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Reactive Hall and Edelstein effects in a tight-binding model with spin-orbit coupling
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The reactive Hall constant RH , described by reactive (nondissipative) conductivities, is analyzed within linear
response theory in the presence of spin-orbit interaction. Within a two-dimensional tight-binding model the effect
of Van Hove singularities is studied. Along the same line a formulation of the Edelstein constant is proposed and
studied as a function of coupling parameters and fermion filling.
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I. INTRODUCTION

The spin-orbit interaction [1,2] plays a prominent role in
the field of spintronics. It has been extensively studied as a
key mechanism in the anomalous Hall effect [3], the spin
Hall effect [4–7], induced magnetoelectric torque and edge
currents [8,9], and the Edelstein effect [10,11] to name just a
very few.

From a different perspective, in a seminal work [12] Kohn
brought attention to the reactive response of an electronic
system, as a criterion of the Mott metal-insulator transition,
given by the imaginary part of the conductivity, σ ′′(ω → 0) =
2D/ω. The prefactor D, referred to as “Drude” weight in
numerous recent theoretical studies and also equal to the
weight of the zero-frequency δ function in the regular part of
the conductivity, is finite in a noninteracting gapless system
without disorder at all temperatures or a gapless strongly
correlated integrable one [13]. In the presence of scattering
(e.g., phonons, disorder) the δ function broadens to a peak
of width 1/τ (where τ is a characteristic scattering time) and
integrated weight D which is experimentally studied.

Along the same line, a formulation of the reactive Hall
response was proposed [14] in order to address the problem
of Hall constant sign change as a function of doping observed
in experiments in high Tc superconductors. In this formulation
the Hall constant is given by the logarithmic derivative of the
Drude weight with respect to the particle density. This reactive
Hall constant approach has recently been extensively used in
theoretical [15] and experimental [16] studies of interacting
(and synthetic) quantum systems.

In more generality, both Hall and Edelstein constants dis-
play signatures of Fermi surface (FS) topological transitions
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which are abundant in two-dimensional quantum materials.
Lifshitz transitions with their associated logarithmically diver-
gent Van Hove singularities occur in many systems including
cuprates, iron based superconductors, cobaltates, Sr2RuO4,
and heavy fermions [17–25]. There is an even more re-
cent surge of interest in higher order Van Hove singularities
[26–30]. Some of the materials where they have been discov-
ered include Sr3Ru2O7 where a higher order (X9 with n = 4)
Van Hove singularity was shown to exist in the presence of an
external magnetic field [26], while different types of higher or-
der Van Hove saddles have been reported in highly overdoped
graphene [31], the surface of Sr2RuO4 [32], kagome metals
[33–36], and high-Tc superconductors [37].

In this paper, we will first study the effect of the spin-orbit
interaction on the reactive Hall effect of a two-dimensional
tight binding model of noninteracting fermions, showing bal-
listic transport, as a function of spin-orbit coupling. We study
its behavior as the Fermi surface evolves as a function of
filling. We obtain the signatures on RH of Fermi surface topo-
logical transitions, with the associated Van Hove singularities
in a quantum mechanical description. Earlier work using the
Boltzmann equation studied these effects at a semiclassical
level [38], and a recent work studied the spin and orbital
Edelstein effect in a bilayer system with Rashba interaction
[39]. Next, we develop a formula, in analogy to the reactive
Hall constant, for the Edelstein effect which describes the
appearance of a transverse magnetization due to a charge cur-
rent in a two-dimensional system with spin-orbit interaction.
It would be fascinating to experimentally study the reactive
Edelstein effect, for instance in synthetic systems [16], as the
reactive Hall effect.

II. MODEL

We consider a generic Hamiltonian for fermions on a lat-
tice, where for simplicity we describe the kinetic energy term
by a one-band tight-binding model; it is straightforward to
extend this formulation to a many-band or continuum sys-
tem. The sites are labeled l (m) along the x̂(ŷ) direction with
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FIG. 1. The density of states g(ρ ) and Hall coefficient RH for
cases without SOC: (a) tx = ty = 1 and (b) tx = 1 and ty = 2.

periodic boundary conditions in both directions:

H = H0 + HSO,

H0 =
∑
l,m

−txeiφx (t )eiAm c†
l+1,m · cl,m

− tyeiφy
m+1/2(t )c†

l,m+1 · cl,m + H.c.,

HSO =
∑
l,m

+λxeiφx (t )eiAm c†
l+1,m(−iσ y)cl,m

+ λyeiφy
m+1/2(t )c†

l,m+1(iσ x )cl,m + H.c., (1)

l = 1, . . . , Lx,

m = 1, . . . , Ly,

N = Lx · Ly.

