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Electron-optical phonon scattering in the quantum well of a HgTe/CdHgTe heterostructure

V. Ya. Aleshkin ,1,2,* O. L. Domnina,3,† and M. S. Zholudev1,2,‡

1Department of Semiconductor Physics, Institute for Physics of Microstructures RAS, Nizhny Novgorod 603950, Russia
2Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russia

3Volga State University of Water Transport, Nizhny Novgorod 603950, Russia

(Received 7 December 2023; revised 19 January 2024; accepted 2 February 2024; published 27 February 2024)

The optical phonon spectra in an HgTe quantum well surrounded by CdHgTe barriers are calculated, taking
into account the contribution of free electrons to the dielectric permittivity of the quantum well. It is shown that
free electrons not only change the phonon spectrum, but they can also change the number of branches of the
surface optical phonons. The frequencies of the electron-optical phonon collisions, the wave-vector relaxation
rates, and the energy relaxation rates are calculated for different temperatures and electron concentrations. The
dependencies of the momentum and energy scattering frequencies on the electron kinetic energy are found.
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I. INTRODUCTION

Scattering by optical phonons is one of the main mecha-
nisms of relaxation of the energy and momentum of electrons
whose energy exceeds the optical phonon energy. Such elec-
trons can appear in the conduction band as a result of
interband absorption of light with a photon energy signifi-
cantly exceeding the band gap, or as a result of the impact of
a strong electric field, or simply at the tail of the distribution
function in the case when the temperature is of the same order
as the optical phonon energy.

It is well known that in bulk semiconductors the presence
of free electrons leads to a decrease in the frequency of the
longitudinal optical phonon [1]. However, the dependence of
the energy on the phonon wave vector does not change. In
addition, the presence of free electrons changes the amplitude
of the interaction of electrons with phonons due to screening
of the phonon potential [2]. A completely different situation
occurs in quantum wells. Free electrons in quantum wells
not only change the frequencies of the optical phonons, but
also change the dependence of the phonon energy on its wave
vector [3]. Therefore, in this case one should expect a signifi-
cantly greater influence of the presence of free carriers on the
processes of electron scattering by the optical phonons.

In layers of polar semiconductors, including quantum
wells, the characteristics of the optical phonons differ
markedly from the characteristics of the optical phonons in
bulk materials. If in cubic bulk semiconductors there are
longitudinal and transverse optical phonons, then in semicon-
ductor layers and quantum wells there are two other types
of optical lattice vibrations: bulklike phonons and surface
phonons [4–10]. This circumstance, as well as the two-
dimensionality of electron motion in a quantum well, leads
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to a noticeable difference in the characteristics of electron
scattering by the optical phonons in bulk semiconductors and
in quantum wells [11–22].

When studying the scattering of electrons by the optical
phonons in quantum wells, the influence of the electron gas
motion on the phonon spectrum is usually neglected [11–22].
The physical reason for the influence of the presence of
electrons on lattice vibrations is that both lattice vibrations
and electron density oscillations (plasma oscillations) create
macroscopic electric fields that affect lattice vibrations and
oscillations of the density of the electron gas. In Ref. [3] it
was shown that the contribution to the dielectric of a quan-
tum well due to free electron motion and interband electron
transitions in HgTe quantum wells significantly changes the
optical phonon spectrum. This should lead to a dependence
of the probability of the electron-optical phonon scattering on
the concentration of free electrons in the quantum well. To
date, this dependence has not been studied.

Note that recently a number of works proposed a method
for taking into account the influence of electrons in a quantum
well on the phonon spectrum and on the electron-phonon
interaction [23–25]. The approach proposed by the authors of
these works consists of taking into account the influence of
static screening by an electron gas of the electric field created
by lattice vibrations. With this approach, as noted in [23], the
dynamic effects of electron motion are not taken into account
(i.e., the frequency dependence of the electron gas polariza-
tion was neglected). These effects lead to the existence of
two-dimensional plasma oscillations. In this article it will be
shown that plasmonic effects, which were neglected in these
works, play a decisive role both in changing the spectrum
of optical phonons and in changing the rate of electron-
phonon scattering (including its increase for electrons with
certain energies) at high electron concentrations in quantum
wells.

