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Ordered phases and superconductivity in two-dimensional electron systems
subject to pair spin-orbit interaction
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Pair spin-orbit interaction can emerge in strongly interacting systems characterized by a large spin-orbit
coupling. Here we study the role of this interaction in stabilizing ordered and unconventional superconducting
phases. We find that, if the system avoids superconductivity, the order realized is a combination of charge density
and spin-vorticity waves. The latter is reminiscent of a loop-current state, albeit in the spin channel, rather than
in the charge channel. If the system becomes superconducting, the order parameter assumes the form of a paired
density wave, i.e., pairing occurs at finite momentum. Intriguingly, one of the possible pairings acquires a form
analogous to Amperean superconductivity. However, the order parameter here is always a blend of paired density
wave and Amperean pairing, rather than being purely one or the other.

DOI: 10.1103/PhysRevB.109.075163

I. INTRODUCTION

The spin-orbit interaction (SOI), which couples the spin
degree of freedom of electrons to their orbital motion, has
received increasing attention in recent years [1–5]. Several
spintronics applications rely in fact on strong SOI to give
rise to novel effects that can be employed in functional de-
vices. More recently, the interplay between the SOI in Rashba
materials and the Coulomb repulsive interaction has been
shown to give rise to a plethora of unusual physical effects
[6–11]. For instance, it can lead to enhanced Zeeman splitting
effects and modifications in the plasmon mass, as well as to
the suppression of the Drude weight in certain systems. In
two-dimensional systems, the Rashba SOI is typically induced
by an electric field perpendicular to the system, which is the
result of broken symmetry due to, e.g., the material’s layered
nature [12–15]. In addition to this electric field, which respon-
sible for the one-body SOI, electron-electron interactions and
the pairwise electric field they generate can also give rise to a
SOI, known as pair spin-orbit interaction (PSOI).

Although traditionally considered to be a small effect,
recent studies have indicated that the PSOI is significantly
enhanced in Rashba materials [1,13,16], leading to substantial
modifications of noninteracting electronic states [1,13,17].
The diverse range of novel phenomena arising from this inter-
action is primarily attributed to the effective attraction that it
can introduce amongst electrons [1,18]. Furthermore, unlike
the Coulomb interaction, dimensional analysis reveals that
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the strength of PSOI interaction increases as the dimension-
less Coulomb coupling parameter rs = 1/(aB

√
πn) decreases.

This implies that PSOI correlations can become dominant
at sufficiently high densities [18]. This contrasts with the
conventional phenomenology of electron liquids, whereby in-
teractions become dominant only in the low-density limit [19].

Recently, it has been shown that for a PSOI two-
dimensional electron system [18], once the particle density
reaches a critical value, a sharp peak appears in the static
structure factor. The peak is at a finite wave vector qc. The
density-density correlation function also exhibits a divergence
at the same value of the wave vector [18]. These signatures
are typically due to a phase transition associated with the
formation of a charge density wave (CDW) [20]. However,
CDWs are known to be suppressed by the presence of long-
range Coulomb interactions. This fact raises a question about
the form of the order parameter in two-dimensional PSOI
systems.

In this paper we investigate the type of order parameter
associated with the phase transition observed in PSOI systems
[21,22]. We employ a double Hubbard-Stratonovich (H-S)
transformation to derive an effective theory for a PSOI two-
dimensional electron systems near the phase transition point.
Using a mean-field approximation, and assuming that super-
conductivity does not occur, we derive an effective action
for two competing order parameters, CDW and spin-current-
vorticity wave (SCVW). There are averages of macroscopic
observables, which naturally emerge from the decoupling of
Coulomb interaction and PSOI. While the CDW is charac-
terized by a periodic modulation of the charge density, the
unusual SCVW state exhibits periodic variations of the vor-
ticity of the spin current. Since in the latter state spin-up
currents locally circulate in directions opposite to spin-down
ones, time-reversal symmetry is not broken.

