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Atomistic theory of the moiré Hofstadter butterfly in magic-angle graphene
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We present here a Hofstadter’s butterfly spectrum for the magic-angle twisted bilayer graphene obtained using
an ab initio-based multimillion-atom tight-binding model. We incorporate a hexagonal boron nitride substrate
and out-of-plane atomic relaxation. The effects of a magnetic field are introduced via the Peierls modification
of the long-range tight-binding matrix elements and the Zeeman spin splitting effects. A nanoribbon geometry
is studied, and the quantum size effects for the sample widths up to 1 µm are analyzed both for a large energy
window and for the flat band around the Fermi level. For sufficiently wide ribbons, where the role of the finite
geometry is minimized, we obtain and plot the Hofstadter spectrum and identify the in-gap Chern numbers by
counting the total number of chiral edge states crossing these gaps. Subsequently, we examine the Wannier
diagrams to identify the insulating states at charge neutrality. We establish the presence of three types of
electronic states: moiré, mixed, and conventional. These states describe both the bulk Landau levels and the
edge states crossing gaps in the spectrum. The evolution of the bulk moiré flat band wave functions in the
magnetic field is investigated, predicting a decay of the electronic density from the moiré centers as the magnetic
flux increases. Furthermore, the spatial properties of the three types of edge states are studied, illustrating the
evolution of their localization as a function of the nanoribbon momentum.
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I. INTRODUCTION

Stacking atomically thin materials with a relative twist or
a mismatch of lattice constants leads to the system exhibiting
superlattice periodicity due to the moiré interference between
the layers. These moiré materials are intriguing physical sys-
tems where novel effects arise thanks to the high tunability
of these structures, making them promising candidates for
quantum simulators, especially given their capacity to access
vastly different regimes of electronic matter via gate tuning.
Recently, they have been an object of a great experimental
[1–19] and theoretical interest [20–109].

In the case of magic-angle twisted bilayer graphene
(MATBG), the moiré lattice potential leads to the forma-
tion of two flat energy bands, a valence and a conduction
band, around charge neutrality. Due to the presence of spin,
valley, and layer degrees of freedom in MATBG, there are
multiple possibilities for ground states at partial filling of
the flat bands counted in the number of electrons per moiré
unit cell. The eight spinful flat bands are characterized using
the filling fraction ν = [−4, 4], where ν = −4 corresponds
to completely empty flat bands and ν = 4 to fully occu-
pied bands. The interacting electrons occupying these bands
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exhibit a variety of strongly correlated phases, allowing us
to study the competition between interactions and topolog-
ical effects. The correlated insulating states were initially
observed [1] in the case of an integer number of particles
per moiré unit cell, with superconductivity for noninteger
fillings [2]. Since then, properties of MATBG have attracted
immense experimental interest [1–9,11–19,89,110–138]. Sub-
stantial sample-to-sample variations and conflicting results
show different ground states, which are perhaps close in
energy and their energetic hierarchy is influenced by subtle
details. Several factors, including hexagonal boron nitride
(hBN) substrate alignment [117,123,139–150], strain physics
[66,100,151], and twist angle disorder [8,97] have been sug-
gested as potential contributors.

Current theoretical approaches to study MATBG include
the continuum models [8,17,20,22–27,32,33,60,62,64–67],
Hubbard-like lattice models [11,12,18,29,35–
37,39,40,42,44,48,49,57,94,152], and heavy fermion
description [81,153,154], which, however, cannot provide
insight into the realistic edge states or atomistic defects in the
sample. Ab initio or atomistic tight-binding calculations can
tackle such issues, but they prove to be challenging due to the
intrinsically large scale of the problem, i.e., a large number
of atoms in a moiré unit cell for small twist angles. Some
analysis of the edge states has been performed for the twisted
bilayer graphene (TBG) at larger twist angles [155], and with
an assumption of an enlarged interlayer hopping to simulate
the behavior of MATBG [156,157].
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Recently, considerable effort has been put into studying
the electronic properties of MATBG in a magnetic field. The
intriguing aspect here lies in the comparable MATBG moiré
and magnetic length scales for experimentally accessible mag-
netic fields. Focusing on the insulating states, a rich phase
diagram in the magnetic flux versus the filling factor has
been observed [6–9,13–17,19,110–127] in magnetotransport
and local electronic compressibility measurements. Streda
formula can be used to determine their topological properties
[118,158]. However, if the observed insulating states are topo-
logically trivial (have zero Chern number), it might happen
that they originate, e.g., from a combination of two states
with opposite Chern numbers. This can especially occur if
there is no energy gap between the flat conduction and the flat
valence bands. This energy gap can be opened by breaking
the inversion and time reversal symmetry at a single particle
level, which in practice is done by aligning MATBG sample
with hBN [13,116–118].

For magnetic fields around 27 T, the entire flux quantum
per moiré unit cell is already achieved [159] and physics re-
lated to the Hofstadter’s fractal structure of the electronic gaps
can be observed. Numerous aspects have already been elu-
cidated through the effective models [25,151,154,159–179].
Initial studies concentrated on the general accessibility of the
Hofstadter physics with experimentally available magnetic
fields [155,159,180]. The topological aspects of the flat band
Landau levels (LLs) have been analyzed [25,27,58,156,162–
164,169,171,178] and the Hofstadter butterfly in the chiral
limit has been studied in Refs. [166,170]. The physics of
flat bands in strong magnetic field and possible reentrant su-
perconductivity have been addressed [173,174,178,179,181].
The atomistic tight-binding calculations of TBG were able
to confirm the effective model results in the large magnetic
field regime as well as provide insight into the edge states.
These calculations mainly focus on larger twist angles, which
result in a smaller moiré unit cell [180–183]. To investigate
the electronic properties of MATBG at the atomistic scale, a
large sample is needed (∼1 µm), simulating which involves
costly computation.

Our multimillion-atom simulation sheds light on the
MATBG’s on top of hBN in a magnetic field behavior within
experimentally feasible scenarios. We consider realistic sam-
ple sizes consisting of up to 1 000 000 atoms, allowing us to
relate the obtained Hofstadter spectrum to the experimental
observations and gain insight into the microscopic properties
of the wave functions for both bulk and edge states. This
establishes a solid foundation for future investigations of the
magnetic phase diagram, incorporating both magnetic fields
and electron-electron interactions.