Note that in [26] the influence of plasmonic effects on
electron-optical phonon scattering in bulk semiconductors and
in MoS2 monolayers was studied. However, in [26] and in
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[23–25], quantum wells consisting of one or several atomic
monolayers were considered. In such quantum wells, the
potential created by the electron-scattering phonon can be as-
sumed to be constant inside the quantum well, since the width
of the quantum well is much smaller than the scale of change
in the electric potential. In the quantum wells considered in
this work, the scale of change in the phonon potential is on the
order of the quantum well width, and the change in the phonon
potential inside the quantum well cannot be neglected. In
addition, due to the small band gap of the quantum wells under
consideration, a noticeable portion of the dielectric constant
of the quantum well in the frequency range of the optical
phonons is contributed by electronic transitions between two
valence subbands and the lower subband of the conduction
band [3]. In wide-gap quantum wells considered in [23–26],
this contribution is insignificant.

The purpose of this work is to study the influence of free-
carrier motion on the electron-optical phonon scattering using
the example of the quantum-well HgTe/CdHgTe heterostruc-
ture. The article is organized as follows. In the second section,
the spectra of the optical phonons in a 5 nm quantum well of
the HgTe/Cd0.7Hg0.3Te heterostructure are calculated at three
temperatures (4.2, 77, and 300 K) and four electron concen-
trations (0, 1010, 1011, and 1012 cm−2). In the third section,
the phonon field is quantized, and expressions are given for
calculating the frequency of the electron-optical phonon scat-
tering, as well as expressions for finding the relaxation rates
of electron momentum and energy. The fourth section presents
the results of calculations of the frequencies of the electron-
optical phonon scattering in an HgTe quantum well and the
rates of relaxation of the electron momentum and energy.
This section presents the calculated dependences of the re-
laxation frequencies of the electron momentum and energy on
the electron kinetic energy. In addition, this section contains
a discussion of the validity of the approximations used in
the calculations. In the conclusion, the main results of the
work are formulated, and physical phenomena are discussed
in which the dependence of the electron-optical phonon scat-
tering rate on the electron concentration in the quantum well
plays an important role. We also discuss methods for ob-
serving the dependence of the optical phonon energy and
the probability of electron-phonon scattering on the electron
concentration in quantum wells.

II. OPTICAL PHONON SPECTRA

Let us consider the optical phonons in a 5 nm HgTe
quantum well surrounded by Cd0.7Hg0.3Te barriers. We will
assume that the structure is grown on the (013) plane of a thick
CdTe buffer grown on a GaAs substrate. The technology for
the growth of such structures has now been well developed
[27,28]. Note that stimulated emission of radiation in the
range of 3–31 µm wavelength was observed under optical
excitation conditions in similar structures [29,30].

To calculate the phonon spectrum, we will use the di-
electric continuum model. This model is well developed
for quantum wells with both isotropic [4,9] and anisotropic
[21,22] dielectric permittivity. In this model, to find the
phonon spectrum, the dielectric permittivity of the quantum
well and barriers is required. The dielectric permittivity of

FIG. 1. Electron spectra in a 5 nm quantum well of the
HgTe/Cd0.7Hg0.3Te heterostructure at three temperatures: 4.2 K
(black solid lines), 77 K (red dotted line), and 300 K (blue dash-
dotted line).

a quantum well is the sum of the electronic and lattice
contributions. To calculate the contribution to the dielectric
permittivity of a quantum well from the intraband and inter-
band motion of electrons, it is necessary to find the electron
states in the quantum well. To find these states, we used the
Kane model, taking into account deformation effects. For sim-
plicity, the calculations assumed that the quantum well was
rectangular, i.e., the influence of the potential created by free
carriers was not taken into account. Details of the calculation
method can be found in [31].

Figure 1 shows the calculated electronic spectra in the
quantum well of the structure under consideration for three
temperatures: 4.2, 77, and 300 K. The figure shows that
with increasing temperature the band gap increases, which is
typical for such structures. In addition, it is clear from the
figure that the distance between subbands in the conduction
band is more than an order of magnitude greater than the op-
tical phonon energies in HgTe (16 meV) and CdTe (21 meV).
Note that the electron spectrum in the conduction band of the
quantum well under consideration has a very weak anisotropy,
which we will neglect.