Near the phase transition point, the so-derived effective
action for order parameters can be expressed in terms of cor-
relation functions of these macroscopic quantities evaluated
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in the normal state. By finding the zero mode of the matrix
coupling these macroscopic quantities, we determine the form
of the order parameter driving the phase transition. We find
that this is a linear combination of CDW and SCVW. There-
fore, when the electron density is high enough, the attractive
coupling due to the PSOI competes with the conventional
long-range Coulomb interaction and can stabilise a CDW in
a 2D electron gas. As expected, the correlation function of
the order parameter diverges at the phase transition point and
at the wave vector of the CDW/SCVW modulation within
the mean-field approximation. This divergence reflects simul-
taneously in both the density and spin-vorticity correlation
functions, thus explaining the observations of Ref. [18].

On the other hand, due to the effective attractive poten-
tial introduced by PSOI interactions, the system can also
exhibit an instability towards a paired-density-wave (PDW)
state [23–25]. We investigate this possibility by considering
local (delta-function-like) Coulomb interactions and PSOI.

We find that the PSOI favors pairing at finite momentum,
among which an Amperean-like superconducting coupling
between spin currents.

The paper is organized as following. In Sec. II we introduce
the model of electrons interacting via PSOI. In Sec. III, we
derive the effective action for this Hamiltonian base on a
double H-S transformation. In Sec. IV, we compute the free
energy and correlation functions of the system using a mean-
field approximation, and show the form acquired by the order
parameter. The discussion regarding PDW state is presented in
the Sec. V. Finally, we give a summary of results in Sec. VI.

II. THE MODEL

We consider the following model Hamiltonian for a 2D
electron gas interacting via the usual nonretarded Coulomb in-
teraction and via a PSOI coupling, first introduced in Ref. [18]

H = − 1

2m

∑
s

∫
drψ†

s (r)∇2
r ψs(r) + 1

2

∑
s1s2

∫
dr1dr2ψ

†
s1

(r1)ψ†
s2

(r2)U (r1 − r2)ψs2 (r2)ψs1 (r1)

− iα
∑
s1s2

∫
dr1dr2ψ

†
s1

(r1)ψ†
s2

(r2)[(s1∂x1 − s2∂x2 )Ey(r1 − r2) − (s1∂y1 − s2∂y2 )Ex(r1 − r2)]ψs2 (r2)ψs1 (r1). (1)

Here ψs(r) is the electron field operator, s = ±1 is the elec-
tron spin, U (r) = e2/r is the Coulomb interaction potential,
E (r) = e−1∇U (r) is the Coulomb field that produces the
PSOI, and α stands for the Rashba constant of the material.
By introducing dimensionless parameters, i.e., by rescaling
real-space vectors with r ≡ r/(rsaB) and introducing the di-
mensionless Rashba constant α ≡ α/ea2

B, we can reexpress
the Coulomb interaction and field in the following form
[18,26]:

Uq → rsUq, (2)

αE (q) → α

rs
E (q). (3)

Therefore, in the limit of large densities, rs → 0, the PSOI
becomes the dominant interaction in the Hamiltonian (1).

III. EFFECTIVE ACTION NEAR THE PHASE
TRANSITION POINT

In this section we perform the double H-S transformation
that allows us to decouple the interaction terms in Eq. (1) and
bring it to a form amenable to mean-field approximations. To
do so, we write the partition function Z as a functional integral
over a Grassmann field φs(r, τ ) with action

S[φ∗, φ] =
∑

s

∫ β

0
dτ

∫
dr[φ∗

s (r, τ )∂τφs(r, τ ) + H] (4)

where H here is obtained from Eq. (1) by replacing the
operators ψs(r) [ψ†

s (r)] with the Grassmann fields φs(r, τ )
[φ∗

s (r, τ )], τ is the imaginary time and β is the inverse tem-
perature. We call Sint[φ∗, φ] the part of the action stemming

from the interaction terms of Eq. (1), and we rewrite it as

Sint[φ
∗, φ] = 1

2

∫ β

0
dτdτ ′

∫
drdr′U (r − r′)δτ,τ ′

× [n(r, τ )n(r′, τ ′) + 8mαn(r, τ )M(r′, τ ′)]