The paper is organized as follows. In Sec. II, we introduce
an atomistic model of TBG, define a unit cell for commen-
surate twist angles and nanoribbon geometries, and describe
an ab initio-based tight-binding model. Then we proceed to
present our theoretical framework for investigating the elec-
tronic properties of MATBG under the influence of a magnetic
field. Section III is devoted to the study of the electronic
structure of MATBG. In the remaining sections, we focus on
MATBG in the nanoribbon geometry and begin our analysis
in Sec. IV studying the size effects in the electronic structure.
We subsequently introduce the effect of the magnetic field

FIG. 1. Structural and electronic properties of moiré lattice.
(a) Moiré unit cell for MATBG consisting of 11 908 atoms, spanned
by the superlattice vectors �L1 and �L2. The inset provides a zoom-in
on a graphene structure with A and B atoms denoted by blue and
red dots. The primitive lattice vectors �a1 and �a2 are also indicated.
(b) Moiré BZ defined by the reciprocal lattice vectors �G1 and �G2.
(c) MATBG band structure within a 200 meV energy window along
the K-�-M-K path marked in (b). MATBG is represented by black
circles, while the dispersion for MATBG on an hBN substrate is
illustrated by red dots. (d) A corresponding zoom-in on the flat band.

in Sec. IV A, where we present the results in the form of a
Hofstadter spectrum. This spectrum forms the basis for the
construction of Wannier diagrams, as discussed in Sec. IV B.
Turning our focus to microscopic properties, Sec. IV C exam-
ines the bulk and edge wave functions. Here, we identify three
distinct types of states, namely, the conventional, moiré, and
mixed states. Concluding our analysis, Sec. IV D provides an
analysis of bulk and edge states, studying their evolution as a
function of the magnetic field and nanoribbon 1D momentum.

II. MODEL AND THEORETICAL METHODS

A. Structural properties of twisted bilayer graphene

Graphene is composed of carbon atoms arranged on a
honeycomb lattice with two atoms, A and B, inside a unit
cell. The primitive lattice vectors are defined as �a1 = (0,

√
3a)

and �a2 = (3a/2,−√
3a/2), where a = 1.412 Å represents the

carbon-carbon distance, see Fig. 1(a). TBG is defined as two
graphene sheets in a Bernal stacking, rotated by an angle θ

around the (0,0) point. If θ belongs to a set of commensurate
twist angles, the structure exhibiting moiré periodicity and
linearly independent moiré primitive vectors can be defined
as follows:

�L(m)
1 = m�a1 − (m + 1)�a2,

�L(m)
2 = −(m + 1)�a1 − (2m + 1)�a2. (1)

m is an integer, which can be used to define θ in follow-
ing the formula [21]: cos(θm) = (3m2 + 3m + 1/2)/(3m2 +
3m + 1).
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We focus on the magic angle θ = 1.05◦, which corre-
sponds to m = 31. The number of atoms within a moiré unit
cell can be calculated through the relation Nat = 4(m2 + (m +
1)2 + m(m + 1)), which, for the magic angle, yields Nat =
11 908 atoms.

The distance between the two graphene layers depends
on the relative stacking and is nonuniform in the moiré unit
cell. We account for the lattice relaxation effects along the z
axis by varying the interlayer distance based on the stacking
configuration. The layers are closest to each other in the
AB-stacked regions where zAB = zmin = 3.34 Å. The largest
distance arises in AA stackings, for which we adopt zAA =
zmax = 3.61 Å [184]. To determine the relaxed interlayer dis-
tance zrelax, we introduce a stacking parameter δz assigned to
each atom. This parameter depends on the distance in the xy
plane between the considered atom and its nearest neighbor of
a different type in the other layer. Specifically, it is defined as
δz = a−1

√
(x1 − x2)2 + (y1 − y2)2, where x1 and y1 describe

the position of the considered atom, and x2 and y2 refer to
its nearest neighbor in the other layer. The factor a−1 is in-
cluded, so δz = 0 in the AA stacking and δz = 1 for the AB
stacking. The relaxed interlayer distance is then calculated as
zrelaxed = zmax − δz(zmax − zmin).

Using the superlattice vectors �L1 and �L2, we determine
the corresponding reciprocal space primitive vectors �G1 and
�G2, which are used to construct a moiré Brillouin zone (BZ).
Using the definition �Gi · �Lj = 2π · δi j , we derive �G1 and �G2

in the form

�G1 =
[
−2π

3a

1

3m2 + 3m + 1
,

2π

3a

√
3(2m + 1)

3m2 + 3m + 1

]
,

�G2 =
[
−2π

3a

3m + 1

3m2 + 3m + 1
,

2π

3a

√
3(m + 1)

3m2 + 3m + 1

]
. (2)

After obtaining �G1 and �G2, we proceed to construct a moiré
BZ, in which high-symmetry points �, K, M can be identified,
as illustrated in Fig. 1(b).

To study the effects of a magnetic field, we construct a
nanoribbon structure by stacking moiré unit cells in the �L1

direction and applying periodic boundary conditions in the
�L2 direction. We analyze nanoribbons composed of up to
85 moiré unit cells, which means that we simulate MATBG
system widths of up to 106 atoms in the direction perpendic-
ular to the periodicity. For consistent detection of the edge
and bulk states, we define the edge as encompassing 10%
of the ribbon’s width at both the lower and upper ends of
the sample. The remaining 80% of atoms constitute the bulk
region of the structure. To manage the computational effort
of diagonalizing matrices of such dimensions, we have used
the high-performance FEAST algorithm [185], which offers
enhanced efficiency in the computation of the eigenvalues
within a designated energy interval.

