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Crystalline electromagnetic responses of higher-order topological semimetals
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Previous work has shown that time-reversal symmetric Weyl semimetals with a quadrupolar arrangement of
first-order Weyl nodes exhibit a mixed crystalline-electromagnetic response. For systems with higher-order Weyl
nodes, which are attached to both surface and hinge Fermi arcs, additional phenomena appear on surfaces of
codimension n > 1, such as electromagnetic responses of the hinges. Here we construct a model possessing
a quadrupole of higher-order Weyl nodes to study the interplay between higher-order topology and mixed
crystalline-electromagnetic responses. We show that the higher-order nature of the Weyl nodes yields a dipole
of Dirac nodes on certain surfaces, leading to a mixed crystalline-electromagnetic surface response that binds
charge to dislocations and momentum density to magnetic fields. In addition, we show that the model possesses
a bulk quadrupole moment of crystal momentum that provides a link between the bulk and surface responses of
the system.
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I. INTRODUCTION

Topological semimetals (TSMs) possess quasitopological
terms in their bulk electromagnetic responses that are gov-
erned by the configuration of their nodal points or lines
in momentum space [1–8]. In particular, the responses of
point node TSMs are proportional to the chirality-weighted
momentum-space multipole moments of the nodal points, i.e.,
monomials of their momentum-space location weighted by
their chirality or helicity. For example, in the simplest case
of a time-reversal breaking Weyl semimetal (WSM) with two
nodes, the magnitude of the bulk anomalous Hall conductivity
is proportional to the dipole moment of the Weyl nodes in mo-
mentum space [9–12]. Additionally, these bulk responses are
often necessary to compensate for anomalous surface states,
such as chiral Fermi arcs in time-reversal breaking WSMs
[10].

In recent years the field of TSMs has grown to include
higher-order TSMs (HOTSMs) that are characterized by spec-
tral features and other phenomena on surfaces of codimension
n > 1. The nodal points of HOTSMs differ from conventional
TSMs in that they are attached to both surface and hinge Fermi
arcs. Heuristically such a node separates gapped momentum
space planes that differ in both Chern number and some form
of two-dimensional (2D) higher-order topology. The family
of HOTSMs is quite diverse, including higher-order analogs
of Dirac and Weyl semimetals [13–27], nodal line semimetals
[28], nodal superconductors [29–32], non-Hermitian TSMs
[33–36], and periodically driven Floquet TSMs [37–41]. In
some instances, HOTSMs possess additional boundary states
and/or electromagnetic responses beyond first-order TSMs.
For example, second-order WSMs exhibit both surface Fermi
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arcs and hinge states that generate competing surface and
hinge responses [23] in which the bulk charge bound to a
magnetic flux (via the anomalous Hall effect) is constrained
by the charge bound to hinges parallel to the flux. Similarly,
conventional type-I Dirac semimetals (DSMs) have a bulk
spin-Hall-like response determined by the momentum-space
dipole moment of the Dirac nodes [12], while some higher-
order DSMs also possess a bulk electric quadrupole moment
that generates a surface polarization response [13].

In parallel to these developments of HOTSMs, recent
studies have shown that TSMs can exhibit mixed crystalline-
electromagnetic responses in addition to purely electro-
magnetic responses. These mixed crystalline-electromagnetic
responses are often probed by subjecting systems to dislo-
cation and disclination defects [42]. TSMs typically possess
interesting response phenomena to such defects because the
TSM nodal surfaces are protected by translation symmetry
and, in some cases, rotation symmetries [43–54]. For example,
time-reversal symmetric WSMs with a quadrupole arrange-
ment of Weyl nodes in momentum space have electric charge
bound to screw dislocations and crystal momentum bound to
magnetic flux [47,48,53].

Motivated by these unusual electromagnetic responses,
here we take the first steps toward understanding the mixed
crystalline-electromagnetic responses of higher-order TSMs.
In Sec. II we introduce a model of a TSM with a quadrupole
arrangement of higher-order Weyl nodes and characterize its
topological features. In Sec. III we show that this model pos-
sesses a rank-2 mixed crystalline-electromagnetic response
similar to that found in Refs. [47,48] for quadrupolar arrange-
ments of first-order Weyl nodes. Furthermore, we demonstrate
that the higher-order nature of the Weyl nodes in our model
leads to an additional surface crystalline-electromagnetic re-
sponse arising from the presence of a dipole of surface
Dirac nodes. In Sec. IV we show that this model can
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FIG. 1. (a) The band structure of H (k) along high-symmetry lines in the kz = 0 plane with m = −0.3, β = −0.7, and γ = 0. The band
structure possesses a QBC at � and is otherwise gapped. (b) The band structure of H (k) with m = −0.3, β = −0.7, and γ = 0.5. The finite
value of γ splits the QBC into four Weyl nodes, two on the kx axis and two on the ky axis. (c) The Chern number of H (k; kx ) (solid blue),
H (k; ky ) (dashed red), and H (k; kz ) (dot-dashed green) as functions of the perpendicular momentum with = m − 0.3, β = −0.7, and γ = 0.5.
The changes in the Chern number as the perpendicular momenta are tuned through Weyl nodes indicates that the nodes along kx and ky are of
negative and positive chirality, respectively. (d) The nested Wilson loops p

vy
z (blue crosses) and pvz

y (blue circles), bulk gap (solid red line), and
surface gap (dashed red line) of H (k; kx ) with m = −0.3, β = −0.7, and γ = 0.0. (e) The finite-γ phase diagram of H (k; kx ) with m = −0.3,
and β = −0.7. The solid and dashed black lines indicate bulk and surface gap closings of H (k; kx ), respectively. The light green region is
adiabatically connected to the γ = 0 QI phase and therefore has C = 0 and qxy = e/2. The red and blue regions are Chern insulator phases
with C = ±1, and the white regions are trivial.