≡ 1

2
(A|U |A) − 1

2
(B|U |B), (5)

here we have introduced two functions corresponding to
macroscopic physical quantities. The first n(r, τ ),

n(r, τ ) =
∑

s

φ∗
s (r, τ )φs(r, τ ) (6)

represents the electron density, while the second M(r, τ ) is
expressed as

M(r, τ ) = 1

2

∑
s

s∇r × js(r, τ ) = −1

2

∑
s

s∇2M̃s(r, τ ),

(7)

we refer to it as the spin-current-vorticity density. In Eq. (7),
js(r, τ ) and M̃s(r, τ ) are the current density and magnetiza-
tion for a given spin projection, respectively, i.e.,

js(r, τ ) = 1

2mi
[φ∗

s (r, τ )∇φs(r, τ ) − (∇φ∗
s (r, τ ))φs(r, τ )]

= ∇ × M̃s(r, τ ). (8)

In Eq. (5) we also introduced the notation

(α|O|β ) =
∫ β

0
dτdτ ′

∫
drdr′O(r − r′, τ − τ ′)

× α(r, τ )β(r′, τ ′) (9)
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with U ≡ U (r − r′)δτ,τ ′ , and α(r, τ ) and β(r, τ ) are two real
variables. Finally, in Eq. (5) we denoted

A(r, τ ) = n(r, τ ) + 4mαM(r, τ ),

B(r, τ ) = 4mαM(r, τ ). (10)

To decouple both fourth-order interaction terms simultane-
ously, we introduce two real auxiliary fields κ and λ. By
means of a H-S transformation, the partition function becomes
[21,27]

Z = N−1
∫

D[φ∗, φ; κ, λ] exp

{
− S0[φ∗, φ] + 1

2
(κ|U −1|κ )

− 1

2
(λ|U −1|λ) − (κ|A) − (λ|B)

}

= N−1
∫

D[κ, λ]e
1
2 (κ|U −1|κ )− 1

2 (λ|U −1|λ)−Skin[κ,λ], (11)

where now

(α|β ) =
∫ β

0
dτ

∫
drα(r, τ )β(r, τ ), (12)

which is obtained from Eq. (9) when O(r − r′, τ − τ ′) =
δ(r − r′)δ(τ − τ ′). The normalization coefficient in Eq. (11)
is defined as

N =
∫

D[κ, λ] exp

[
1

2
(κ|U −1|κ ) − 1

2
(λ|U −1|λ)

]
. (13)

To be able to conveniently compute quantities expressed in
terms of collective density fluctuations, such as the density-
density correlation function and the bosonized Hamiltonian,
we now perform a second H-S transformation [21]. We intro-
duce two new real auxiliary fields ξ and ρ, which can then be
identified physically with the bosonized fluctuations (CDW
and SCVW, respectively), to eliminate the fields κ and λ.
Performing the integration over the fermionic fields (φ and
φ∗), the partition function becomes

Z = N

N

∫
D[ρ, ξ ] exp

[
− 1

2
(ρ|U |ρ) + 1

2
(ξ |U |ξ )

]

×
∫

D[κ, λ] exp

{
(ρ|κ ) + (ξ |λ) − Skin[κ, λ]

}

=
∫

D[ρ, ξ ] exp

{
− 1

2
(ρ|U |ρ) + 1

2
(ξ |U |ξ ) − S̃kin[ρ, ξ ]

}

≡
∫

D[ρ, ξ ] exp{−S̃[ρ, ξ ]} (14)

where the kinetic part of the action Skin[κ, λ] is defined as

Skin[κ, λ] = −Tr ln(1 − G0�) (15)

with

�ss′ (r, τ ; r′, τ ′) = δss′ [κ (r, τ )δ(r − r′)δ(τ − τ ′)