The choice of a moiré unit cell for an infinite system is,
in general, arbitrary with respect to the real-space coordinate
system. However, due to our finite geometry, each particular
definition of the unit cell has consequences for the electronic
properties of our system. To avoid cutting through the AA
region, where the flat band LDOS is expected to localize, we
have chosen a unit cell that centers around the AA-stacked

atoms and maximizes the region of the moiré center. This is
achieved by shifting the unit cell by (�L1 + �L2)/6 with respect
to the AB-stacked atoms at the coordinates (0,0). By doing so,
we have created an irregular edge which affects the properties
of our system on the order of 0.1 meV. This effect is visible,
for example, in the flat band of large nanoribbons where the
states shift with respect to the band edges deduced from the
infinite system.

B. Tight-binding model in magnetic field

We employ an ab initio-based tight-binding model for pz

atomic orbitals [128,186] and tunneling over all the atoms in
the sample, with a Hamiltonian given by

ĤTB =
N∑
i, j

∑
σ

t (�ri, �r j )(c
†
i,σ c j,σ + c†

j,σ ci,σ ). (3)

N = NUCNat represents the total number of atoms equal to the
number of unit cells multiplied by the number of atoms in the
unit cell, while c†

i,σ (ci,σ ) is the creation (annihilation) operator
on the ith site located at the coordinate �ri = (xi, yi, zi ) with
spin σ = {↑,↓}. The out-of-plane coordinate zi is given by its
relaxed value zrelaxed. The hopping term is defined as [186]

t (�ri, �r j ) = (1 − n2)γ0 exp

(
λ1

(
1 − |�ri − �r j |

a

))

+ n2γ1 exp

(
λ2

(
1 − |�ri − �r j |

c

))
, (4)

where a = 1.412 Å is again the carbon-carbon distance, and
c = 3.36 Å is a unrelaxed interlayer distance. The direction
cosine along the z axis is denoted by n. Intralayer hopping
is parametrized by γ0 = −2.835 eV, and interlayer by γ1 =
0.48 eV. The dimensionless decay constants are λ1 = 3.15
and λ2 = 7.50. These parameters were obtained by the fitting
to the ab initio results of unrotated graphene bilayer in dif-
ferent stacking configurations, as well as bilayers rotated by
larger twist angles. A general solution for all twist angles has
been interpolated from these calculations. These parameters
are known to reproduce well the ab initio band structure
of MATBG [128,187], as well as the ab initio Dirac cone
velocity renormalization for arbitrary twist angles [186]. We
opt for γ0 = −2.835 eV value to match our band structure as
well as possible the state-of-the-art ab initio MATBG band
structure in Ref. [187], focusing on flat band width, remote
band gaps values, and electron-hole asymmetry in the flat
band. For our calculations, we consider interactions of atoms
within a distance �6a from the considered atom. Including
additional neighbors does not cause significant quantitative
changes in our results. For example, if the cutoff radius is
set to rcutoff = 7a, maximal flat band energy difference is
0.002 meV around � point in the top conduction band of the
flat band. However, for a smaller hopping radius (e.g., rcutoff =
4a), the band-structure difference becomes visible, e.g., of the
order of 0.5 meV around the � point for the flat band and
conduction band. To account for the presence of an hBN sub-
strate, we introduce a staggered potential 
 = 10 meV to the
bottom layer of our system [188,189]. To include this in our
Hamiltonian, we add a diagonal part HhBN = ∑

i,σ 
ic
†
i,σ ci,σ ,

where 
i = 5 meV if i belongs to the set of A atoms, and
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i = −5 meV if i belongs to the set of B atoms. If i belongs
to the set of atoms from the top layer, 
i = 0 meV.

As we have already mentioned, each moiré unit cell con-
sists of Nat number of atoms. Each atom repeats in the unit
cells creating Nat simple Bravais sublattices. For a given wave
vector �k for each sublattice n, we can define a wave function:

�n
�k = 1√

NUC

NUC∑
α

ei�k·(�τn+ �Rα )φz(�r − �τn − �Rα ). (5)

Here, �τn refers to the position of an atom within a unit cell,
while �Rα denotes the position of different unit cells. To con-
struct our Hamiltonian in the second quantization, we expand
the field operators in sublattice wave functions for each wave
vector �k, e.g., �̂

†
�k = ∑Nat

n

∑
σ c†

�k,n,σ
�∗n

�k . Here c†
�k,n,σ

(c�k,n,σ
)

are the creation (annihilation) operators that create (annihi-
late) particles with momentum �k on sublattice n and spin σ .
We can now define an Ĥk operator for each considered �k value:

Ĥ�k =
∫

dr�̂†
�k H�̂�k =

Nat∑
n,m=1

∑
σ

c†
�k,n,σ

c�k,m,σ

∫
dr�∗n

�k H�m
�k .

(6)

We introduce Hnm
�k = ∫

dr�∗n
�k H�m

�k as a matrix in the
space of sublattices which has the form

Hnm
�k =

∫
dr

[
1√
NUC

NUC∑
α

e−i�k·(�τn+ �Rα )φ∗
z (�r − �τn − �Rα )

]

× H

⎡
⎣ 1√

NUC

NUC∑
β

e−i�k·(�τm+ �Rβ )φz(�r − �τm − �Rβ )

⎤
⎦. (7)

Now we center our system at �r′ = �r − �τn − �Rα and define
�Rγ = �Rα − �Rβ . These operations lead us to a simplified ex-
pression:

Hnm
�k = 1

NUC

NUC∑
α

NUC∑
γ

e−i�k·(�τn−�τm )e−i�k �Rγ

×
∫

drφ∗
z (�r)Hφz(�r + �τn − �τm + �Rγ ). (8)

Defining t (�τn, �τm + �Rγ ) = ∫
drφ∗

z (�r)Hφz(�r + �τn−�τm+ �Rγ ),
we can write our final form:

Hnm
�k =

NUC∑
γ

e−i�k·(�τn−�τm )e−i�k �Rγ t (�τn, �τm + �Rγ ). (9)

We note that because the hopping vanishes quickly with the
distance, the sum over γ reduces to a single nonzero element
from either the considered unit cell or its nearest neighbors.
Hopping terms t (�τn, �τm + �Rγ ) are defined in Eq. (4) and de-
pend on the sublattice and unit cell position of the considered
atoms. �k = (kx, ky ) represents the wave vector within the first
moiré BZ.