possess a bulk quadrupole moment of equilibrium crystal
momentum. We show that the magnitude of this quadrupole
moment of momentum is determined by both the momentum-
space quadrupole moment of the bulk Weyl nodes and the
momentum-space dipole moment of the surface Dirac nodes.
This result is a generalization of the notion of characterizing
TSMs via multipole moments of the nodal point distribution
to the broad class of HOTSMs. In Sec. V we conclude with a
discussion of future directions for this work.

II. MODEL

In this section we construct a model of a time-reversal sym-
metric Weyl semimetal in which higher-order Weyl nodes are
arranged in a quadrupole pattern. We discuss bulk indicators
of the topology of this model and the associated bulk, surface,
and hinge spectra. Consider the following Bloch Hamiltonian,

H (k) = sin(kx ) sin(ky)�1 + sin(kz )�2 + (m + cos(kx )

+ β cos(kz ))�3 + (m + cos(ky) + β cos(kz ))�4

+ iγ�1�2, (1)

where �i is a set of five anticommuting 4 × 4 matrices.
We use the basis �0 = σ2 ⊗ σ0, �1 = σ1 ⊗ σ1, �2 = σ1 ⊗ σ2,
�3 = σ1 ⊗ σ3, and �4 = σ3 ⊗ σ0, where σi are the Pauli ma-
trices. This Hamiltonian possesses a range of symmetries:

Spinless time-reversal symmetry (TRS), T = KI, twofold ro-
tation symmetry about each axis, C2x = C2y = �1�2, C2z = I,
mirror symmetry about the x = y and x = −y planes, M1,1 =
M1,−1 = (�3 − �4)�0/

√
2, the product of fourfold rotation

and reflection along the z axis, C4zMz = (�3 + �4)/
√

2, and
the product of inversion and chiral symmetry, P� = �2.1

We first consider the bulk energy spectrum of H (k) in the
special case m + β = −1 and γ = 0, for which a quadratic
band crossing (QBC) appears at �, as shown in Fig. 1(a).
While m and β can be tuned to generate QBCs at other high-
symmetry points of the Brillouin zone (BZ), we only consider
parameter ranges that place the QBC at �. Departing from this
starting point by tuning γ away from zero splits the QBC into
four Weyl nodes that move apart along the kx and ky axes. We
show the finite-γ spectrum in Fig. 1(b), which clearly depicts
the Weyl nodes on the �X and �Y lines.

1Chiral symmetry is typically only realized approximately in ma-
terial systems, with the exception of superconductors. Breaking the
chiral symmetry of our model releases the bulk Weyl nodes, surface
Dirac nodes, and hinge modes from being pinned to zero energy. This
shift could introduce additional Fermi surface contributions to the
crystalline-electromagnetic responses we study here, but otherwise
does not affect our conclusions.

075169-2



CRYSTALLINE ELECTROMAGNETIC RESPONSES OF … PHYSICAL REVIEW B 109, 075169 (2024)

(a) (b) (c)

FIG. 2. The (a) z- and (b) x-normal surface band structures of Eq. (1) along high-symmetry lines with m = −0.3, β = −0.7, and γ = 0.5,
using 30 lattice sites in the open direction. The z-normal surface has a cross of Fermi arcs connecting the projections of the Weyl nodes on both
the kx and ky axes. The x-normal surface possesses Fermi arcs between the projections of the Weyl nodes on the �-Y line and a pair of Dirac
cones on the BZ boundary. Bands containing Fermi arcs are drawn in blue and the surface Dirac cones are indicated with red. The spectrum of
the y-normal surface is identical to the x-normal surface. (c) The spectrum of H (k) with open boundary conditions along the y and z directions,
25 lattice sites along each open direction, m = −0.3, β = −0.7, and γ = 0.5. The zero-energy modes arise from the quadrupole phases of
H (k; kx ) and are localized to the hinges. The dashed red lines indicate the bounds of the zero-energy hinge modes. The hinge spectrum along
the y direction is identical.