where tx,y are the hopping parameters; λx,y are the Rashba
spin-orbit couplings; σα, α = x, y, z are the spin-1/2 Pauli
matrices; and the fermion creation (annihilation) operators are
denoted as c†

l,m = (c†
↑l,m c†

↓l,m).
We take a unit lattice constant, electric charge e = 1, and

h̄ = 1. We add a magnetic field along the ẑ direction, modu-
lated by a one component wave vector q along the ŷ direction,

(a)

(b)

(c)

FIG. 2. The density of states g(ρ ) and Hall coefficient RH for
cases with SOC: (a) tx = ty = 1 and λx = λy = 0.1; (b) tx = 1, ty= 1,
λx = 0.1, and λy = 0.4; and (c) tx = 1, ty= 2, and λx = λy = 0.1.

generated by the vector potential Am; this allows us to take the
zero magnetic field limit smoothly:

Am = eiqm iB

2 sin(q/2)
� eiqm iB

q
,

Bm+1/2 = −(Am+1 − Am) = Beiq(m+1/2)

[for convenience, we will present the long wavelength limit,
substituting 2 sin(q/2) → q]. Electric fields along the x̂ and ŷ
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FIG. 3. Left: Edelstein constant DE as a function of fermion density, for tx = ty= 1 and λx = λy = 0.1. Right: Chemical potential as a
function of fermion density for the same parameters.

directions are generated by time dependent vector potentials:

φx,y(t ) = Ex,y(t )

iz
, φ

y
m+1/2(t ) = eiq(m+1/2)φy(t ),

Ex,y(t ) = Ex,ye−izt , z = ω + iη.

Currents are defined through derivatives of the Hamiltonian
in φx,y:

jx = − ∂H

∂φx
, jy

q = − ∂H

∂φy
,

with the paramagnetic parts

jx =
∑
l,m

txeiAm ic†
l+1,m · cl,m − λxeiAm c†

l+1,mσ ycl,m + H.c.,

jy
q =

∑
l,m

eiq(m+1/2)(tyic†
l,m+1 · cl,m − λyc†

l,m+1σ
ycl,m + H.c.).

III. REACTIVE HALL RESPONSE

We will analyze the reactive Hall response within standard
linear response theory:

〈 jx〉 = σ jx jx Ex(t ) + σ jx jy
q
Ey(t ),〈

jy
q

〉 = σ jy
q jx Ex(t ) + σ jy

q jy
q
Ey(t ),

closely following the development in [14].
Reactive—nondissipative—response occurs in a generic

uniform (without disorder) interacting system at zero temper-
ature, in which case the brackets 〈. . . 〉 denote ground state
average [14], or at finite temperatures in a uniform noninter-
acting system, in which case the brackets 〈. . . 〉 denote thermal
average. Here we study the reactive Hall constant for the
Hamiltonian (1) at finite temperatures in the presence of a

magnetic field, with the conductivities given by

σ jα jβ = i

z

(〈
∂2H

∂φα∂φβ

〉
− χ jα jβ

)
,

χAB = i
∫ ∞

0
dteizt 〈[A(t ), B]〉.

In contrast to the usual derivation of the Hall constant
expression, we keep the q dependence explicit by converting
the current-current to current-density correlations using the
continuity equation

〈 jx〉 = σ jx jx Ex(t ) + 1

q
χ jxnq Ey(t ),

〈
jy
q

〉 = −1

q
χnq jx Ex(t ) +

(
z

q

)2

χnqnq

i

z
Ey(t ),

with nq = ∑
l,m(−ieiqm)c†

l,m · cl,m.
At this point we consider the “screening” (or slow) re-

sponse in the ŷ direction, by taking the (q, ω) limits in the
order ω → 0 first and q → 0 last. For H (λ,μ), using the
following identity,

∂2En

∂μ∂λ
= 〈n| ∂2H

∂μ∂λ
|n〉 −

∑
m 
=n

〈n| ∂H
∂μ

|m〉〈m| ∂H
∂λ

|n〉 + H.c.

Em − En
,

(2)
we arrive at

RH = − 1

D

∂D

∂ρ
, (3)

with ρ the electron density. The Drude weight D can be
evaluated by Kohn’s expression [12] and its finite temperature
extension [40] as the second derivative of energy eigenvalues

FIG. 4. Left: Edelstein constant DE as a function of fermion density for tx = 1, ty= 1, λx = 0.1, and λy = 0.4. Right: Chemical potential
as a function of fermion density.
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FIG. 5. Left: Edelstein constant DE as a function of fermion density now for tx = 1, ty= 2, and λx = λy = 0.1 with the corresponding
chemical potential as a function of density.