When finding the dielectric permittivity tensor of a quan-
tum well, we will use a number of simplifications. First,
we neglect the spatial dispersion of the electron contribution
to the dielectric permittivity. Secondly, when calculating the
part of the dielectric permittivity due to the intrasubband
electron motion, we will neglect electron collisions. Thirdly,
we neglect the nonlocality of the dielectric permittivity of
the quantum well [32]. To describe the dielectric permittivity
tensor, we use the approximation proposed in [33] to describe
the dielectric permittivity of bulk HgTe. In this approximation,
only the diagonal components of the dielectric constant tensor
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are nonzero. Their dependence on the cyclic frequency ω can
be represented as the sum of four terms:

κ j, j (ω) = κ∞
j, j + κ latt

j, j (ω) + κ inter
j, j (ω) + κ intra

j, j (ω), (1)

where the first term in Eq. (1) is due to electronic interband
transitions between all zones, except for the size quantization
subbands of the quantum well (transitions between far zones).
The second term is associated with lattice vibrations. The third
term is due to interband electron transitions between subbands
of a quantum well (transitions between close subbands). The
fourth term is due to the intrasubband electron motion. Note
that only the third and fourth terms in Eq. (1) are anisotropic.
By transitions between close subbands, we mean electronic
transitions between subbands, the distance between which is
of the order of the energy of the optical phonons in HgTe
and CdTe. For the quantum well under consideration, these
are transitions between the lower electron and two upper
hole subbands. By transitions between far subbands, we mean
transitions between subbands, the distance between which is
much greater than the energy of the optical phonons in HgTe
and CdTe. These are transitions to excited electronic subbands
and transitions from hole subbands starting from the third one.
The contribution of such transitions is implicitly taken into
account in the first term of Eq. (1).

The part of the dielectric permittivity tensor caused by
lattice vibrations and electronic transitions to far zones can
be represented as [33]:

κ∞
j, j + κ latt

j, j (ω) = δ j, jκ∞
ω2 − ω2

L

ω2 − ω2
T

, (2)

where κ∞ is the high-frequency permittivity of the quantum-
well material (HgTe), and ωL,T are the frequencies of the
longitudinal and transverse optical phonons in bulk HgTe,
respectively.

Within the framework of the approximations used, the ex-
pression for the third term of Eq. (1) can be written as:

κ inter
j, j (ω) = − 8πe2 h̄2

dS

∑
l,m,k

∣∣v j
m,l

∣∣2

εm(k) − εl (k)

× fm(k) − fl (k)

[εm(k) − εl (k)]2 − (h̄ω + iα)2
, (3)

where d is the quantum-well width, v j
m,l is the jth component

of the matrix element of the velocity operator between the
initial electron state in the lth subband and the final electron
state in the mth subband, e is the electron charge, h̄ is Planck’s
constant, k is the electron wave vector, fl (k) is the distribution
function of electrons in the lth subband, εl (k) is the electron
energy in the l subband, α is an infinitesimal positive value,
and S is the quantum-well square. Expression (3) can be
obtained by solving the Schrödinger equation for an electron
moving in an electric field using the first order of perturbation
theory.

The fourth term, taking into account the approximations
made, has the form:

κ intra
j, j (ω) = 4πe2

h̄ω2dS

∑
l,k

v j
l,l

∂ fl (k)

∂k j
, (4)

where index l corresponds to subbands in the conduction
band. Note that expression (4) is valid only for the isotropic
electron dispersion. Expression (4) can be obtained by solving
the collisionless Boltzmann equation for electrons moving in
an oscillating electric field.

The barriers surrounding the quantum well are a bulk
material with cubic symmetry, so its dielectric permittivity
is isotropic. Since there are no free carriers there, and the
CdHgTe barrier is a ternary alloy, then according to [19], the
permittivity of the barrier can be written as:

κb(ω) = κ∞b

(
ω2 − ω2

LHgTe

)(
ω2 − ω2

LCdTe

)
(
ω2 − ω2

THgTe

)(
ω2 − ω2

TCdTe

) , (5)

where κ∞b is the high-frequency permittivity of CdxHg1−xTe,
ωLHgTe and ωTHgTe are the frequencies of the longitudinal
and transverse HgTe-like optical phonons in CdxHg1−xTe,
and ωLCdTe and ωTCdTe are the frequencies of the longitudinal
and the transverse CdTe-like optical phonons in this material.
The dependence of the longitudinal and transverse optical
phonon frequencies on the composition of CdxHg1−xTe is
given in [34]. The dependence of κ∞b on the composition of
CdxHg1−xTe is taken from [35].