To identify the bulk topology, we recall that Weyl nodes act
as quantized sources of Berry curvature. As such, the Chern
number of any surface in momentum space that encloses a
single Weyl node is C = ±1, where the sign is determined
by the chirality χ of the node. Consequently, we can foliate
the Brillouin zone into families of fixed-momentum planes,
and planes that are separated by a Weyl node must have
Chern numbers differing by χ. This planar family picture is
very convenient and we denote the Hamiltonian restricted to
two-dimensional momentum planes normal to the ki axis as
H (k; ki ). In Fig. 1(c) we plot the Chern numbers of H (k, ki )
for i = x, y, z as functions of ki with m = −0.3, β = −0.7
and γ = 0.5. The discrete jumps in Chern number at the Weyl
nodes indicate that the chiralities of the nodes on the kx and ky

axes are negative and positive, respectively.
The fixed-momentum planes having nonvanishing Chern

number generate chiral edge modes along open boundaries.
The collection of these edge states comprise the surface Fermi
arcs that connect projections of the Weyl nodes in the sur-
face BZ. In Fig. 2(a) we plot the surface spectrum of H (k)
with open boundary conditions along the z direction. At zero
energy there are a pair of intersecting Fermi arcs, which we
depict in blue, on the surface normal to the z direction, with
one nodal arc on the kx axis and another arc on the ky axis. At
energies above or below E = 0 the Fermi arcs form portions
of a hyperbola that originate at the positive chirality nodes,
nearly meet at the origin, and then turn in opposite directions
to eventually terminate at the negative chirality nodes. Indeed,
the dispersion around � is that of a saddle point E = kxky,
hence this model is another realization of a surface rank-2
chiral fermion [47]. For comparison, in Fig. 2(b) we plot the
surface spectrum with open boundaries in the x direction with
m = −0.3, β = −0.7, and γ = 0.5. We find that the Fermi
arcs that appear on the x-normal surface originate at � and
terminate at the positive- and negative-momentum projections
of the Weyl nodes on the ky axis. On a y-normal surface the
relative chirality of the nodes switches, but the Fermi arcs are
identical because of the mirror and rotational symmetries of
H (k).

We can characterize arrangements of Weyl nodes by calcu-
lating the momentum-space multipole moments of the nodes
weighted by the node chiralities. In particular, we define the
Weyl dipole Pi and Weyl quadrupole Qi j moments as

Pa =
∑

n

χnkn
a , Qab =

∑
n

χnkn
akn

b , (2)

where n indexes the nodes. The Weyl dipole moment of H (k),
which is proportional to the anomalous Hall conductivity, van-
ishes as required by TRS. In contrast, we find that the diagonal
quadrupole moments Qxx and Qyy are nonvanishing, and the
mirror symmetries along the x = y and x = −y axes require
them to have the same magnitude and opposite sign. We con-
sider these moments because, as mentioned above, the dipole
moment is directly related to the anomalous Hall coefficient,
and recent works have shown that the quadrupole moment
characterizes mixed crystalline-electromagnetic responses,
e.g., screw dislocations bind electric charge, and magnetic
flux binds crystal momentum [47,48]. Below we show that
the Weyl nodes in our model are, in fact, higher-order Weyl
nodes, and investigate the mixed crystalline-electromagnetic
responses that arise from quadrupole arrangements of higher-
order Weyl nodes.

We have mentioned that first-order Weyl nodes represent
a transition (as a function of momentum) between insulator
phases on planes of the foliated BZ where the Chern number
differs by the Weyl chirality. In contrast, higher-order Weyl
nodes separate insulators that differ by both a Chern number
and some type of 2D higher-order topology. In our case the
higher-order topology is that of a quadrupole insulator (QI)
[22,55–63]. Depending on the symmetry, such QI phases can
be either bulk obstructed or boundary obstructed [64–68], and
they are characterized by a quantized bulk electric quadrupole
moment qxy = e/2 and a quantized, vanishing bulk charge
polarization. The bulk electric quadrupole moment is defined
as qxy = p∂

x + p∂
y − Qcorner mod 1, where p∂

x and p∂
y are the

electric polarizations on ŷ- and x̂-normal surfaces, respec-
tively, and Qcorner is the charge localized on a corner where
two such surfaces meet. One typical manifestation of a bulk
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electric quadrupole moment qxy is a set of corner charges in
systems with open boundary conditions in both the x and y
directions. For our model these corner charges are accompa-
nied by a set of four midgap corner modes, the occupation of
which determines the pattern of signs of the corner charges.

To show that the Weyl nodes in our model are higher
order we need a procedure to diagnose the QI topology. One
approach is to study the pair of Berry phases (p

νy
x , pνx

y ) of the
hybrid Wannier bands vy(kx ) and vx(ky) [55,56]. These Berry
phases, which are referred to as nested Wilson loops, indi-
cate the QI phase with nonvanishing qxy when they are both
nontrivial, i.e., when (p

νy
x , pνx

y ) = (1/2, 1/2). The symmetry
restrictions required to quantize the nested Wilson loops are
more stringent than those required to enforce a nonvanish-
ing, quantized quadrupole moment, so this approach can be
applied only in a reduced parameter region of our model.
Typically, a pair of mirror symmetries is needed to quan-
tize the nested Wilson loops, but our putative QI insulator
Hamiltonians H (k, kx ) and H (k, ky ) instead possess pairs of
mirror times time-reversal symmetries. These symmetries are
represented by Mx/yT = I4×4 and MzT = �1�2, and descend
from the C2x/y, C2z, and T symmetries of H (k). These mirror
times time-reversal symmetries quantize the bulk quadrupole
moment but do not quantize the nested Wilson loops.

We can make progress by noting that these symmetries are
elevated to conventional mirror symmetries in the limit γ = 0.

