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In this work, we study unconventional anisotropic topologically ordered phases in 3d that manifest type-II
fractonic physics along submanifolds. While they behave as usual topological order along a preferred spatial
direction, their physics along perpendicular planes is dictated by the presence of fractal subsystem symmetries,
completely restricting the mobility of anyonic excitations and their bound states. We consider an explicit lattice
model realization of such phases and proceed to study their properties under periodic boundary conditions and,
later, in the presence of boundaries. We find that for specific lattice sizes, the system possesses line and fractal
membrane symmetries that are mutually anomalous, resulting in a nontrivially gapped ground state space. This
amounts to the spontaneous breaking of the fractal symmetries, implying a subextensive ground state degeneracy.
For the remaining system sizes the fractal symmetries are explicitly broken by the periodic boundary conditions,
which is intrinsically related to the uniqueness of the ground state. Despite that, the system is still topologically
ordered since locally created quasiparticles have nontrivial mutual statistics and, in the presence of boundaries,
it still presents anomalous edge modes. The intricate symmetry interplay dictated by the lattice size is a wild
manifestation of ultraviolet/infrared (UV/IR) mixing.
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I. INTRODUCTION

It is quite remarkable that certain elementary systems, con-
taining simple degrees of freedom that interact only locally,
can give rise to exotic forms of matter [1]. Topologically or-
dered systems are among the most prominent examples, with
emergent quasiparticle excitations carrying anyonic statistics.
Fractonic topological ordered systems are even more ex-
otic [2–15], with excitations that are intrinsically devoid of
mobility due to the existence of generalized forms of symme-
tries known as subsystem symmetries [16–19].

Subsystem symmetries are generated by conserved charges
along rigid spatial subdimensional manifolds, which tend to
be extremely sensible to the underlying lattice geometry.
Compliance with such conservation laws imposes severe re-
strictions on the mobility of the excitations. This contrasts
with usual topological order, which is in general characterized
by topologically deformable symmetry generators, known as
higher-form symmetries, and poses no constrains on excita-
tion’s mobility [20–24].

Abelian topological order and fractonic phases may be
rephrased in terms of spontaneous breaking of, respectively,
finite higher-form and subsystem symmetries [25–27]. This
follows from the definition of topological order in terms
of local indistinguishability of ground states [28,29]. Addi-
tionally, any two ground states are connected by extended
symmetry operators, which precisely fits the notion of spon-
taneous symmetry breaking in the context of a generalized
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symmetry [30]. Generalized symmetries appear to distinguish
themselves from usual symmetries, as they can be present
in low-energy states even when the Hamiltonian is not sym-
metric [30–32]. Furthermore, although in this work we only
discuss systems containing Abelian anyons—usually associ-
ated to higher-form and subsystem symmetries—it is worth
mentioning that non-Abelian anyons can also be casted in the
language of generalized noninvertible symmetries [33–37].

An alternative way of understanding the nontriviality of the
ground state space is through the nontrivial braiding statistics
among excitations, which signals the presence of ’t Hooft
anomalies in Abelian topological order. The matching of
anomalies from the ultraviolet (UV) to the infrared (IR) imply
that the ground state must be nontrivially gapped [38].

It is common for d-dimensional systems invariant under
subsystem symmetries, with support in dimensions smaller
than d , to have a subextensive number of conserved charges.
Typical examples are type-I fracton systems that, when de-
fined on a 3d L × L × L system, possess charge conservation
laws in O(L) individual planes [14,15]. This leads to a macro-
scopically large amount of symmetry generators, which in
turn implies an enormous degeneracy of states. In particular,
the ground state degeneracy (IR feature) is sensitive to the
number of sites of the system (UV feature)—a phenomenon
called UV/IR mixing.

The emergence of UV/IR mixing from simple bosonic
local theories has challenged our understanding of effec-
tive theories and renormalization group. This follows from
the fact that the IR physics depends sensitively on the
UV details of the theory, and has been a major point of
investigation [12,39–42]. In the context of generalized sym-
metries, several exactly solvable models have shed light on
the origin of such phenomenon. In the context of gapped
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FIG. 1. Three-dimensional hexagonal close-packed lattice and a
TD operator.

dipole moments (and higher-multipole momenta) conserv-
ing gauge theories, emergent higher-form symmetries obey
twisted boundary conditions in order for holonomy operators
to close onto themselves [43–46]. For subsystem symmetries,
which are closely related with systems studied in the work,
the UV/IR mixing emerges from the fact that the system
possesses an increasing number of symmetries as the system
size grows [3,16,47].