Let the quantum well be located in the region −d/2 <

z < d/2. The phase speed of the optical phonons, which can
interact with electrons, is much less than the speed of light.
Therefore, we can neglect retardation effects and describe the
electric field created by lattice vibrations and electron density
oscillations using the electric potential [9,21]. The potential
created by the optical lattice vibrations propagating along the
x axis with a wave vector q and frequency ω can be repre-
sented as:

ϕq(r, t ) = [cq exp(iqx − iωt ) + c.c.]
q(z, ω), (6)

where the value cq characterizes the amplitude of the po-
tential, and c.c. denotes the complex conjugate term. The
function 
q(z, ω) can be found from the equation for elec-
trical induction in a medium with an anisotropic dielectric
permittivity depending on z [21]:

q2κx,x(z, ω)
(z, ω) − ∂

∂z

(
κz,z(z, ω)

∂
(z, ω)

∂z

)
= 0. (7)

In the system under consideration, there is a plane of sym-
metry at z = 0, therefore the function 
q(z, ω) can be either
even in the argument z (even phonons) or odd (odd phonons).
Only even phonons can participate in intrasubband electron
scattering. Therefore, in what follows we restrict ourselves to
considering only even phonons.

Similar to the case for a quantum well with an isotropic
dielectric permittivity, the optical phonons in the system un-
der consideration can be divided into bulklike and surface
phonons. For bulklike even phonons, the function 
q(z, ω)
has the form [3]:


q(z, ω) =
{

cos (β(ω)qz), |z| < d/2,

cos
(

β(ω)qd
2

)
exp

( qd
2 − q|z|), |z| > d

2 ,

(8)
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where β(ω) =
√

−κx,x (ω)
κz,z (ω) . Note that bulklike phonons exist in

frequency intervals in which the condition κx,x(ω)κz,z(ω) < 0
is satisfied.

For surface even phonons, 
q(z, ω) has the form [3]:


q(z, ω) =
{

cosh (γ (ω)qz), |z| < d/2,

cosh
(

γ (ω)qd
2

)
exp

(
d
2 − q(|z|)), |z| > d

2 ,

(9)

where γ (ω) =
√

κx,x (ω)
κz,z (ω) . Surface phonons exist in frequency

intervals in which the condition κx,x(ω)κz,z(ω) > 0 is satis-
fied. Note that similar expressions were obtained in [21,22]
for GaN with a wurtzite structure, in which the phonon part of
the dielectric permittivity is anisotropic.

The dependence of the wave vector on frequency for even
bulklike phonons is found from the matching conditions of

(z, ω) at the boundaries of the quantum well [3]:

q(ω) = 2

dβ(ω)

[
arctan

(
κb(ω)

κz,z(ω)β(ω)

)
+ πn1

]
, (10)

where n1 = 0, 1, 2 . . . . A similar dependence for even surface
phonons can be represented as:

q(ω) = 2

dγ (ω)
atanh

( −κb(ω)

γ (ω)κz,z(ω)

)
. (11)

Figure 2 shows the calculated optical phonon spectra in
a quantum well at temperatures of 4.2, 77, and 300 K for
four electron concentrations. Solid black lines correspond
to bulklike phonons with n1 = 0, and dashed black lines
correspond to bulklike phonons with n1 = 1. The spectra
of bulklike phonons with n1 > 1 are not given, since they
make a small contribution to electron scattering. Red lines
correspond to surface phonons. The figure shows how the
spectrum of bulklike phonons changes greatly with increasing
electron concentration. For electron concentrations of 0 and
1010 cm−2, bulklike phonons have a weak dependence of
energy on the wave vector, similar to the dependence of the
optical phonon energy on the wave vector in a bulk material.
For a quantum well with electron concentrations of 1011 and
1012 cm−2, the dielectric permittivity of the quantum well
is mainly determined by the contribution of free carriers.
This circumstance dramatically changes the dependence of
the phonon energy on the wave vector for bulklike phonons. In
this case, it is more correct to call such excitations plasmon-
phonons [36]. Similar excitations at the interface of a doped
semiconductor and vacuum in [37] are called the plasma-
phonon mode.