Hence the γ = 0 limit permits the computation of the bulk
quadrupole moment via the nested Wilson loops. We present
the results of this computation in Fig. 1(d) where we plot the
bulk gap, surface gap, and nested Wilson loops of H (k, kx )
with m = −0.3, β = −0.7, and γ = 0 as a function of kx. We
find that the bulk gap closes at kx = 0, corresponding to the
QBC at �. Interestingly, the surface gap closes at a pair of
momenta kx = ±k0, far away from the location of the bulk
gap closing. For 0 < |kx| < |k0|, both nested Wilson loops
are quantized to 1/2, confirming the presence of a nontrivial
QI phase for each fixed-kx plane in this interval. One of the
two nested Wilson loops changes values at the surface gap
closing at |kx| = k0, leaving the region |kx| > k0 with only a
single nontrivial nested Wilson loop, indicating a phase with
vanishing quadrupole moment for all fixed-kx planes in this
interval.

While we can only calculate the quantized nested Wilson
loops for γ = 0, we can go beyond the γ �= 0 case by using
an adiabatic argument. As long as the crystal symmetries that
quantize qxy and the x, y components of the (bulk) polariza-
tion are maintained, the bulk quadrupole moment can change
only at bulk or surface gap closing points. Thus, knowing
the results for γ = 0, we can determine the bulk quadrupole
moment at finite γ via a straightforward adiabatic argument.
At any momentum kx for which H (k, kx ) realizes the γ = 0
QI phase, the Hamiltonian will remain in the QI phase at
finite γ as long as there are no intervening bulk or surface gap
closings, and the quantizing symmetry is maintained. We plot
the locations of the bulk and surface gap closings of H (k, kx )
in Fig. 1(e) as a function of kx and γ with m = −0.3 and β =
−0.7. The splitting of the QBC into Weyl nodes nucleates a
pair of C = −1 and C = +1 Chern insulator phases on op-
posite sides of kx = 0, indicated in blue and red, respectively.
The locations of the surface gap closings do not depend on γ ,

so the QI remains intact for kWeyl < |kx| < k0, where kWeyl is
the location of the Weyl node on the kx axis. Similar results are
obtained when we consider the 2D, fixed-momentum phases
as a function of ky instead of kx. This confirms that the Weyl
nodes in this system separate Chern insulator phases from QI
phases and are higher-order Weyl nodes.

The surface gap closings that bound the QI phases of
H (k, kx ) appear as a pair of surface Dirac cones at opposite
values of kx on the kz = π boundary of the y-normal surface
BZ. An analogous pair of surface Dirac cones appears on
x-normal surface BZs owing to the rotation and mirror sym-
metries of H (k). We plot the x-normal surface spectrum with
m = −0.3, β = −0.7, and γ = −0.5 in Fig. 2(b), in which
the surface Dirac cone at positive ky is visible and depicted
in red. With open boundary conditions along both the y and
z directions, the hinge spectrum of H (k), shown in Fig. 2(c),
exhibits a pair of midgap flat bands in the hinge BZ span-
ning between the projections of the bulk Weyl nodes and the
surface Dirac nodes. These midgap hinge arcs originate from
the midgap corner modes of the QI phase. We find identical
results for hinges parallel to ŷ as ensured by the mirror and
rotation symmetries of H (k). In the next section we study the
mixed crystalline-electromagnetic responses that arise from
such quadrupole arrangements of higher-order Weyl nodes,
with H (k) serving as an explicit realization. Additionally, in
Sec. IV we study some further consequences of the midgap
hinge states.

III. MIXED CHARGE-MOMENTUM RESPONSES

It was recently shown that semimetals hosting a quadrupole
configuration of Weyl nodes exhibit a mixed charge-
momentum response that binds crystal momentum to mag-
netic flux and electric charge to screw dislocations [47,48].
Here we confirm that the Hamiltonian Eq. (1) also exhibits this
response. Furthermore, we show that the higher-order nature
of our model’s Weyl nodes leads to an additional surface
mixed charge-momentum response. This surface response
manifests as crystal momentum bound to magnetic flux and
electric charge bound to dislocations.

The mixed charge-momentum response of topological
semimetals hosting a Weyl quadrupole is captured by the
effective action

S[A, e] = − e

8π2

∫
d4x εμνρσ Qabe

a
μAν∂ρe

b
σ , (3)

where Qab is the quadrupole moment of the Weyl nodes, Aμ

is the electromagnetic gauge field, and eμ are the translation
gauge fields [50,69–73]. For our model we simplify this action
by noting that only the diagonal elements of the quadrupole
moment of Qab are nonvanishing Qxx = −Qyy ≡ Q̄.