In a nanoribbon structure, we incorporate the periodicity
solely in the x direction, modifying our Hamiltonian to have

the form

Ĥk1D =
Nat∑
n,m

∑
σ

c†
k1D,n,σ

ck1D,m,σ Hnm
k1D

, (10)

where k1D ∈ (−π/|�L2|, π/|�L2|) denotes the wave vector in the
one-dimensional BZ of the ribbon.

Thanks to the nanoribbon geometry, perpendicular mag-
netic field can be introduced using Peierls substitution in
the Landau gauge �B = �∇ × �A, with vector potential �A =
(−Bzy, 0, 0):

t̃ (�ri, �r j ) = t (�ri, �r j )
Bz=0 exp

(
−iπ

2eBz

hc

(x j − xi )

2
(yi + y j )

)
.

(11)

Here hc/2e is the magnetic flux quantum ϕ0. The Zeeman
splitting is included by adding a diagonal part to our Hamilto-
nian in the form HZ = 1

2 gμBBz
∑

i (c†
i,↑ci,↑ − c†

i,↓ci,↓), where
μB is the Bohr magneton and g is the Landé factor. To use
the Landau gauge, we perform a global rotation of the coor-
dinate system, ensuring strict x-axis periodicity. Due to such
periodicity, we are able to include a magnetic field in our
nanoribbons without the restriction to specific magnetic flux
values.

We note the existence of the topologically trivial and non-
trivial edge states characterized by Chern numbers. The Chern
numbers are determined by counting the number of chiral
edge states crossing the energy gap. The microscopic prop-
erties of the wave functions of the flat band and the edge
states are characterized by the local density of states (LDOS)
for a representative choice of the magnetic field. We use the
following definition of LDOS:

n(xi, yi, E ) = N−1
k1D

∑
λ,k1D

|ψk1D,λ(xi, yi )|2δ(E − Ek1D,λ). (12)

Here, n is the LDOS for given coordinates xi and yi in a
chosen energy window. Nk1D is the normalization constant and
relates to the number of states considered, λ is the eigenvalue
index, which together with the wave vector k1D enumerates
the eigenvalue Ek1D,λ and the eigenvector ψk1D,λ(xi, yi ).

C. Wannier diagrams

To establish a connection between the Hofstadter spectrum
and the experimental observations, Wannier diagrams can be
used [190]. These diagrams can be constructed by plotting the
integrated charge carrier density, up to a given energy level,
versus the magnetic field B. This representation highlights the
linear trends in energy gaps, offering a useful representation of
electronic gaps in the Hofstadter-like spectrum, encompassing
both single-particle and many-body interaction-induced Mott-
like gaps. Moreover, linear fitting of the data in the Wannier
diagrams aids in identifying unconventional states that defy
a simple LL picture and related single-particle Chern insula-
tors. Such unconventional ground-state sequences have been
recently observed [117,123] and explained by the sequential
flavor filling mechanism. Wannier plots obtained by mapping
these gaps as functions of filling and magnetic field provide
a direct comparison with the compressibility and transport
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FIG. 2. The electronic structure of the MATBG ribbon on an hBN substrate revealing quantization effects for the flat and remote bands.
(a)–(c) in the top panels show bands within a 200 meV energy window for different ribbon widths: (a) 5, (b) 20, and (c) 85 moiré unit cells.
(d)–(f) The lower panels provide a zoom into the flat band for analogical nanoribbon widths. Color coding signifies the localization of states
in real space. The dashed lines represent band edges that are deduced from the infinite system calculations. RBCB (RBVB) refers to the top
(bottom) of the remote conduction (valence) band, while FBmax (FBmin) marks the top (bottom) of the flat band.

experiments [15,17,110,115–118,123] and can serve as a tool
for identifying (non)interacting insulating states.

III. ELECTRONIC STRUCTURE
OF TWISTED BILAYER GRAPHENE

In Figs. 1(c) and 1(d), we present the band structure of
MATBG along the K-�-M-K line. In Fig. 1(c), we display
the energy window that captures the flat band and the remote
valence and conduction bands. In our model, we find the flat
band that is 7 meV wide and separated by a 25 meV gap from
the remote bands. These values are in a good agreement with
other tight-binding models [191] as well as with the density
functional theory calculation [184,187,191,192]. Achieving
such results became possible only after incorporating the out-
of-plane relaxation effects, which led to the enlargement of
the band gaps, as well as widening of the flat band compared
to the ideally flat MATBG. Notably, our model inherently
lacks electron-hole symmetry. This feature contrasts with the
continuum, Bistritzer-MacDonald model, where electron-hole
asymmetry is obtained by adding momentum dependent inter-
layer scattering terms [193].

In Fig. 1, we demonstrate the influence of the hBN sub-
strate on the MATBG dispersion. In Fig. 1(c), the black circles

represent a pristine MATBG sample, while the red dots denote
the system on the substrate. One can notice that the presence
of hBN has a negligible effect on the higher energy spec-
trum (i.e., remote bands) and the band gaps between the flat
band and the remote bands remain unchanged. The impact of
hBN becomes more apparent if we focus on the flat band,
see Fig. 1(d). In this context, the presence of hBN leads
to the opening of the gap at K points and splitting of the
degeneracies.