A more dramatic manifestation of UV/IR mixing shows
up in the case of subsystem symmetries where the charges are
supported in submanifolds of fractal dimensions [39,48–54].
These symmetries are intimately related to type-II fracton
physics [4], where no excitations are allowed to move. In this
work we study fractal symmetries with support on Sierpinski
triangles, which have Hausdorff dimension log(3)/ log(2).
As a consequence, the low-energy properties are extremely
sensitive to the lattice details and typically there is no uniform
dependence of the ground state degeneracy with the lattice
size as in the case of type-I fractons. Additionally, we find
that the fractal symmetries are always broken. Whether it
is spontaneously or explicitly broken depends on the lattice
linear size L.

II. MODEL

The phases we are interested in are captured by the low-
energy states of the fractal model introduced in [49] in the
context of topological quantum glassiness. The degrees of
freedom of this model correspond to qubits located at the sites
of a hexagonal close-packed lattice. The lattice is defined as
the interpolating stack (along the ẑ direction) of d = 2 triangu-
lar lattice planes that are dislocated in relation to each other by
a0(x̂/2 + √

3ŷ/3 + ẑ/2), where a0 is the lattice spacing. We
now focus on the lattice composed of centers p of triangles,
which can be decomposed into two sublattices � = �1 ⊕ �2,
as shown in Fig. 1. The Hamiltonian is

H = −J
∑

a=1,2

∑
p∈ �a

Op, J > 0, (1)

where the triangular dipyramidal (TD) operators Op are given
in terms of Pauli matrices X and Z according to

Op ≡ Zp+ 1
2 ẑ Xp+ 1

2 x̂− 1
2
√

3
ŷ Xp− 1

2 x̂− 1
2
√

3
ŷ Xp+ 1√

3
ŷ Zp− 1

2 ẑ, (2)

where p is the center of the TD operator, as in Fig. 1.
A key property of the model (1) is that it is written in

terms of commuting projectors, i.e., [Op,Op′ ] = 0 for any
pair of operators, even when they share sites. Indeed, two
neighboring TD operators can share one or two sites, and it is

FIG. 2. Membrane operator constructed from a constraint.

simple to see that in both cases they commute. Therefore, the
energy spectrum is gapped and the energy levels are given by
the sum of the eigenvalues of Op. As O2

p = 1, the eigenvalues
of Op are ±1 and ground states obey Op |GS〉 = +1 |GS〉 for
all p.

III. GROUND STATE DEGENERACY

Each lattice site hosts a two-dimensional Hilbert space, so
that the specification of a state in a lattice with N sites requires
2N labels. As the total number of TD operators is equal to
the number of lattice sites when the system is defined with
periodic boundary conditions, it seems that the eigenvalues
of the operators Op are able to provide exactly the 2N labels
for the states. However, not all TD operators are independent.
There are certain constraints that reduce the number of avail-
able labels and consequently increase the degeneracy. Let Nc

be the total number of constraints in the system. Then, the
total number of available labels is 2N−Nc , so that the ground
state degeneracy is GSD = 2N/2N−Nc = 2Nc .

We can write the constraints as∏
p∈�

Otp
p = 1, (3)

involving a set of weights tp mod 2. The dimension of the
set {tp} gives the number of independent constraints Nc of the
model.

Let us consider a periodic lattice with size L × L × Lz. For
linear sizes L = 2n − 2m, with integers n � 2 and 0 � m < n,
the number of constraints is 2n − 2m+1 for each one of the
sublattices [55]. Furthermore, the constraints produce fractal
Sierpinski structures in the xy planes. An example for L =
23 − 21 = 6 is shown in the left of Fig. 2.

Lattice sizes of the form L = 2n − 2m are not the only
ones that possess nontrivial ground state degeneracy, as we
can construct larger systems simply by taking multiple copies
of the size L, namely, we can consider systems with sizes
of the form L′ = k(2n − 2m) �= 2n′ − 2m′

. In this case, the
ground state degeneracy is that of the building-block copy
L = 2n − 2m, since it provides nontrivial solutions for t’s that
are compatible with the periodic boundary conditions. As an
example, take the size L = 9. It is not of the form 2n − 2m, but
it can be expressed as L = 3(22 − 20). The ground state de-
generacy is the same as that one of the case L = 22 − 20 = 3.