One response encoded by this action is the binding of
momentum density to magnetic flux that points along the x
or y directions,

J 0
a = eQ̄

8π2
Ba(δax − δay), (4)
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where the bound momentum points along the magnetic field
and the momentum density of the electrons is defined as

J 0
a = 1

e

∫
d3k

(2π )3
ka j0(k), (5)

where we have assumed ea
b = δa

b . If the lattice is distorted
and off-diagonal elements of the translation gauge field are
present, Eq. (4) is modified such that the momentum density
does not align directly with the magnetic field. There is also a
conjugate response wherein charge is bound to screw disloca-
tions that have Burgers vectors in the xy plane,

j0 = eQ̄

8π2

(
Bx

x − By
y

)
, (6)

where we have set ex
x = e

y
y = ez

z = 1, ∂xe
x
y = ∂xe

x
z = 0, and

allow ∂ze
x
y and ∂ye

x
z to be finite. In these two response equa-

tions Ba are the components of the magnetic field and Ba
a =

εabc∂be
a
c denotes the torsional magnetic field induced by a

screw dislocation along the a axis.
This mixed-charge momentum response can be straightfor-

wardly understood as a consequence of the arrangement of
nontrivial Chern insulator phases on planes in the foliated BZ.
For simplicity, let us first consider planes normal to kx and
denote the locations of the Weyl nodes away from kx = 0 on
the kx axis as ±k0. As shown in Fig. 1(c), the Chern number of
H (k; kx ) is C = −1 for −k0 < kx < 0, C = 1 for 0 < kx < k0,
and C = 0 elsewhere. Consider inserting a magnetic flux � in
the yz plane. Let us assume that this flux line preserves trans-
lation symmetry along x̂. Then the net response of the system
to the magnetic flux is the response of H (k, kx ) summed over
kx. The trivial phases of H (k, kx ) are inert to the flux, but the
Chern insulator phases bind charge q = C�/�0 to the flux,
where �0 is the quantum of magnetic flux [74]. The charge
density bound to the flux by the C = 1 and C = −1 phases
of H (k, kx ) are opposite, so no net charge is accumulated.
However, the crystal momentum-per-length bound to the flux
is nonvanishing: ∫

dydz J 0
x = eQ̄

8π2
�. (7)

The dual response of charge bound to a screw disloca-
tion along the x̂ direction can be understood through similar
reasoning. As with the Aharonov-Bohm effect for electrons
near a magnetic flux line, electrons encircling a screw dislo-
cation acquire a phase. In the magnetic flux case the phase
is proportional to a product of the charge and flux, ϕ ∝ e�.

In the torsional flux case, the phase is the dot product of the
crystal momentum of the electron (translation charge) and the
Burgers vector of the dislocation (torsional flux), ϕ = k · b,
where b = (bx, 0, 0) in this case. Since the phase acquired
upon encircling the screw dislocation is proportional to kx,
the C = 1 and C = −1 phases of H (k, kx ) bind equal charge
(in both sign and magnitude) to the defect, yielding no bound
crystal momentum density. However, there is a nonvanishing
bound charge per length:∫

dydz j0(r) = eQxx

8π2
bx. (8)

The response to threading magnetic flux or screw dislo-
cations along other directions can be interpreted similarly.

That is, one can determine the arrangement of the Chern
insulator phases perpendicular to the chosen direction n̂ by
projecting the Weyl nodes onto that axis in momentum space.
Then one can apply the flux insertion method above to de-
termine the response. As an additional example, this model
has the interesting characteristic that for n̂ = x̂ ± ŷ and n̂ = ẑ,
the response is zero because the Weyl nodes project onto
the given axes in opposite-chirality pairs, yielding C = 0 for
all momenta.

Since our model H (k) has Weyl nodes arranged in a
quadrupolar pattern we expect to find it has the responses en-
coded by Eq. (3). Here we verify that H (k) exhibits the mixed
charge-momentum response described above by numerically
calculating both the electric charge density bound to screw
dislocations and the momentum density bound to magnetic
fluxes. We consider a system with periodic boundary condi-
tions in all directions and choose a configuration to preserve
translation symmetry along x̂, which is necessary to permit
calculation of the crystal momentum density along x̂. As such,
we treat the x direction in momentum space with Nk = 40,
and use a lattice of dimension Ny × Nz = 40 × 40 in the y
and z directions. We insert oppositely signed flux lines, either
electromagnetic or torsional, along x̂ at sites (y, z) = (20, 10)
and (20, 30). Torsional flux is defined analogously to mag-
netic flux, �a

T = ∫
dSbBa

b , and screw dislocations are sources
of torsional flux equal to the Burgers vector of the screw
dislocation.

To generate the fluxes we include the magnetic flux �

via a Peierls phase, i.e., multiplying all hopping terms that
cross the line connecting the two flux lines by the phase
exp(2π i�/�0). Because the translation gauge fields couple to
momentum rather than charge, the torsional magnetic field of
a screw dislocation is accounted for by modifying the Peierls
phases used for the magnetic flux to be a product of the crystal
momentum along x̂ and the torsional flux of the dislocation,
kx�

T
x [69,75,76]. The modified Peierls phase captures the

phase acquired by an electron having crystal momentum kx

encircling the screw dislocation and translating by �T
x sites in

the x̂ direction.
Using this setup, we calculate the momentum density

bound to magnetic flux as a function of the flux as shown
in Fig. 3(a). Similarly, in Fig. 3(d) we plot the charge
bound to a screw dislocation as a function of the torsional
flux. Both plots demonstrate the expected linear relationship
between charge/momentum and flux with slope eQ̄/8π2,
corroborating that the Hamiltonian H (k) possesses the re-
sponse predicted by the effective action in Eq. (3). Let us
comment about the data points represented by open circles
in Fig. 3(d). In order to be commensurate with the lattice,
torsional flux �T should take integer values equivalent to
the Burgers vector of the screw dislocation. The open cir-
cle data points are noninteger torsional fluxes that can be
inserted via our momentum-dependent Peierls factors, but
the interpretation in terms of an elastic lattice defect is
less clear.