IV. QUANTUM SIZE EFFECTS IN ELECTRONIC
STRUCTURE OF TWISTED BILAYER GRAPHENE

The electronic structure of the MATBG nanoribbons on an
hBN substrate, considering various system widths, is analyzed
in Fig. 2, where we plot the energy subbands as a function of
the one-dimensional momentum k1D. In Figs. 2(a)–2(c), bands
in 200 meV energy window are shown, while Figs. 2(d)–2(f)
provide a close-up view of the flat band. The color scale
corresponds to the localization of the wave function. States
localized on either of the sample’s edges are represented in
red, while bulk states that lie closer to the center of the system
are displayed in blue. Given the symmetry of the spectrum
with respect to k1D = 0, only half of it is depicted. Dashed
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FIG. 3. The band structure and Hofstadter spectrum of a MATBG ribbon on an hBN substrate. (a) Flat and remote bands within an
approximately 200 meV energy window around the Fermi level along the K-�-M-K line on the moiré Brillouin zone. (b) The Hofstadter
spectrum for magnetic flux ϕ/ϕ0 = [0, 1], corresponding to magnetic field Bz ≈ [0, 27] T. This data is obtained from the nanoribbon density
of states. The data points shown in grayscale represent projected density of states of the bulk, while the edge states are visualized in color.
(c) Similar Hofstadter spectrum with Zeeman splitting included. The zoom-in to the energy window E = [−5, 10] meV of the flat band is
shown in (d)–(f). Arrows highlight the gaps that we characterize by the in-gap Chern numbers.

lines denote the band edges inferred from the band structure
of the 2D infinite system. In the case of the smallest system
consisting of five moiré unit cells, as depicted in Figs. 2(a)
and 2(d), the bulk states are predominant and no edge states
are apparent due to their strong hybridization with the bulk
states. As the system size increases, edge states become more
evident, clearly visible as red lines in Figs. 2(b) and 2(e). This
feature becomes even more pronounced for wider ribbons
with band structures, shown in Figs. 2(c) and 2(f). We note
that the wave function localization observed for the case of 20
moiré unit cells is in good agreement with the results for 85
moiré unit cells. Given the constant number of the edge states,
the bulk band edges together with the gap widths, we have
opted to use the system consisting of 20 moiré unit cells in
the subsequent calculations. We note that in Appendix A we
confirmed the applicability of our method to study the edge
effects by reproducing the moiré flat-band breakdown shown
recently in experiment in Ref. [194].

We also note two interesting features apparent at this stage
of analysis. First, there exists a distinct band gap around
E = 0 meV in all three cases, arising due to the presence of an
hBN substrate. In the gap region, no edge states link the bulk
states above and below, resulting in a trivial gap with a Chern
number C = 0 [195]. Second, we examined the flat subband
degeneracy, which is constant for every wave vector k in the
energy window between the remote bands. The number of
states is always equal to the product of the moiré nanoribbon
unit cell number and 8 (representing two bands, two valleys,
and two spins). This way there are always 20 states for each k
and each spin in Fig. 2(a), 80 in Fig. 2(e), and 340 in Fig. 2(f).
This total number of states encompasses both edge and bulk

states, however, the number of edge states remains constant
regardless of the ribbon width. This observation implies that
the two trivial edge states running below and the four states
running above the flat band must originate from the flat-band
states.

A. Moiré-Hofstadter spectrum

We analyze the influence of the perpendicular magnetic
field on MATBG on top of hBN, exploring several aspects
of the fractal spectrum. We consider magnetic fields in the
range ϕ/ϕ0 = [0, 1], corresponding to approximately Bz ≈
[0, 27] T. We note that the size study in nonzero magnetic field
has been conducted for nanoribbons consisting of up to 85
moiré unit cells. Similar to the case of Bz = 0 T, a nanoribbon
consisting of 20 moiré unit cells remains representative of
the larger structures. The resulting Hofstadter spectrum is
displayed in Fig. 3, with a clear repeated pattern of energy
gaps at different energy scales. Since our calculations are
performed for a nanoribbon geometry, both bulk and edge
states are present. The grayscale refers to the projected density
of the bulk states, while the color scale indicates the degree of
localization of the edge states. In Fig. 3(b), we show the fractal
spectrum without the effect of the Zeeman splitting. First, we
confirm that the width of the overall flat band remains constant
and the flat bands do not mix with the remote bands up to
one flux. From the remote bands, one can clearly observe
the formation of the LLs for magnetic field Bz < 5 T and
their evolution as a function of Bz. Flat energy band along
M-K path around 80 meV and −80 meV without a magnetic
field translates into the van Hove singularities that seem to
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FIG. 4. Wannier diagram of the hBN-MATBG ribbon flat band in the presence of a magnetic field. (a) Hofstadter spectrum for the bulk
states of the flat band, extracted from data presented in Fig. 1(d). (b) Hofstadter spectrum including Zeeman splitting. (c) Wannier diagram
corresponding to the spectrum in (a). The x axis measures the filling ν relative to the Fermi level. Filling −4 (4) indicates a completely empty
(filled) flat band. The color scale is used to denote the energetic width of the band gaps 
E . Note that all gaps larger than 6 µeV are denoted by
the same color. (d) Like (c), but this Wannier diagram is derived from the Hofstadter spectrum with Zeeman splitting included. The red dotted
lines on (c) and (d) mark some of the gaps starting at ν = 0 extracted from the experimental data [117]. All panels (a)–(d) have the same y
axis, denoting the magnetic field Bz = [0, 11] T.

be unaffected by small magnetic fields Bz < 5 T. There are
no crossings of the edge state between the flat and remote
bands, which leads to the conclusion that both of these gaps
are trivial, and the in-gap Chern number is C = 0. Analyzing
the edge states crossing between the other LLs, we determine
the in-gap Chern numbers for the other cases. The results of
the edge state counting are marked with arrows pointing to the
specific gaps. In Fig. 3(c), we present an analogical spectrum
including the effect of the Zeeman splitting E = ± 1

2 gμBBz.
In this energetic scale, the only visible effect is a small broad-
ening of the LLs, since the Zeeman splitting energy is of the
order ∼10−2 meV/T.

In Figs. 3(e) and 3(f), we present close-ups of the Hofs-
tadter spectra around the Fermi level, focusing on a flat band
region, once again with and without the Zeeman splitting,
respectively. We analyze the in-gap Chern numbers corre-
sponding to the number of edge states crossing it, concluding
that the gap opened by hBN has no edge states crossing
through it and is, therefore, trivial with C = 0. The band gaps
within the split conduction band exhibit a sequence of Chern
numbers: C = 1, followed by C = 2, C = 3, and C = 4. No-
tably, the top of the conduction band near the � point has a
negative effective mass, leading to the highest flat-band LL,
decreasing in energy for an increasing magnetic field. This
tendency deepens when we incorporate the Zeeman splitting,
as seen in Fig. 3(f). In the case of the flat band, the Zeeman
term corrections lead to the broadening of the energy bands
related to the splitting of the Hofstadter spectrum.