− i2αs(∇r(κ (r, τ ) − iλ(r, τ ))) × (∇r′δ(r′ − r))δ(τ − τ ′)].
(16)

This complicated expression, up to a constant, can be written
in terms of a series as Skin[κ, λ] = ∑∞

�=1 �−1Tr[(G0�)�]. To
obtain the last line of Eq. (14), we performed the integration

over the fields κ and λ, and we introduced S̃kin[ρ, ξ ] as the
functional Fourier transformation of Skin[κ, λ], i.e.,

e−S̃kin[ρ,ξ ] =
∫

D[κ, λ]e(ρ|κ )+(ξ |λ)−Skin[κ,λ]. (17)

Finally, using the generating functional approach [27], the
vacuum expectation values and correlation functions of H-S
fields in Eqs. (6) and (7) can be connected to the expectation
values of the fields ρ and ξ and their correlation functions as

〈n(r, τ )〉 = 〈ρ(r, τ )〉S̃ − 〈ξ (r, τ )〉S̃,

〈M(r, τ )〉 = (4mα)−1〈ξ (r, τ )〉S̃,

〈n(r1, τ1)n(r2, τ2)〉
= 〈(ρ(r1, τ1) − ξ (r1, τ1))(ρ(r2, τ2) − ξ (r2, τ2))〉S̃,

〈M(r1, τ1)M(r2, τ2)〉 = (4mα)−2〈ξ (r1, τ1)ξ (r2, τ2)〉S̃. (18)

Note that the averages on the left- and right-hand side of these
equations are taken with the actions of Eqs. (4) and (14),
respectively. Specifically, the two expressions can be written
as follows:

〈O(r, τ )〉 = 1

Z

∫
D[φ∗, φ]O(r, τ )e−S[φ∗,φ], (19)

〈O(r, τ )〉S̃ = 1

Z

∫
D[ρ, ξ ]O(r, τ )e−S̃[ρ,ξ ]. (20)

Thus, by employing two consecutive H-S transformations
we have obtained an effective action involving real fields,
which is amenable to further mean-field treatment in the
vicinity of the phase transition point, as we now proceed to
show. We have also shown that the averages of the physical
observables n(r, τ ) and M(r, τ ) can be obtained from the
averages of the new H-S fields we have introduced.

IV. MEAN-FIELD APPROXIMATION

The mapping shown in the previous section is exact, and
therefore the final action in Eq. (14) still exhibits all the
complexity of the initial problem. To proceed further, it is
necessary to approximate it. The simplest, but at the same
time most powerful approximation enabling further analytical
progress is a mean-field one. We now describe how such
approximation is constructed.

We begin by truncating Skin[κ, λ] to quadratic order in the
H-S fields as

Seff[κ, λ] � Tr[G0�] + 1
2 Tr[(G0�)2]. (21)

We note that, for any electrically neutral system, the Hartree
contributions from the first term in (21) will always be can-
celed out by contributions arising from the positive charge
background. Therefore, we neglect it in what follows and
focus on the terms arising from the last one in Eq. (21).
Substituting Eq. (21) into Eq. (17), after some lengthy but
straightforward algebra we obtain the effective action under
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Gaussian approximation

S̃[ρ, ξ ]

V β
= 1

2

∑
q

ρ−q[U (q) + �−1
0 (q)]ρq

+ 1

2

∑
q

ξ−q[−U (q) + �−1
0 (q) + �−1

1 (q)]ξq

− 1

2
ρ−q�

−1
0 (q)ξq − 1

2
ξ−q�

−1
0 (q)ρq, (22)

where q = (q, iωn) and

ρq = 1

V β

∫ β

0
dτ

∫
drρ(r, τ )e−iq·r+iωnτ ,

ξq = 1

V β

∫ β

0
dτ

∫
drξ (r, τ )e−iq·r+iωnτ ,

G0(q) = 1

iωn − εk + μ
,

�0(q) = −1

V β

∑
k;s

G0(k)G0(k + q),

�1(q) = −(2α)2

V β

∑
k;s

G0(k)G0(k + q)(q × k)2. (23)