Now that we have confirmed the expected bulk responses
we can move on to identify the surface responses. Indeed, as a
consequence of our Weyl nodes being higher order, we expect
that even regions of the surface BZ that do not harbor gapless
surface states may contribute to surface responses. Indeed,
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(a) (b) (c)

(d) (e) (f)

FIG. 3. (a) The crystal momentum bound to magnetic flux by Eq. (1) on a lattice of dimension Ny × Nz = 40 × 40, and Nkx = 40. (b) The
surface crystal momentum density J 0

x bound to magnetic flux along the y direction for a system size of Ny × Nz = 30 × 30 and Nkx = 40.
(c) The magnetic flux geometry we use to calculate the momentum and charge density response on x- and y-normal surfaces. Red (blue)
coloration indicates either magnetic or dislocation flux pointing along the +y direction (−y direction). (d) The electric charge bound to a screw
dislocation with Ny × Nz = 40 × 40, and Nkx = 40. Empty and filled circles indicate fractional and integer torsional fluxes. (e) The surface
electric charge density bound to dislocation flux for a system size of Ny × Nz = 40 × 40 and Nkx = 100. Here �D

tot is the total dislocation
flux integrated along the x direction, corresponding to the difference in system size along the x direction between the strained and unstrained
regions in units of the unstrained lattice constant. Empty and filled circles indicate fractional and integer dislocation fluxes. (f) The torsional
flux geometry used to calculate the surface charge response. The red (blue) plaquettes correspond to positive (negative) torsional flux and the
black arrows indicate the hoppings that acquire a momentum-dependent Peierls phase due to the strain of the lattice. All results presented here
are calculated using the parameters m = β = −0.5 and γ = 0.5. The red dotted lines in (a), (b), (d), and (e) each have a slope of one and
indicate the analytic result.

since the x̂- and ŷ-normal surfaces of the model Hamiltonian
host a pair of Dirac nodes we expect to find a 2D surface
response analogous to a 2D Dirac semimetal. As such, these
surfaces possess a mixed charge-momentum response similar
to that of the bulk described by the effective action [12]:

S[A, e] = ePa

4π

∫
d3xεμνρ ea

μ∂νAρ. (9)

Here the response coefficient is the Berry curvature dipole
moment, given by [12,53,72]

Pa = 1

π

∫
BZ

d2kkaF (k), (10)

where F is the Berry curvature and the integration is restricted
to the surface BZ. When the surface has time-reversal and
inversion symmetry, this action implies that the system has
a charge polarization pa = e

4π
εabPb[12] (which resides on the

surface of our 3D system).
To illustrate a particular response let us focus on the re-

sponse of the y-normal surface, for which Px �= 0 and Pz = 0
(the x-normal surface has an analogous response by symme-
try). The mixed charge-momentum response captured by the
effective action Eq. (9) binds momentum density to magnetic

flux,

J 0
x = − e

4π
PxBy, (11)

and binds electric charge to dislocations,

j0 = − e

4π
Px

(
∂xe

x
z − ∂ze

x
x

)

j0 = − e

4π
PxBx

y . (12)

Here we verify that the surfaces of our model have these
responses via direct numerical calculation. We consider a
system with open boundary conditions in the ŷ direction and
periodic boundary conditions in the x̂ and ẑ directions. We
treat the x̂ direction in momentum space and calculate the
momentum density bound to magnetic flux (using Nk = 40
momentum points), and the charge bound to dislocations (us-
ing Nk = 100 momentum points). The other two directions we
leave in position space and use a lattice of dimension Ny ×
Nz = 30 × 30 and Ny × Nz = 40 × 40 for each of the cal-
culations, respectively. To avoid difficulties arising from the
divergent Berry curvature distribution of Dirac nodes, we also
include an inversion-breaking perturbation H ′ = −ν i

2�2�3

with ν = 0.5.
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To calculate the kx momentum density on a ŷ-normal sur-
face it is necessary to maintain translation symmetry along x̂.
To do so we introduce the magnetic field via two strips of mag-
netic flux lines extending in the x direction, each with opposite
field orientations ±Byŷ. For the Ny × Nz = 40 × 40 lattice
these strips are located at z1 = 10 and z2 = 30, while for
the Ny × Nz = 30 × 30 lattice they are located at z1 = 8 and
z2 = 23. The geometry of this magnetic field configuration is
depicted in Fig. 3(c). We include torsional flux in an anal-
ogous translation symmetry-preserving manner by using the
generalized, momentum-dependent Peierls factors mentioned
above for the bulk response. We can think of this torsional
magnetic field as a nonvanishing strain configuration between
the z1 and z2 planes that immediately relaxes back to the
unstrained lattice outside this interval. This configuration in-
duces opposite torsional magnetic fields Bx

y at the boundaries
of the strained region. We schematically depict this geometry
in Fig. 3(f), where the red (blue) plaquettes contain positive
(negative) dislocation fluxes, and the black arrows indicate
hopping terms to which we apply the momentum-dependent
Peierls phases.