B. Analysis of Wannier diagrams

Through the analysis of the Hofstadter spectrum, a Wan-
nier diagram can be obtained, as described in Sec. II C. For
clarity, we first repeat our Hofstadter spectra, choosing a
smaller magnetic field range in Figs. 4(a) and 4(b). Note that
now the magnetic field Bz is plotted on the y axis. We focus
on the flat band and extract only the bulk projected density of
states. In Figs. 4(a) and 4(b), we show the Hofstadter spectra
without and with the Zeeman term, respectively.

The width of the energy gaps within the flat band is de-
picted in color in Figs. 4(c) and 4(d) as a function of the
filling ν and magnetic field Bz. The red dotted lines mark
some of the gaps that can be observed in the compressibil-
ity experiments [117]. Comparing this single-particle result
with the experimental data provides a direct means of iden-
tifying noninteracting, insulating states. We have achieved
good agreement with the experiment for fillings around ν = 0
and low magnetic fields. This suggests qualitatively cor-
rect mean-field, ab initio-based tight-binding picture around
charge neutrality; correlations do not play an important role
here. On the downside, the vertical line at ν = 0, representing
the largest electronic gap in the flat band spectrum, vanishes
around Bz = 5 T, whereas in the experiments this gap remains
open over the entire 0–11 T magnetic field range, see also
Fig. 2 in Ref. [117] for comparison. When the Zeeman split-
ting is included in our calculations, as shown in Fig. 4(d),
some of the gaps have shifted to odd integer fillings, leading to
better agreement with the experimental results, e.g., the gaps
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visible in Fig. 4(c) around ν = −2 for Bz > 3 T have shifted
to ν = −3 also for Bz > 3 T. However, since the number of
gaps has doubled and their widths have decreased, some of
the previously prominent features have become less distinct,
e.g., note the rightmost gap beginning at ν = 0 and closing
around Bz = 5 T. It is well visible in Fig. 4(c) in agreement
with the experimental data, but becomes much less clear after
including the Zeeman splitting, see Fig. 4(d). Hence, studying
both scenarios—with and without the Zeeman splitting—can
provide valuable insights and enable us to better determine
which gaps are not related to the effects of interaction. While
we leave the electrostatic and many-body interactions for
future work, we anticipate a widening of the gaps around
integer fillings. Moreover, there is a very strong feature below
ν = 4 stemming from the well-separated top flat-band LL,
which is not observed in the experiments. This suggests a
significant renormalization beyond the current understanding
of the energy dispersion around the � point in the magnetic
field due to the presence of interactions or magnetic fields.

C. Conventional, mixed, and moiré state properties

Within an energy window of approximately 100 meV
around charge neutrality, two types of bulk magnetic bands
with highly suppressed kinetic energy emerge. The first are the
moiré flat bands, which in the real-space picture correspond
to states mostly localized in the AA-stacked regions [20] of
the twisted bilayers. The second features more conventional
LLs, which generally extend across the entire moiré unit cell
and are not restricted to the moiré centers. It is currently
unclear how these two types can be modeled simultaneously
in low-energy theories and how they are mutually influenced.
For example, several works show different behaviors of the
Hofstadter butterflies and related different Chern numbers of
the gaps [159,163,180,181]. Even less is known about the
microscopic properties of wave functions of these levels, es-
pecially about chiral states connecting bulk bands, localized
on the edges of TBG samples. Since this knowledge is crucial
for understanding the topological aspects of MATBG, the
interacting problem, Chern insulator states, potential reen-
trant superconductivity, and quantum geometric properties,
[173,174,178,179,181,196] in our paper we provide general
microscopic features of both bulk and edge states of MATBG
in a magnetic field.

It is important to experimentally probe the edge-state
physics, e.g., extend scanning tunneling spectroscopy studies
of the breakdown of the moiré flat bands [194] to the identifi-
cation of the Chern-moiré edge states, and extend transport
studies of possible zero-field Chern phase [13] to nonlocal
Hall measurements and to a finite magnetic field. The local
probing of competing ground-state wave functions is still in
its early stages for both experimental [197] and theoretical
investigations [84,85].

Other exciting avenues for probing edge currents are super-
conducting quantum interferometry [198] and electron spin
resonance edge probes [89,199–201]. Although some works
have discussed the moiré edge states [50,156,180,195,202],
they primarily centered on the effective models or twist
angles greater than the magic angle. Studies using large-
scale atomistic tight-binding models [93,94,186,203–210]

have predominantly focused on the electronic structures, re-
laxation effects, and interactions, serving as a basis for the
construction of low-energy models.

Here we investigate the microscopic properties of the
MATBG wave functions in a magnetic field for the 20 moiré
unit cells nanoribbon and a representative magnetic field Bz =
4 T. The 1D band structure is shown in Figs. 5(a) and 5(b).
We consider two energy windows, with 
E ≈ 150 meV in
Fig. 5(a), followed by a zoomed-in view of the flat band region
(
E ≈ 10 meV) in Fig. 5(b). In both cases, we classify the
ribbon states according to their localization. States colored in
green represent the ones localized within the center of the
sample, while states colored in red and blue correspond to
those localized on the top or bottom edges, respectively. The
bulk states form flat bands, i.e., the ribbon LLs, between some
of which the edge-localized states cross the gaps. This is a
characteristic signature of nonzero Chern number. We note
that not all gaps are crossed by the states connecting bulk
bands, suggesting the existence of trivial edge states.

Before we delve into the details of the real-space properties
of the ribbon states, let us precisely define the meanings of
conventional-, moiré-, and mixed-type states, classifications
we use in the subsequent paragraphs. We label states as
conventional if the LDOS is uniformly spread over the sam-
ple and resembles a typical LL distribution. Moiré states are
characterized by the LDOS primarily concentrated around the
moiré centers. For mixed states, LDOS is neither concentrated
only around the moiré centers nor uniformly spread across the
sample.