It may happen that there is more than one way to ex-
press certain size in terms of copies, i.e., L = k(2n − 2m) =
k′(2n′ − 2m′

). In this case, we shall look for the building-block
copy that provides the maximum number of nontrivial solu-
tions for t’s, namely, which number among 2n − 2m+1 and
2n′ − 2m′+1 is greater. This occurs for the smallest value of
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k [55]. Taking into account that there are two sublattices,
we obtain the total number of constraints Nc = 2(2n − 2m+1).
With this in mind, we can express in a unified way the ground
state degeneracy associated with sizes

L = k(2n − 2m), 0 � m < n − 1, and k � 1 (4)

that is given by

GSD = 2(2n+1−2m+2 ), (5)

with n and m associated with the copy with the lowest value
of k. Of course, whenever a size can be expressed with k = 1,
then it dictates the degeneracy. An example is L = 18, which
cannot be expressed with k = 1. There are three ways to
obtain L = 18, namely 3(23 − 21), 6(22 − 1), and 9(22 − 2).
According to the above discussion, the ground state degener-
acy is given by (5) with n = 3 and m = 1, which is constituted
of three copies (k = 3) of the size L = 6.

The GSD in Eq. (5) does not depend on Lz due to the simple
structure of the TD operators along the z direction. Since it has
two Z Pauli matrices, one on top and one at the bottom, all the
constraints involve a product of TD operators along the whole
z direction. This is analogous to usual topological constrains,
as in the toric code [56]. Despite of this, the third dimension
is crucial to ensure topological ordering.

For system sizes L × L × Lz in which L cannot be ex-
pressed in the form (4), the ground state is unique since there
are no nontrivial solutions for t’s. We shall discuss these cases
later. The intricate dependence of the ground state degeneracy
on the size of the system is a severe manifestation of the
UV/IR mixing. To stress this, consider m = 0 and a very large
value of n. In this case, the system with the size L = 2n − 1
has a huge degeneracy GSD = 2(2n+1−22 ), whereas the system
with size just one unit larger L = 2n has a unique ground state.

For general Lx �= Ly it is not clear the ground state degener-
acy. However, for certain classes of system sizes, for example
Lx = qLy, for an integer q and Lx = 2n − 2m, we can show
that ground state degeneracy is 22(Ly−2m ).

IV. SYMMETRY OPERATORS AND MIXED ’T HOOFT
ANOMALIES

A nontrivial ground state degeneracy is a reflection of a
nontrivial algebra among certain symmetry operators, which
indicates a nontrivial mutual statistics among anyons. For
sizes of the form (4), there are two types of subsystem sym-
metry operators: fractal membrane operators disposed in the
xy plane and Wilson line operators extended along the z
direction.

Membrane operators are intimately related to the constraint
structure (3) in the xy plane (see relation (10) of the Supple-
mental Material [55]). Consider

∏
z

∏
j ∈Ma

I (z) O j = 1, where
j runs over all the sites belonging to Ma

I of the sublattice
a = 1, 2 in the xy plane, with I = 1, . . . , 2n − 2m+1 speci-
fying the constraint. A subset of this product, ranging from
z = z1 + a0/2 to z = z2 − a0/2, results in two membranes,

z2∏
z=z1

∏
j ∈Ma

I (z)

O j = Mb
I (z1) Mb

I (z2), b �= a, (6)

FIG. 3. Association of an operator O partaking the constraint in
the xy plane in a sublattice with a Z operator (blue dot) in the other
sublattice (yellow).

where, Ma
I is defined as

Ma
I ≡

∏
j ∈Ma

I

Z j . (7)

Each of these closed membrane operators individually com-
mute with the Hamiltonian, since they contain either zero
or two Z operators acting on each TD operator (see Fig. 2).
Notably, while two membranes are obtained as a product of
O j , an individual Ma

I is a nontrivial symmetry [57]. As the
constraints exhibit fractal Sierpinski structures in the xy plane,
the membrane operators resulting from this association will
also enjoy such fractal patterns. It’s worth mentioning that the
membranes defined in Eq. (6) are associated with the opposite
sublattice of the constraint, as illustrated in Fig. 2 by the blue
dots acting on the yellow sublattice.

Consistent with Eq. (7), the membranes can be obtained
by associating to each TD operator partaking the constraint
and belonging to one of the sublattices a Z operator acting
in a site of the other sublattice, according to the map in
Fig. 3. This is reminiscent of the duality between dynamics
and interactions [48].