From Fig. 2 it can be seen that a change in the elec-
tron concentration affects the number of branches of surface
phonons and their dispersion laws. So, for example, at an
electron concentration of 1010 cm−2 there are three branches
of the even surface optical phonons, and at the remaining
concentrations considered there are two branches. The highest
energy of the surface phonons at an electron concentration of
1010 cm−2 slightly exceeds 20 meV, and at concentrations of
1011 and 1012 cm−2 no more than 17 meV. In addition, the
high-frequency surface plasmon for electron concentrations
of 0 and 1010 cm−2 is a backward wave, and for electron

FIG. 2. Dependences of the energies of the even optical phonons
on the wave vector for four electron concentrations at T = 4.2, 77,
and 300 K. Black solid lines correspond to the bulklike phonons with
n1 = 0, black dashed lines correspond to the bulklike phonons with
n1 = 1, and red lines correspond to the surface phonons. Panels (a)–
(c) correspond to zero electron concentration, (d)–(f) to 1010 cm−2,
(g)–(i) to 1011 cm−2, and (j)–(l) to 1012 cm−2.

concentrations of 1011 and 1012 cm −2 it is wave with normal
dispersion.

From Fig. 2 it can be seen that temperature changes have
little effect on the phonon spectra. This influence is due to a
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change in the contribution to the dielectric constant of the third
and fourth terms in the formula (1) due to the temperature
dependence of the band gap and electron effective mass in the
conduction band of the quantum well. Note that in Eqs. (2) and
(5) we neglected the temperature dependences of the optical
phonon frequencies and κ∞, κ∞b.

III. QUANTIZATION OF THE OPTICAL PHONON
FIELD IN A QUANTUM WELL

Using the well-known expression for the energy of elec-
tromagnetic oscillations [38], the Hamiltonian of the optical
phonon with wave vector q can be represented as:

Hq = S

4π

[
dωκb(ω)

dω

∫ ∞

d/2
dz

(
Ē2

x + Ē2
z

)

+ dωκxx(ω)

dω

∫ d/2

0
dzĒ2

x + dωκzz(ω)

dω

∫ d/2

0
dzĒ2

z

]
,

(12)

where Ex,z are the components of the electric field created
by the phonon, and the overbar denotes time averaging. In
formula (12) we neglected the contribution of the magnetic
field to the Hamiltonian. This approximation is valid in the
quasistatic case, when the phase velocity of the phonon is
much less than the speed of light. Phonons for which this
approximation is wrong have a very small wave vector and
do not take part in electron scattering.

Using the expressions for the potential (6), (8), and (9) and
performing integration, formula (12) can be rewritten as:

Hq = cqc∗
qFq(ω), (13)

where the sign “*” denotes complex conjugation. The func-
tions Fq(ω) for bulklike and surface phonons are given in the
expressions (14) and (15), respectively,

Fq(ω) = Sq

8π

{
4

dωκb(ω)

dω
cos2 (β(ω)qd/2)

+ dωκxx(ω)

dω

[
qd + sin (β(ω)qd )

β(ω)

]

+ dωκzz(ω)

dω
β(ω)[β(ω)qd − sin (β(ω)qd )]

}
,

(14)

Fq(ω) = Sq

8π

{
4

dωκb(ω)

dω
cosh2 (γ (ω)qd/2)

+ dωκxx(ω)

dω

[
qd + sinh (γ (ω)qd )

γ (ω)

]

+ dωκzz(ω)

dω
γ (ω)[−γ (ω)qd + sinh (γ (ω)qd )]

}
.

(15)

By introducing the generalized coordinate Qq and the gener-
alized momentum Pq, we reduce the Hamiltonian (12) to the
Hamiltonian of a harmonic oscillator:

Hq = (
P2

q + ω2Q2
q

)
/2, (16)

where:

Qq = 1

ω

√
Fq(ω)

2
(cq + c∗

q ), Pq = −i

√
Fq(ω)

2
(cq − c∗

q ).

(17)

Let us now introduce the operators of creation and annihila-
tion of phonons a+

q , aq:

aq =
√

ω

2h̄
(Qq + iPq/ω), a+

q =
√

ω

2h̄
(Qq − iPq/ω). (18)

Using the creation and annihilation operators, we find the
potential operator of the optical phonon with wave vector q:

ϕ̂q(r, t ) =
q(z)

√
h̄ω

Fq(ωq)
(aq exp(iqr − iωqt )

+ a+
q exp(−iqr + iωqt )), (19)

where 
q(z) = 
q(z, ωq), and ωq is the frequency of the
phonon with wave vector q.