En with respect to a uniform fictitious flux φx:

D = 1

2N

∑
n

pn
∂2En

∂φ2
x

∣∣∣∣∣
φx→0

(4)

where pn = e−βEn/
∑

n e−βEn with β = 1/kBT is the inverse
temperature, kB = 1 is the Boltzmann constant, and ρ is the
fermion density.

To evaluate the eigenvalues/eigenstates we diagonalize the
Hamiltonian (1) in the presence of the fictitious flux φx by
transforming to momentum k = (kx, ky) space:∣∣∣∣∣

ε
(0)
k − ε �ke+iθk

�ke−iθkε
(0)
k − ε

∣∣∣∣∣ = 0,

ε
(0)
k (φx ) = −2tx cos(kx + φx ) − 2ty cos ky,

�k = 2
√

λ2
x sin2(kx + φx ) + λ2

y sin2 ky,

θk = tan−1 λx sin kx

λy sin ky
.

We obtain H = ∑
k± εk±c†

k±ck± with the two spin states
turning by the spin-orbit interaction to two chirality eigen-
states ck± = 1√

2
(ck↑ ± e−iφk ck↓) and eigenvalues:

εk±(φx ) = εk (φx ) ± �k.

Finally the reactive Hall constant is given by

D =
∑
±

∫ +π

−π

dkx

2π

∫ +π

−π

dky

2π
fk±

∂2εk±
∂φ2

x

,

fk± = 1

1 + eβ(εk±−μ)
.

Using this equation, we show in Figs. 1 and 2 the Hall constant
for different values of the hopping and spin-orbit parameters
as a function of fermion density ρ in parallel to the density of
states:

g(ρ) =
∑
±

∫ +π

−π

dkx

2π

∫ +π

−π

dky

2π
δ(μ(ρ) − εk±).

In Fig. 1, without any spin-orbit coupling, we observe a
clear indication in the Hall constant of the Van Hove singu-
larities. When there is a Fermi surface topological transition,
there is a discontinuity in the derivative of RH with respect
to ρ. In addition, there is a change of sign when there is a
transition from an electronlike to a holelike dispersion. At

finite temperature the behavior is continuous and the signature
of the transition from an electronlike to a holelike dispersion
is reflected in the monotonic behavior of RH . This goes away
at very high temperature where RH has a monotonic behavior
independent of the parameters.

IV. EDELSTEIN COEFFICIENT

Along the same line, we can also study the Edelstein effect
in a two-dimensional system with spin-orbit coupling where a
charge current in the x̂ direction induces a bulk magnetization
density 〈sy〉 = 〈 1

N

∑
l,m c†

l,mσ ycl,m〉 pointing in the ŷ direction.
The corresponding response is given by

αyx(ω) = 1

iω
i
∫ ∞

0
eizt 〈[sy(t ), jx]〉dt, z = ω + iη.

Here we consider the system (1) in zero magnetic field
Am = 0 and zero electric field φ

y
m+1/2(t ) = 0 along the ŷ di-

rection. Now we can define a “reactive Edelstein constant” as
the prefactor of the 1/ω imaginary part of αyx,

DE

ω
= lim

ω→0
Imαyx(ω),

DE = −
∑

n

pn

∑
m

〈n|sy|m〉〈m| jx|n〉 + H.c.

εm − εn
,

which using the identity (2) can be written similarly to the
Kohn formula:

DE = 1

N

∑
n

pn
∂2En

∂hy∂φx

∣∣∣∣∣
hy,φx→0

.

Here the energy derivatives are over a uniform fictitious flux
φx in the x̂ direction and a Zeeman field hy along the ŷ
direction.

For the noninteracting fermion Hamiltonian (1), the imag-
inary part of the response function becomes

DE = lim
ω→0

∑
k

(2λx cos kx cos2 φk )( fk+ − fk−)·

×
[

ω − δk

(ω − δk )2 + η2
− ω + δk

(ω + δk )2 + η2

]
,

δk = εk+ − εk−.
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FIG. 6. The two chirality (±) contributions to the Edelstein
constant (5) and the total DE (as in Figs. 3–5, multiplied by a
factor of 4 for clarity): (a) tx = ty= 1 and λx = λy = 0.1; (b) tx

= 1, ty= 1, λx = 0.1, and λy = 0.4; and (c) tx = 1, ty= 2, and
λx = λy = 0.1.