There is a one-to-one correspondence among the con-
straints, associated with nontrivial solutions for {tp}, and the
closed membrane operators. Accordingly, there is a total of
Nc = 2(2n − 2m+1) linearly independent membrane operators.
Although for every z coordinate we can define a membrane
operator as in Eq. (7), they are not regarded as independent.
This is so because any two membranes Ma

I (z1) and Ma
I (z2),

belonging to the same sublattice and with the same I , can be
connected to each other through a product of TD operators.
Thus, unless there is a defect, Op |ψ〉 = − |ψ〉, between the
planes at z1 and z2, the eigenvalues of Ma

I (z1) and Ma
I (z2)

are constrained to be the same. Also, the membrane operators
can be topologically deformed in the z direction through local
products of TD operators.

Wilson lines along the z direction are constructed as W a
i =∏

j ∈La
i

Xj, where La
i stands for a line along the z axis crossing

xy planes at the site i = (x, y), belonging to the sublattice a.
If the line La

i is closed, the corresponding operator commutes
with the Hamiltonian and then it is a symmetry operator.

Wilson line operators are rigid and, in principle, for each
sublattice, there are L2 line operators, one for each i = (x, y)
in the xy plane. However, not all of them are independent,
as products of three lines can also be reduced to products of
TD operators, which act as the identity on the ground state.
The number of independent Wilson lines is 2n − 2m+1 for
each sublattice and that they are in one-to-one correspondence
with the membrane operators [55]. Accordingly, we label the
Wilson lines with the same type of index I as the membrane
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operators,

W a
I =

∏
j ∈La

I

Xj, (8)

where La
I , with I = 1, . . . , 2n − 2m+1, corresponds to each

one of the independent Wilson lines. We can pair line and
membrane operators such that a particular W a

I commutes with
all other membrane operators except the one labeled by the
same numbers Ma

I ,

Ma
I W b

J = (−1)δIJδab W b
J Ma

I , (9)

with a, b = 1, 2 and I, J = 1, . . . , 2n − 2m+1 [55]. This alge-
bra leads to the ground state degeneracy GSD = (22n−2m+1

)2,
reproducing (5). Such a nontrivial algebra among pairs of
membrane and Wilson operators can be rephrased in terms of
a mixed ’t Hooft anomaly between the subsystem symmetries,
preventing the ground state manifold to be trivially gapped.

We recall that a mixed ’t Hooft anomaly is an obstruction to
simultaneously gauging the corresponding symmetries. This
can be understood in an intuitive way. Consider a single pair
of symmetry operators satisfying (9) with MW = −W M, as
well as states |ψ ′〉 and |ψ ′′〉 constructed as

|ψ ′〉 = MW |ψ〉 and |ψ ′′〉 = W M |ψ〉 . (10)

The commutation relation between M and W implies |ψ ′′〉 =
− |ψ ′〉. As the two states differ by a phase, they belong to the
same ray and are identified actually as the same state. Now,
if we try to gauge both symmetries, which means that the
physical states must be invariant under the action of M and
W , we get a contradiction |ψ〉 = − |ψ〉. In other words, there
are no physical states in the gauged theory and the partition
function vanishes.

V. EXCITATIONS AND MUTUAL STATISTICS

Excitations correspond to any state with Op |ψ〉 = − |ψ〉,
for some TD operators. Such configurations are either created
in pairs at the endpoints of open Wilson lines or in groups of
three at the corners of open fractal membranes. The rigidity
of string and membrane operators is reflected in the allowed
dynamics for the quasiparticles excitations. While open lines
W a

I are associated with the free transport of excitations along
the z direction, open Ma

I cannot be used to move particles in
the xy plane. This is because Ma

I maps a single particle state
into a two-particle state, a process that has a high energy cost
�E ∼ J . Open membranes Ma

I can be used, though, to map
three-particle states into three-particle states with no energetic
cost, through the growth of the underlying fractal membrane
Ma

I . However, such a process passes through highly ener-
getic intermediate states, making the corresponding tunneling
probability very small. This implies that all excitations are
immobile along the xy plane in finite times, which is a mani-
festation of type-II fracton physics [4].