We will assume that electrons interact with the optical
phonons according to the Fröhlich mechanism [39], which
is the only mechanism for the interaction of electrons with
the optical phonons in the -valley of the conduction band of
cubic semiconductors [2]. In this case, electrons are scattered
by the macroscopic electric potential created by the optical
vibrations of the lattice. The probability of scattering of the
electron with wave vector k from the lth subband (subband
index includes spin) into the m subband with the emission of
a phonon with wave vector q can be written as [2]:

W +
k,l→k−q,m = 2π

h̄
e2|ϕk−q,m;k,l |2(Nq + 1)(1 − fm(k − q))

× δ(εl (k) − εm(k − q) − h̄ωq), (20)

where ϕk−q,m;k,l is the matrix element of the potential oper-
ator, and Nq is the number of phonons with wave vector q.
Furthermore, we will assume that the phonon distribution is
equilibrium, Nq = [exp(h̄ωq/kBT ) − 1]−1, where kB is Boltz-
mann’s constant.

A similar expression for the probability of electron scatter-
ing with phonon absorption can be written as:

W −
k,l→k+q,m = 2π

h̄
e2|ϕk+q,m;k,l |2Nq(1 − fm(k + q))

× δ(εl (k) − εm(k + q) + h̄ωq). (21)

The scattering frequency of an electron with a wave vector
k from the lth subband is equal to:

Wl (k) =
∑
q,m

(W +
k,l→k−q,m + W −

k,l→k+q,m). (22)

Important relaxation characteristics of an electron are the
relaxation rate of the wave vector (momentum) and energy.
The relaxation rate of the wave vector can be represented in
the following form [2]:

Pl (k) =
∑
q,m

q(W +
k,l→k−q,m − W −

k,l→k+q,m). (23)

Due to the isotropy of the electronic and phonon spectra,
the vector Pl (k) is directed along the vector k. Note that for
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positive values of Pl (k) the electron wave vector decreases as
a result of collisions, and for negative values it increases.

The energy relaxation rate can be represented as [2]:

Ql (k) =
∑
q,m

h̄ωq(W +
k,l→k−q,m − W −

k,l→k+q,m). (24)

IV. RATES OF ELECTRON-OPTICAL
PHONON SCATTERING

Figure 3 shows the dependence of the frequencies of the
electron-optical phonon scattering on the electron kinetic en-
ergy. The blue dotted lines correspond to the total scattering
frequencies. The designation of the remaining lines corre-
sponds to the designation of the lines in Fig. 2. From the
figure it is clear that the main contribution to the frequency
of the electron-optical phonon scattering at electron concen-
trations of 0 and 1010 cm−2 comes from scattering on the
high-frequency branch of the surface phonons (red solid line).
For electron concentrations of 1011 and 1012 cm−2 the main
contribution to the scattering under consideration comes from
scattering from a bulklike mode with n1 = 0 (solid black line).
It can be seen that the contribution of the bulklike mode with
n1 = 1 (dashed black line) to scattering is much less than the
contribution of the bulklike mode with n1 = 0. Calculations
show that bulklike modes with n1 > 1 make an even smaller
contribution to scattering due to the smallness of the corre-
sponding overlap integral in ϕk−q,m;k,l , so we do not consider
them.

At a temperature of T = 4.2 K, scattering by the opti-
cal phonons occurs only due to the spontaneous emission
of phonons. From panels (a), (d), (g), and (j) it is clearly
seen that with increasing electron concentration, the minimum
energy of an electron that can emit the optical phonon in-
creases. This is due to the Pauli exclusion principle, which
prohibits scattering into the final occupied state. That is, for
such scattering, the electron energy at T = 4.2 K must be no
less than the sum of the Fermi energy and the phonon energy
(if the phonon dispersion is weak). At T = 4.2 K, the Fermi
energies, measured from the bottom of the subband, are equal
to 3, 22, and 108 meV for concentrations of 1010, 1011, and
1012 cm−2, respectively.

At temperatures of 77 and 300 K, the presence of a step
in the dependence of the scattering frequency on the electron
energy is visible. Scattering to the left of the step is caused
by the processes of phonon absorption, and to the right of it
by the sum of the processes of absorption and emission of
phonons. The scattering probability to the right of the step
changes slightly as the temperature changes from 4.2 to 77 K,
but increases noticeably as the temperature changes from 77
to 300 K at a fixed electron concentration. Note that the
scattering under consideration occurs with spin conservation,
i.e., during scattering, the index l is preserved.