Because we are interested in a surface response, we must
use a layer-resolved Berry curvature to calculate the response
coefficient Pα for just the top (or bottom) surface of the
system. The layer-resolved Berry curvature can be obtained by
combining the projector onto the occupied subspace, defined
as

P(k) =
∑

εi (k)<0

|ui(k)〉〈ui(k)|, (13)

where H (k)|ui(k)〉 = εi(k)|ui(k)〉, and the projector onto the
nth layer of the lattice, Pn, via the formula [77]

Fab
n (k) = Tr[P(k)∂ka P(k)Pn∂kbP(k)]. (14)

Using this formalism, the surface response coefficient is given
by the momentum-space dipole moment of the layer-resolved
Berry curvature summed over half the sites in the open
direction:

Px = 1

π

Ny/2∑
n=1

∫
BZ

dkxdkz kxF xz
n (kx, kz ). (15)

The momentum and charge bound to the surface by disloca-
tions and magnetic flux are calculated in a similar manner,
i.e., layer contributions are summed over half of the sites in
the open direction,

j0 =
Ny/2∑
n=1

j0(n), J 0
x =

Ny/2∑
n=1

J 0
x (n). (16)

After carrying out these calculations, we show the x-
momentum density bound to a strip of magnetic flux lines
as a function of the magnetic flux in Fig. 3(b) and plot the
charge density bound to a strip of dislocations as a function of
torsional flux in Fig. 3(e). The momentum density bound to
magnetic flux is linear in the magnetic flux with the correct
proportionality constant ePx/4π . Here the value of Px is
determined by directly calculating Eq. (15), which determines
the slopes of the dashed lines in Figs. 3(b) and 3(e). For a
small torsional flux value, �T = 1, the charge density bound

to dislocations matches the prediction of the effective action,
but this relation becomes nonlinear at higher values of �T

because of stronger lattice effects. As mentioned above for the
bulk calculations, the open circles in Fig. 3(e) represent non-
integral dislocation fluxes that are mathematically obtainable
via our momentum-dependent Peierls factors, though their
physical interpretation as a lattice defect is not clear.

IV. MOMENTUM-WEIGHTED QUADRUPOLE MOMENT

As one final physical phenomenon associated to our system
of a quadrupole of higher-order Weyl nodes, let us consider
what is happening at the hinges. Because some regions of
momentum-space harbor higher-order topology in our model,
we expect to find hinge modes and/or fractional charge per
unit length along the hinge. Indeed, the hinge phenomena in
our system are associated with the momentum planes that har-
bor a 2D QI. At half-filling, the sign of the electric quadrupole
moment of these planes is ambiguous when the symmetries
protecting the topology are enforced, i.e., the value qxy = e/2
is equivalent to qxy = −e/2. In the case of the QI phases
of H (k; kx ) and H (k; ky), the relevant quantizing symmetries
are the pair of mirror times time-reversal symmetries. To
choose the sign of the quadrupole moment we want to weakly
break both of these symmetries, but preserve the product, i.e.,
preserve C2 symmetry so that no electric dipole moment is
allowed. Operationally, for a system with open boundaries,
the symmetry breaking provides a prescription of how to fill
the low-energy hinge states that is consistent with the sign
of the quadrupole moment. Interestingly, our model has two
distinct possible choices of symmetry breaking that we dis-
cuss below.

One possible choice of symmetry breaking is the perturba-
tions H ′(k) = δ sin(kx/y)�0, which accomplish the required
symmetry breaking for H (k; kx/y), respectively. Since �0 is
odd under time reversal, this term is time-reversal invariant,
but it breaks both mirror symmetries since sin(kx/y) is odd
under mirror Mx/y. As a consequence, this perturbation en-
dows the positive- and negative-momentum intervals of the
QI phases with the same sign of quadrupole moment. Hence
the positive and negative momentum intervals add together to
yield a finite bulk electric quadrupole moment (per xz cross-
sectional area),

Qbulk
xz = Ly

∫
dky

2π
qxz(ky) = ±eLy

2π
(kDirac − kWeyl), (17)

where the sign is determined by the sign of δ. The analogous
quantity in the yz plane is defined as

Qbulk
yz = Lx

∫
dkx

2π
qyz(kx ) = ∓eLx

2π
(kDirac − kWeyl). (18)

The magnitude of the bulk electric quadrupole is determined
solely by the separation between the projections onto the
hinge BZ of the bulk Weyl nodes and surface Dirac nodes,
kWeyl and kDirac, as these control the portion of the BZ that is
occupied by the QI phase.

Next we consider a second possible symmetry breaking
perturbation H ′′(k) = δ�0. This term preserves the mirror
symmetries but breaks time-reversal symmetry. It has the
effect of endowing the positive- and negative-momentum
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FIG. 4. The position-resolved momentum density of H (k) +
H ′′(k) with open boundary conditions along the y and z directions,
m = −0.3, β = −0.7, γ = 0.5, and δ = 10−4.

intervals of QI phases with opposite quadrupole moments.
The resulting bulk electric quadrupole moment vanishes,
since it receives equal and opposite contributions from each
momentum interval. Instead the system realizes quadrupole
moments of crystal momentum density that have not previ-
ously been considered,

Ky
xz = Ly

e

∫
dky

2π
kyqxz(ky), Kx

yz = Lx

e

∫
dkx

2π
kxqyz(kx ).