As discussed above, this expression for the imaginary part
of the response function can be recast in the form

DE =
∑
±

∫ +π

−π

dkx

2π

∫ +π

−π

dky

2π
fk±

∂2εk±
∂hy∂φx

∣∣∣∣∣
hy,φx→0

. (5)

To evaluate the derivative ∂2εk±
∂hy∂φx

|hy,φx→0 we add in the Hamil-
tonian (1) a magnetic field in the ŷ direction (+hysy),

modifying the eigenvalues as

εk± = ε
(0)
k ± 2

√
[λx sin(kx + φx ) − hy/2]2 + λ2

y sin2 ky

= ε
(0)
k (φx ) ± �k(φx, hy),

and finally obtaining

∂2εk±
∂hy∂φx

= (∓)
(2λx cos kx )(2λy sin ky)2

�3
k

∣∣
hy=0,φx=0

. (6)

Note from (5) and (6) that, inverting λx → −λx, DE → −DE ,
while DE remains invariant changing the sign of λy.

As we are interested in probing Fermi surface topological
transitions, the derivatives of DE with respect to chemical
potential trace FS topological transitions. At the points where
the curvature of DE as a function of fermion density ρ changes
sign, we have the relation

d2DE/dμ2

dDE/dμ
= − d2μ/dρ2

(dμ/dρ)2
. (7)

The ratio of the derivatives of DE on the left-hand side
probes Fermi surface topological transitions because at T = 0
the integrations are along Fermi surface paths within the first
BZ:

d2DE

dμ2
= (∓)

∑
±

∂

∂μ

∫ +π

−π

dkx

2π

∫ +π

−π

dky

2π

× (2λx cos kx )(2λy sin ky)2

�3
k|hy=0,φx=0

δ(μ − εk±), (8)

dDE

dμ
= (∓)

∑
±

∫ +π

−π

dkx

2π

∫ +π

−π

dky

2π

× (2λx cos kx )(2λy sin ky)2

�3
k|hy=0,φx=0

δ(μ − εk±). (9)

Figure 3 shows DE at zero temperature as a function of
fermion density for tx = ty = 1 and λx = λy = 0.1. We see
that DE changes sign as we go from a closed to an open
Fermi surface. As we noted before, this behavior captures the
transition from an electronlike to a holelike pocket. Similarly,
Fig. 4 illustrates the same physics for the case of anisotropic
spin-orbit coupling, while in Fig. 5 the chosen parameters
correspond to anisotropic strength of hopping elements. In
Fig. 6 we show separately the opposite contributions of the
two chiralities to DE in (5). We find that DE is the result of a
large cancellation between the two components, each of which
however keeps track of the FS topological transitions.

The low density limit k → 0 can be treated analytically for
the isotropic parameters tx = ty = t and λx = λy = λ. With
kx = k cos φ and ky = k sin φ we obtain εk± = −4t + tk2 ±
2λk:

DE =
∑
±

1

(2π )2

∫ ∞

0
dkk fk±

∫ 2π

0
dφ

(∓)
8λ3(1 − k2 cos2 φ/2)k2 sin2 φ

8λ3k3

= − 1

4π

∫ ∞

0
dk( fk+ − fk−)

(
1 − k2

8

)
. (10)
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At T = 0 the upper cutoff of the integrals becomes k±c =
∓λ +

√
(4t + μ)2 + λ2:

DE = − 1

4π

[(
k+c − k3

+c

24

)
−

(
k−c − k3

−c

24

)]
. (11)

V. CONCLUSIONS

In this paper we study the effect of spin-orbit interaction on
the reactive Hall constant RH within a noninteracting fermion
Hamiltonian model. In particular we show the role of Van
Hove singularities in the density of states as cusps in the
density dependence of RH . Furthermore, we introduce the
concept of the reactive Edelstein constant, an effect in spin-
orbit coupled systems, and derive an expression analogous to
the Kohn formula for the reactive response.

The main open question is the effect of interactions, in-
troduced, e.g., by a Hubbard U term in the Hamiltonian.
An emerging Mott gap, typically at half filling, leads to
a vanishing D as Kohn pointed out, the criterion for a
Mott metal-insulator transition. Thus the interaction effects in

combination with the presence of (higher order) Van Hove sin-
gularities can have drastic consequences on phase formation
[41]. At first, this can be studied by a mean field approach
[42,43] which essentially leads to effective single-particle
states allowing a direct computation of RH and DE . Next, the
interaction effects can be studied by either numerical simu-
lations or many-body theory techniques [41]. An interesting
question is the temperature dependence of the Edelstein con-
stant. While it is known that the Drude weight vanishes at
any finite temperature in an interacting system, evidence of
dissipation due to interactions, the temperature dependence of
DE is not clear.
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