We can define the notion of mutual statistics among a
single excitation and a three-particle composite excitation
[58,59]. Let us denote such a state as |1, 3〉, corresponding
to the configuration in 1 of Fig. 4. First, we consider the
transport of the single excitation along the z direction through
the application of a Wilson line operator without intercepting

FIG. 4. Sequence of steps leading to the notion of mutual
statistics.

the triangular region defined by the three-particle excitation.
Then, we consider the application of an open membrane op-
erator to put apart the three excitations, enlarging the region
defined by them. Carrying the reverse transport of the single
excitation along the z direction, now the line operator inter-
sects the membrane and produces a minus sign. The final
step is to apply the membrane operator again to return the
three excitations to their initial position. This sequence of
operations is depicted in Fig. 4. In algebraic terms, it reads

Ma
I

† W a
I

† Ma
I W a

I |1, 3〉 = − |1, 3〉 , (11)

where we have used the algebra (9). The minus sign on the
right hand side implies nontrivial mutual anyonic statistics
among the involved excitations, which is a signature of long-
range entanglement of topological ordered phases.

VI. SPONTANEOUS BREAKING OF SUBSYSTEM
SYMMETRIES

It is enlightening to view fractal topological order from
the perspective of spontaneous breaking of subsystems
symmetries. Topological order is characterized by the indis-
tinguishability of the ground states, which means that for any
local operator �, it follows that

〈GS, a| � |GS, b〉 = Cδab, (12)

where C is a constant independent of the particular ground
state |GS, a〉. Distinct ground states are connected by extended
symmetry operators. This is precisely the notion of sponta-
neous symmetry breaking, but for a generalized symmetry,
where extended symmetry operators act nontrivially on the
ground states, taking from one to another.

In order to ensure the property (12), we need two gen-
eralized symmetries mixed by a ’t Hooft anomaly. Let us
consider a specific pair of line W and membrane M opera-
tors, satisfying [H,W ] = [H, M] = 0 and [M,W ] �= 0, with
W 2 = M2 = 1. We choose the ground states |GS, a〉, a = 1, 2,
as simultaneous eigenstates of H and W ,

H |GS, a〉 = E0 |GS, a〉 and W |GS, a〉 = λa |GS, a〉 , (13)

where λa = ±1 and λ2 = −λ1. Then, |GS, 1〉 and |GS, 2〉 are
connected by the membrane operator, |GS, 2〉 = M |GS, 1〉.
Now let us see how the two symmetries W and M
lead to (12). We start by computing 〈GS, 2| � |GS, 2〉 =
〈GS, 1| M�M |GS, 1〉. As the membrane operator M is mobile
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FIG. 5. Local splitability of the Wilson line.

along the z direction, we can move it in order to avoid the posi-
tion of the local operator, which means that M commutes with
�. This implies that 〈GS, 2| � |GS, 2〉 = 〈GS, 1| � |GS, 1〉.

It remains to show that 〈GS, 2| � |GS, 1〉 = 0. We start
with the left hand side of this equation and use (13) to write
it as 〈GS, 2| � |GS, 1〉 = λ−1

1 λ−1
2 〈GS, 2|W �W |GS, 1〉. We

cannot use the same argument as before to justify the com-
mutation of W and � in the case where they intercept because
W is rigid. However, such a line operator enjoys a slightly
different property, which we refer to as local splitability. This
is a kind of nontopological deformation in the sense that it
does not preserve the form of a line. Nervertheless, this can be
used to avoid the point of support of the local operator. Sup-
posing that � is located at a site j, we can use a TD operator O
containing an Xj to define the new object W̃ ≡ OW = WO,
which avoid the site j at the price of splitting the line around
it, as shown in Fig. 5. With this,

〈GS, 2| � |GS, 1〉 = λ−1
1 λ−1

2 〈GS, 2|W �W |GS, 1〉
= − 〈GS, 2|OW �W O |GS, 1〉
= − 〈GS, 2| � |GS, 1〉 , (14)

where we have used that O |GR, a〉 = |GR, a〉. Therefore, we
obtain 〈GS, 2| � |GS, 1〉 = 0. In conclusion, the two subsys-
tem symmetries possessing a mixed ’t Hooft anomaly ensure
the condition of indistinguishability of the ground states
required for topological order, which in turn is equivalent to
the spontaneous breaking of the subsystem symmetries.

VII. EXPLICIT BREAKING OF FRACTAL SUBSYSTEM
SYMMETRIES

For sizes L as in Eq. (4) with n = m + 1 or sizes that
cannot be expressed in the form of Eq. (4), the ground state is
unique since there are no nontrivial solutions for t’s. Accord-
ingly, there are no membrane operators that commute with the
Hamiltonian, since they do not close. In other words, the frac-
tal subsystem symmetries are explicitly broken. Membrane
operators that do not commute with a single TD operator can
be used to create local excitations. This implies that there
is only a single global anyonic superselection sector, as this
type of membrane can be used to create and destroy single
particles. The corresponding phases, however, are also topo-
logically ordered as the notion of mutual statistics in Eq. (11)
is still present.