(19)
The bulk crystal momentum quadrupole moment density man-
ifests as momentum density bound to hinges, as shown in
Fig. 4, where the momentum points along the hinges. Similar
to the bulk electric quadrupole moment, the magnitude of the
bulk crystal-momentum quadrupole moment is determined by
the locations of the bulk Weyl and surface Dirac nodes,

Ky
xz = ± Ly

4π

(
k2

Dirac − k2
Weyl

)
, (20)

where the overall sign is again determined by the sign of δ.
It is interesting to note that this quantity can be concisely
expressed in terms of the Weyl quadrupole moment Q̄ and the
surface Dirac dipole moment Px,

Ky
xz = ±Ly

π

(
P2

y − 2Q̄
)
, (21)

and therefore acts as a link between the bulk and surface
mixed crystalline-electromagnetic responses. This is analo-
gous to the response of higher-order Weyl dipole systems, in
which the extent of the Fermi arcs on the surface and the arcs
on the hinge must satisfy a sum rule [23].

We note that the bulk quadrupole moment of crystal mo-
mentum density is well defined only when the bulk electric
quadrupole moment vanishes, as its value can otherwise be
arbitrarily changed by shifts of the BZ origin k → k + k′.
This is exactly what happens when we choose the H ′′ per-
turbation since the total bulk quadrupole moment vanishes.
The invariance of the bulk quadrupole moment of crystal
momentum under shifts of the BZ can also be seen from the
definition in Eq. (21). The Weyl quadrupole moments Qxx and
Qyy are invariant under such shifts because the C2z symmetry
of the Hamiltonian forces the Weyl dipole moments in the
kx-ky plane to vanish, and the surface Dirac dipole moments
Px/y are invariant because the product of the M1,±1 and C4Mz

symmetries form a surface Mz symmetry that forces the sur-
face Chern number to vanish.

V. CONCLUSION

In this work we made the first steps towards under-
standing the interplay between higher-order topology and
mixed crystalline-electromagnetic responses. By constructing
and analyzing an explicit model, we showed that elevat-
ing a quadrupole arrangement of Weyl nodes, which is
known to exhibit a bulk mixed crystalline-electromagnetic
response, to higher-order Weyl nodes produces an additional
mixed crystalline-electromagnetic surface response. We fur-
ther demonstrated that the surface response originates from
the higher-order QI phases of the Hamiltonian in the foliated
BZ. We additionally found that adding symmetry breaking
perturbations can produce bulk quadrupole moments of either
electric charge or crystal momentum, depending on the par-
ticular perturbation chosen.

These results motivate a number of different directions
for future research. Of primary importance is identify-
ing promising material platforms in which these mixed
crystalline-electromagnetic responses can be observed. The
response we predict in this work requires the system to pos-
sess both a bulk Weyl quadrupole moment and a surface
Dirac dipole moment. As for the crystal symmetry ingredi-
ents, for the Weyl quadrupole moment to be well defined,
the Weyl dipole moments in the plane of the quadrupole
must vanish, which can be guaranteed by mirror symmetry
or a set of C2 symmetries (time-reversal symmetry would
also suffice, although that would prevent observation of the
momentum quadrupole). The surface Dirac dipole moment
similarly requires the surface Chern number to be zero, which
can be enforced by the presence of a surface mirror symmetry
or a time-reversal symmetry (as long as the bulk is not a
3D topological insulator). These symmetries, along with the
possible breaking of TRS either by magnetic ordering or an
applied magnetic field, are necessary to observe the mixed
crystalline-electromagnetic response. Combining these sym-
metry requirements with the tools provided by topological
quantum chemistry may provide a route to identifying mate-
rials that host this mixed crystalline-electromagnetic response
[78,79].

There are a number of systems that are likely to host
similar types of mixed responses and warrant further study.
Higher-order analogs of two-dimensional Dirac quadrupole
semimetals and three-dimensional nodal line semimetals [53]
are particularly promising, as are higher-order nodal super-
conductors [29–32] and higher-order non-Hermitian TSMs
[33–36]. Furthermore, there are promising metamaterial plat-
forms in which one could generate our model. Both Weyl
points [80] and higher-order quadrupole topology [81–83]
have each been demonstrated separately in experiment, so
combining the two is plausibly achievable. In these sys-
tems it may even be possible to extract information about
the crystal momentum, as was recently accomplished in a
topoelectric circuit experiment studying higher-rank surface
states [84].

Interestingly, our model also presents a platform in
which to study quantum oscillations, as the combination of
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surface Fermi arcs and zero-energy hinge arcs may provide
unusual circuits for electrons to traverse [85]. The properties
of these systems in strong magnetic fields may also be a
fruitful line of pursuit as the zeroth Landau level of the bulk
Weyl nodes must coordinate with the zeroth Landau level of
the surface Dirac fermions. We leave these studies to future
work.
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