To analyze the real-space properties of the ribbon states,
we have chosen three bulk LLs: the flat band (LL0) around
E = 0 meV, the first LL (LL1) around E = 30 meV, and the
second LL (LL2) around E = 60 meV. Our investigation of
the microscopic properties of the electronic charge densities is
summarized in Fig. 5(c), which shows the LDOS calculation
and its spatial distribution. Within this analysis, we focus on
three consecutive LLs, which represent three different types of
bulk states. The first stripe shows the flat band, LL0, which,
as expected, is a moiré-type state—the LDOS is concentrated
predominantly around the region of the AA stacking in the
real space. The second type, LL1, which is separated by a
∼30 meV gap from the flat band, still strongly feels the LL0
influence, and also exhibits LDOS concentration around the
moiré centers. This result is surprising, since LL1 is a regular
LL and, in principle, should present a uniform spread of the
wave function. The fact that it doesn’t suggests a stronger
influence from the flat band than anticipated, potentially ob-
servable in a broader energy range. This is an example of a
mixed state. Moving to LL2, the conventional bulk state, we
observe a more uniform LDOS spread, as one would expect.
However, there is also an opposite trend present: LDOS avoids
the moiré centers; note the yellow dots in the center of moiré
unit cells for LL2 in Fig. 5(c). For higher LLs, the pattern is
similar to that of LL2, with an even more evenly distributed
wave function. A similar analysis can be conducted for the
edge states. Once again, we identify three distinct types of
edge states. Those states are indicated in Figs. 5(a) and 5(b)
by E0 which resides within the flat band, E1 connecting LL1
with LL2, and E2 linking LL2 with higher-lying LL3. The
right side of Fig. 5(c) shows the localization of the wave
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FIG. 5. Electronic structure and wave functions of the hBN-MATBG ribbon in the magnetic field. (a) Band structure of the 20 moiré unit
cells wide hBN-MATBG nanoribbon in perpendicular magnetic field Bz = 4 T without Zeeman splitting. Both LLs (LL0, LL1, LL2) and edge
states (E1, E2) are shown. The color scale denotes the wave-function localization, with top (bottom) edge states marked by red (blue) dots.
Green dots mark bulk states predominantly localized in the center of the sample. (b) Zoom-in into the flat band, revealing its substructure
in the magnetic field, again with the moiré edge states (E0) crossing between the moiré LLs. (c) LDOS for the bulk and edge states, which
are marked in (a) and (b). The specific values of k1D for which they were calculated are indicated with a black dashed line. The left side of
(c) shows selected bulk states: the flat band (LL0), the first LL (LL1), and the second LL (LL2). On the right, the edge states are shown: E0,
which is localized within the flat band; E1 which connects LL1 and LL2; and E2, which connects LL2 with LL3 (the third LL). The black
circles correspond to the moiré centers, which are fixed around the AA-stacked atoms in the unit cell. Note that the color scale for LL0 is
scaled by 0.1 compared to the rest of the LDOS plots in (c).

function for these three cases and, in particular, what its re-
lation is to the moiré centers marked with black circles. E0 is
predominantly localized within the moiré centers close to the
edge of the sample, and the trivial edge states in the energy
gap between LL0 and LL1 around E = 25 meV behave in a
similar manner. In the case of E1, the AA-stacking localiza-
tion can still be spotted, although the effect is less prominent.
As for E2, there is no correspondence between the wave
function localization and the moiré center’s position. This is
to be expected, since this state is separated by over 50 meV
from the flat band, and moiré potential does not play a role
here.

D. Evolution of the microscopic wave function’s properties

We now turn to the analysis of how the LDOS changes in
response to the magnetic field. For concreteness, we define a
moiré center as the region within the dashed circle marked in
Fig. 6(a). This figure shows that there are strong differences
between LL0, LL1, LL2, and those three states should be
easily distinguished in scanning tunneling spectroscopy type
experiments. We investigate how much of the wave function
is localized within the moiré center and how this distribu-
tion evolves with an increasing magnetic field. The outcomes
of this calculation are presented in Fig. 6(b), where we

quantitatively compare the wave function localization for
LL0, LL1, and LL2. We also show that, in the flat-band case,
as the magnetic field increases, the wave function flows out of
the moiré center and distributes more evenly over the sample,
as the effect of the magnetic field becomes dominant over the
effect of the moiré potential. Therefore, one can observe the
decreasing character of the red line in Fig. 6(b). In the case of
LL1 and LL2, denoted by green and blue lines, respectively,
there is a similar trend present, however, it cannot be observed
for a larger range of Bz, since with the increase of the magnetic
field these LLs are not unequivocally defined.

We have also focused on the moiré center nearest to the
edge of the sample, as depicted in Fig. 6(c). Here, we in-
vestigate how much of the wave function localizes in the
immediate vicinity of this center as a function of the wave
vector k1D. These findings are summarized in Fig. 6(d), where
a clear distinction between E0, E1, and E2 is shown. This
observation reinforces our classification of the three types of
edge states. The evolution of these edge states as a function
of k1D looks nontrivial and warrants a more extensive study
in the future. Their behavior as a function of k1D is charac-
terized by qualitative differences, with E0 exhibiting a local
minimum, E1 decaying exponentially, while E2 remaining
mostly flat. These features could potentially be verified by
experiments.
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FIG. 6. LDOS within moiré AA centers for bulk and edge states
in a magnetic field for an hBN-MATBG ribbon. (a) Real-space dis-
tribution of LDOS for selected bulk LLs (LL0-LL2) shown around
the center of the sample for Bz = 4 T. (b) Corresponding integrated
LDOS calculated for the moiré center defined as the region within
a black circle centered around AA stacked atoms with the radius
r = 25 Å. (c) Wave-function density |�|2 plot of selected edge states,
from left: E0, which lies within the flat band, E1 connecting LL1 and
LL2, and E2, linking LL2 with LL3. (d) Similar to (b), |�|2 analysis,
with integrated density calculated for the moiré center closest to the
edge of the ribbon.

