases by 100% leading to the giant effect.

The mechanism of the anomalously strong magneto-
transport can be qualitatively understood by considering
magnetoconductivity at charge neutrality, Eq. (48). In this
case the applied electric field does not produce the average
force. Therefore, the average flow velocity is determined by
the competition between the two friction forces. At small
magnetic fields h 
 1 the drift velocity is negligible in
comparison to c[E × H]/H2. Therefore, the EMF (which is

evaluated in the liquid frame) is nearly equal to eE and we get
the zero field result. At h � 1 disorder-induced friction is rel-
atively small and the fluid velocity approaches c[E × H]/H2.
In this case the EMF vanishes and the contribution of the
intrinsic conductivity [second term in Eq. (48)] is suppressed.
On the other hand, the nonuniform force on the liquid, which
is proportional to local electron density and the electric field,
is not affected by the magnetic field. Therefore, the disorder
enhancement of the zero field conductivity, which is described
by the first term in Eq. (48), remains unchanged. In closing we
note that our consideration focused on the bulk contribution
to magnetotransport coefficients where momentum relaxation
is driven by the disorder potential and the flow velocity is
uniform. In finite samples where momentum relaxation oc-
curs both in the bulk and at the sample boundaries a similar
physical mechanism will also play a role in magnetotransport.
An extension of the present theory to finite samples with Hall
bar and Corbino geometries will be presented elsewhere [85].
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