Figure 4 shows the dependences of the wave-vector relax-
ation rate [panels (a), (c), (e)] and the momentum relaxation
frequency νp [panels (b), (d), (f)] on the electron kinetic
energy. The momentum relaxation frequency was determined
from the relation:

P(k) = kνp. (25)

FIG. 3. Dependences of the frequency of the electron-optical
phonon scattering for various electron concentrations and temper-
atures. The blue dashed lines correspond to the total frequency of
scattering by all the optical phonons. For frequencies of scattering
by certain types of phonons, the same notation is used as in Fig. 2.
For example, the frequency for scattering by a bulklike mode with
n1 = 0 is indicated by a solid black line.

In Eq. (25), the subscript l is omitted, since scattering oc-
curs with spin conservation. Note that at temperatures of
77 and 300 K in the electron energy region, where only
phonon absorption is possible, the wave-vector relaxation
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FIG. 4. Dependences of the wave-vector relaxation rates [panels
(a), (b), (e)] and the momentum relaxation frequency (b), (d), (f) on
the electron kinetic energy for various electron concentrations and
temperatures. The correspondence between line colors and electron
concentrations is shown in panels (a) and (b).

rates and the momentum relaxation frequency are negative.
This happens because in absorption processes during polar
scattering, processes with forward scattering prevail, i.e., with
a minimal phonon wave vector, which is typical for polar
scattering [2].

From Fig. 4 it is clear that an increase in the electron
concentration from 1010 to 1011 cm−2 leads to a sharp increase
in the relaxation rate of the wave vector and the momen-
tum relaxation frequency. The reason for this is a change in
the type of phonon, which makes the main contribution to
scattering from the high-frequency surface to a bulklike one
(see Fig. 3). Let us note an increase in the relaxation rate
of the wave vector with increasing temperature. In addition,
the momentum relaxation frequency for the electron-optical

FIG. 5. Dependences of energy relaxation rates [panels (a), (c),
(e)] and energy relaxation frequencies [panels (b), (d), (f)] on the
electron kinetic energy for various electron concentrations and tem-
peratures. The correspondence between line colors and electron
concentrations is shown in panels (a) and (b).

phonon scattering has its maximum at energies corresponding
to the onset of phonon emission processes.

Figure 5 shows the dependences of the electron kinetic
energy relaxation rate [panels (a), (c), (e)] and the energy
relaxation frequency νε [panels (b), (d), (f)] for scattering by
the optical phonons. The frequency of energy relaxation was
found from the relation:

Q(k) = [ε(k) − ε∗]νε, (26)

where ε∗ is the energy at which Q = 0. Just like Eq. (25), the
index l is omitted from the formula (26).

From Fig. 5 it is clear that with increasing electron
concentration, the rate of energy relaxation increases in
those regions where the emission of the optical phonons is
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possible. The maximum frequency of energy relaxation is
realized in the case when ε = ε∗. For T = 4.2 it was as-
sumed that ε∗ is the energy at which scattering was turned
on. With increasing temperature, the rate of energy relax-
ation in the region where it is negative increases in absolute
value, which is due to an increase in the phonon absorption
frequency.

Let us now list the main approximations used in the work
and discuss their applicability. In our calculations, we ne-
glected the finite lifetime of the optical phonons due to the
anharmonicity of lattice vibrations. Since the inverse lifetime
of the optical phonons due to anharmonicity is much less than
the frequency of the optical phonons, it has little effect on scat-
tering processes. When calculating the electronic contribution
to the dielectric constant of the quantum well, we neglected
electron collisions and spatial dispersion of electronic po-
larizability. The frequency of electronic collisions is much
lower than the frequency of the optical phonons, so we can
assume that taking it into account will have little effect on the
considered phonon spectra and the considered scattering pro-
cesses. Taking into account the spatial dispersion of electronic
polarizability will significantly change the phonon spectrum
at large wave vectors, in the case when it is mainly determined
by electronic polarizability (i.e., for electron concentrations of
1011 and 1012 cm−2) [36]. However, due to the polar mecha-
nism of the considered scattering, scattering processes with
low momentum transfer are most likely. Therefore, taking
into account the spatial dispersion of electronic polarizability
will not change the qualitative results obtained, although it
certainly requires a separate consideration that is beyond the
scope of this work.

When considering scattering, we also neglected scattering
by the optical phonons from barriers occupying the half-space.
These phonons have frequencies that coincide with the fre-
quencies of the longitudinal phonons in the barrier material,
i.e., they are bulklike. The potential they create is zero in a
quantum well. The wave functions of electrons in the lower
size quantization subband in the conduction band of the quan-
tum well weakly penetrate in the barrier. For this reason, the
overlap integral of the potential created by such phonons and
the electronic wave functions is rather small, which leads to a
low probability of scattering.