V. CONCLUSIONS

In this paper, we analyzed the microscopic properties of
MATBG on top of hBN under the influence of a magnetic
field. We have studied systems consisting of up to 1 000 000
atoms (85 moiré unit cells) and have established that for a
ribbon’s width larger than 20 unit cells, hybridization be-
tween the wave functions of the edge states is negligible. For
such wide ribbons, we studied the Hofstadter spectrum and
determined the in-gap Chern numbers from the number of
chiral edge states crossing the energy gaps. At low magnetic
field, a corresponding Wannier diagram has been obtained
and used to identify noninteracting, insulating states, finding
qualitative agreement with the experiments. We have analyzed
a competition between the moiré localization potential and
the effect of a magnetic field. The microscopic properties of
the wave functions were determined and three types of bulk
and edge states were identified, namely, moiré, mixed, and
conventional states. We have examined their evolution as a
function of the magnetic field and the wave vector. While
our analysis was primarily restricted to single-particle physics
without electrostatic corrections for doping away from ν = 0,
we anticipate that our findings can provide valuable guidance
for future scanning tunneling microscopy measurements and
help to experimentally establish properties of microscopic
wave functions in TBG.
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APPENDIX A: MOIRÉ FLAT-BAND BREAKDOWN

A recent experiment [194] has shown that the character-
istic flat-band LDOS localization around the moiré centers
of the superlattice remains intact even close to the edge, as
long as the sample contains a complete moiré spot. However,
if the edge of the sample cuts through the AA region, the
flat-band LDOS will no longer be localized in that area. Our
model correctly captures these features. In Fig. 7, we present
three different ways of terminating our nanoribbon. In the
first case, we preserve the whole moiré center at the edge
(�S = 0), while in the second and third, we shift our original
unit cell by a vector �S = −1/3�L and �S = −1/2�L, respectively
[�L = �L1 + �L2, see Eqs. (1)]. One can notice that in the first
case, there is a complete moiré center localized close to the
edge, but for the other two choices of the edge, the LDOS
fades away in that region. We have compared our results with
the experimental data extracted from Ref. [194] in Fig. 8. Both
in the experimental result and our spatially integrated LDOS
result, there is a clear change in the electron density when the
edge cuts through the AA moiré region. This confirms that our
model is capable of capturing local physics near the edges of
MATBG system under study.

FIG. 7. LDOS near the top edge of 20 moiré unit cell ribbons
for different choices of boundary termination. Different cuts are
parametrized by the shift vector S. Black circles denote the AA
regions.
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FIG. 8. Comparison of dI/dV spectrum near the edge of the
MATBG sample extracted from Ref. [194] with our spatially inte-
grated LDOS calculation shows the effect of flat-band breakdown.
Distance d is measured from the edge of the sample. The dashed line
indicates the center of one of the AA regions.

APPENDIX B: EFFECT OF HBN SUBSTRATE ON
HOFSTADTER SPECTRUM AND WANNIER DIAGRAMS

Now we elaborate further on the role of an hBN substrate.
As outlined in Sec. II, we consider the presence of hBN on
only one side of the sample and model its influence by intro-
ducing a staggered potential. It is important to emphasize that

if one were to add a microscopically realistic layer of hBN,
there would be a number of additional effects. The inherent
lattice mismatch between hBN and graphene typically gives
rise to an extra moiré pattern with a period comparable to that
of MATBG, which could potentially affect the flat bands. One
of the current experimental approaches is to twist the hBN
layer with respect to MATBG by a small angle to match their
moiré patterns to maximally flatten the bands. Consequently,
our treatment of hBN should be treated as a simplified one. In
our approach, we take the staggered potential to be 10 meV,
consistent with ab initio calculations [188,189]. To gain a
clearer understanding of its impact, we here isolate the in-
fluence of hBN on the Hofstadter spectrum. In Figs. 9(a) and
9(d), we reproduce the bulk states’ band structure in Bz = 0 T,
aiding in identifying the sources of high densities of states
in the Hofstadter spectrum for Bz ≈ 0 T. Comparison of the
fractal spectra in a large energy window shows a similar trend,
demonstrating the same features for a sample Fig. 9(b) with-
out and Fig. 9(c) with the hBN substrate. However, a closer
examination of the zoomed-in spectrum in Figs. 9(e)–9(f)
reveals significant differences between Figs. 9(e) MATBG
and 9(f) hBN-MATBG. First, there is a trivial gap with no
edge states crossing through it, which emerges around the
zero energy for magnetic fields between 0–5 T. The spec-
trum displays numerous additional gaps in general, resulting
in a much richer substructure of the flat band compared to
pristine MATBG. These gaps are generally narrower and
remain open within limited ranges of the magnetic field
values.

The effects associated with the influence of hBN on
MATBG become even more evident when examining the
Wannier diagrams. Figures 10(a) and 10(b) pertain to a

FIG. 9. The influence of the hBN substrate on the band structure and the Hofstadter spectrum. (a) Flat and remote bands around the Fermi
level. The black circles represent a pure MATBG sample, while the red dots depict the impact of the hBN substrate. The Hofstadter spectrum
(b) without and (c) with the hBN substrate effect. (d)–(f) Zoom-in to the flat band. (e) and (f) provide a corresponding close-up view of the
MATBG fractal spectrum without and with the effect of hBN, respectively.
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FIG. 10. The role of an hBN substrate on the Wannier diagram in the flat band of MATBG. (a) Hofstadter spectrum illustrating the bulk
states of the flat band in MATBG without the hBN substrate. (b) Corresponding Wannier diagram for the spectrum shown in (a). Characteristic
V-shape picture around ν = 0 as seen in the experiments [16,123]. (c) Fractal spectrum, similar to (a), but accounting for the effect of hBN.
(d) Wannier diagram corresponding to (c), using the same color scale as (b).

pristine MATBG sample, while Figs. 10(c) and 10(d) cor-
respond to MATBG on hBN. Once again, it is apparent
that the presence of hBN induces the emergence of numer-
ous additional band gaps, particularly for larger magnetic

fields. The Wannier diagram depicted in Fig. 10(b) can be
compared to the compressibility measurements for unaligned
devices [16,123], wherein a similar V-shape stemming from
the charge neutrality point can be observed.
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