While spontaneous symmetry breaking of discrete sub-
system symmetry produces topological ordered phases with
nontrivial ground state degeneracy, it is not a necessary con-
dition (instead, it is a sufficient condition) as long as we define
topological order in terms of long-range entanglement [1].
This is suitable for phases with a unique ground state, since
the indistinguishability condition (12) is trivial in such cases.
On the other hand, the mutual statistics in (11) implies long-
range entanglement and, consequently, topological order.

Every Wilson line can be expressed in terms of a product
of TD operators for these system sizes. Consider a membrane
that creates a local excitation at the site i, Ma

i . According to the
correspondence shown in Fig. 2, we can construct from such
a membrane an operator involving the product of O’s, whose
result is an isolated X at the site i and a set of Z’s in neighbor-
ing planes above and below X . The product of this structure
along the z direction annihilates the Z’s so that we end up
with a Wilson line, W a

i = ∏
m ∈ z

∏
p∈Ma

i
Om

p [55]. Acting on
the ground state all these operators become the identity. These
are trivial symmetry operators in the sense that they involve
only operators that are present in the Hamiltonian.

If we cut open the system along the xy plane at fixed
coordinates z = z1 and z = z2, the TD operators at the cut
planes will split in two and become boundary operators,
O → Bz1 Bz2 . In this case, Wilson lines need to be attached
to boundary operators,

W 1
i =

⎛
⎝ ∏

m ∈ z �=z0

∏
p∈M1

i

Om
p

⎞
⎠

︸ ︷︷ ︸
bulk

⎛
⎝ ∏

p∈M1
i

Z
L− a0

2
p (XXX )L

p

⎞
⎠

︸ ︷︷ ︸
boundary at z1

⎛
⎝ ∏

p∈M1
i

(XXX )z0
p Z

z0− a0
2

p

⎞
⎠

︸ ︷︷ ︸
boundary at z2

(15)

and

W 2
i =

⎛
⎝ ∏

m ∈ z−a0/2

∏
p∈M2

i

Om
p

⎞
⎠

︸ ︷︷ ︸
bulk

⎛
⎝ ∏

p∈M2
i

ZL
p

⎞
⎠

︸ ︷︷ ︸
boundary at z1

⎛
⎝ ∏

p∈M2
i

Zz0
p

⎞
⎠

︸ ︷︷ ︸
boundary at z2

, (16)

for the lines in the two sublattices. These symmetry operators
are no longer constrained to act as the identity on the ground
state because the presence of the boundary operators.

This leads to the existence of protected edge modes as long
as the extended symmetries W are preserved [60]. While the
Wilson lines (15) and (16) involving both bulk and boundary
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operators do commute among themselves, there is a non-
trivial algebra among boundary operators. In other words,
while the symmetries are realized exactly in the whole sys-
tem (bulk+boundary), they are anomalous when considering
only the boundary. Consider, for example, the boundary sym-

metry operators at z = z0, B1
i ≡ ∏

p∈M1
i

Z
z0− a

2
p (XXX )z0

p , and

B2
i ≡ Zz0

i . They satisfy B1
i B2

j = (−1)δi jB2
j B1

i , which leads to
a nontrivial degeneracy of the boundary modes. Through the
application of TD operators, these boundary operators can be
stretched into the bulk, so that the nontrivial algebra flows to
the bulk (anomaly inflow).

VIII. CONCLUSIONS

We have reported on a model that presents exotic topo-
logical order due to an intricate interplay between fractal
subsystem symmetries and the lattice size. The fractal sub-
system symmetries are quite sensitive to the lattice size and
exist only for linear sizes of the form L = k(2n − 2m), with
integers k � 1, n > 2, and m � 0, satisfying n > m + 1. The

fractal symmetries possess mixed ’t Hooft anomalies with the
line subsystem symmetries, which lead to a nontrivial ground
state degeneracy. This amounts to the spontaneous breaking of
the fractal symmetry. For the remaining sizes, the fractal sym-
metry is explicitly broken and there are no fractal membrane
operators that commute with the Hamiltonian. Consequently,
there are no mixed ’t Hooft anomalies and the ground state
is unique. Despite the unique global anyonic superselection
sector, such cases are topologically ordered, since the ground
state is still long-range entangled.
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