V. CONCLUSION

In conclusion, we briefly list the main results obtained
in this work, and we discuss the observed consequences of
the dependence of electron-optical phonon scattering on the
electron concentration in a quantum well, which was con-
sidered in this work. In addition, methods for experimental
observation of phonon spectra and electron-optical phonon
scattering times are discussed.

(1) The optical phonon spectra were found in the
HgTe/Cd0.7Hg0.3Te heterostructure with a 5 nm quantum
well at three temperatures (4.2, 77, and 300 K) and four
electron concentrations (0, 1010, 1011, and 1012 cm−2). It is
shown that the presence of electrons in the conduction band
of a quantum well significantly affects the dispersion of both
surface and bulklike phonons. In addition, the presence of
electrons affects the number of surface phonon modes: at

electron concentrations of 0, 1011, and 1012 cm−2 there are
only two surface modes in the system under consideration,
and at a concentration of 1010 cm−2 there are three surface
modes.

(2) The dependences of the electron-optical phonon scat-
tering frequency on the electron kinetic energy are found. It is
shown that for electron concentrations of 0 and 1010 cm−2 the
main mechanism of electron scattering by the optical phonons
is scattering by a high-frequency surface mode. For concentra-
tions of 1011 and 1012 cm−2 the main scattering mechanism is
scattering by a bulklike mode with n1 = 0. It is shown that
an increase in the number of the bulklike mode n1 leads to
a decrease in the probability of electron scattering from this
mode.

(3) The dependences of the relaxation rates of the wave
vector and energy on the electronic kinetic energy are
calculated. The dependences of the momentum relaxation
frequency and electron energy on its kinetic energy were
found.

Let us now discuss the observable consequences resulting
from the dependence of the electron-optical phonon scattering
on the electron concentration in the quantum well. The first
thing we can pay attention to is the dependence of electron
mobility on the electron concentration at high temperatures,
when the temperature is on the order of the energy of optical
phonons. In this case, electron scattering by optical phonons
significantly affects the electron mobility. In addition, one
should expect a change in the dependence of mobility on tem-
perature with changes in the electron concentration. However,
it should be noted that there are several factors, in addition
to the probability of scattering by the optical phonons, that
influence the change in electron mobility with increasing elec-
tron concentration. These factors include the nonparabolic
nature of the electron spectrum in an HgTe quantum well
due to which the average effective mass of electrons increases
with increasing electron concentration. In addition, due to im-
proved screening, with increasing electron concentration, the
probabilities of scattering by a charged impurity and acoustic
phonons decrease. Therefore, the study of the dependence
on the electron concentration under these conditions requires
separate consideration. Note that in Ref. [26], the dependence
of electron mobility on the electron concentration in MoS2

monolayers was studied. However, that work did not take into
account the scattering of electrons by acoustic phonons and
charged impurities.

The second thing that should be noted is the dependence of
the current on the electric field under conditions of electronic
heating, in a situation in which Ohm’s law stops working. In
this case, the dependence of the current on the electric field is
determined by the dependencies of the relaxation times of the
momentum and energy on the average electron energy [40].
As was shown in this work, these times change with increas-
ing electron concentration. This should lead to a change in
the dependence of the current on the electric field when the
electron concentration changes in strong fields, when Ohm’s
law does not work.

Third, an increase in the probability of electron-optical
phonon scattering will lead to a decrease in the heating of the
electron gas in a high electric field, and, consequently, to an
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increase in the interband breakdown field with an increase in
the electron concentration (although here the Pauli principle
works in the same direction, effectively increasing the band
gap). However, studying the influence of electron concentra-
tion both on the dependence of the current on the electric
field in heating fields and on the interband breakdown field
requires separate consideration and is beyond the scope of this
work.

Let us now discuss how the phenomena considered can
be observed. The dependence of the energy of the optical
phonons in quantum wells at small wave vectors on the elec-
tron concentration can be observed using Raman scattering. A
detailed discussion of issues related to such observations can
be found in Ref. [1]. In addition, the dependence of the optical

phonon energy on the wave vector can be studied using the
methods used to study surface waves [37].

The probabilities of electron scattering with different en-
ergies by the optical phonons can be studied using the
pump-probe method [25] or by observing the Hanle effect in
the study of hot photoluminescence [41].

Data underlying the results presented in this paper are not
publicly available at this time but may be obtained from the
authors upon reasonable request.
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