The next step to derive a mean-field action consists in
performing a saddle-point approximation. We replace ρq and
ξq with their average values in Eq. (22) and, using Eq. (18), we
replace such averages with 〈n−q〉 and 〈M−q〉. The mean-field
Landau-Ginzburg free-energy density, which includes both
Coulomb interaction and PSOI, reads

f [〈n〉, 〈M〉] = 1

2

∑
q

( 〈n−q〉
〈M−q〉

)T

�(q)

( 〈nq〉
〈Mq〉

)
, (24)

where

�(q) =
(
U (q) + �−1

0 (q) 4αU (q)
4αU (q) (4α)2�−1

1 (q)

)
. (25)

We observe that, since the matrix �(q) is even with respect to
q, its eigenvectors always satisfy the following identity:( 〈n−q〉

〈M−q〉
)

=
( 〈nq〉

〈Mq〉
)

. (26)

We now analyze Eqs. (24) and (25) in more detail around the
phase transition point. We determine the form of the order
parameter, which is nonuniform in space, and the wave vector
at which its modulation occur.

A. Landau-Ginzburg free energy and order parameter

The system is unstable against developing order, e.g., a
CDW or SCVW (or a combination of the two, see below)
when an eigenvalue of the matrix �(q) in Eq. (25) becomes
zero or negative. The eigenvalues and eigenvectors of �(q)
are found by applying a unitary transformation that introduces
new bosonic fields γ±(q) [19], i.e.,

〈nq〉 = γ+(q) cos θq − γ−(q) sin θq, (27)

〈Mq〉 = γ+(q) sin θq + γ−(q) cos θq, (28)

where the rotation angle θq is chosen so as to cancel off-
diagonal terms and satisfies

tan(2θq) = 2�12(q)

�11(q) − �22(q)
. (29)

Using this transformation, the free energy can be diagonalized
as

f = 1

2

∑
q,±

ε±(q)γ±(−q)γ±(q), (30)

where

ε±(q) = �11(q) + �22(q)

2

±
√(

�11(q) − �22(q)

2

)2

+ (�12(q))2. (31)

Using the zero-temperature expressions for �0(q) and �1(q)
given in Refs. [18,28], as well as the two-dimensional
Coulomb interaction U (q) = 2π/|q|, we can determine the
eigenvalues ε−(q) and ε+(q).

In Fig. 1 we see that, while ε+(q) is a monotonic function
of q has a minimum at a finite wave vector whose magnitude
depends on the value of rs. At rs = r∗

s and q = qc, the mini-
mum value of ε−(q) vanishes. The critical values of r∗

s and qc

are related to α according to [18]

r∗
s = 2

13
6 α√

21/3 + 2α2/332/3
, (32)

qc

kF
= 2α1/331/3

√
21/3 + 2α2/332/3

. (33)

These are depicted in Figs. 1(a) and 1(b), respectively, as a
function of the parameter rs/r∗

s . For these values of r∗
s and qc

the order parameter, γ−(qc) becomes nonzero and equal to

γ−(qc) = − sin θqc〈nqc〉 + cos θqc〈Mqc〉. (34)

By plugging the value of q = qc given in Eq. (33) into
Eq. (29), we obtain the relationship between the angle θqc

and the PSOI parameter α at the critical value r∗
s , which is

shown in Fig. 2. It is evident from Fig. 2 that, for any given
parameter α, the order parameter near the critical point always
manifests as a mixture of CDW 〈nqc〉 and SCVW 〈Mqc〉. When
the parameter α approaches zero, also θqc → 0. In this case,
we can simplify the expression of the free energy and obtain

f = 1

2

∑
q,±

ε±(q)γ±(−q)γ±(q)

→ 1

2

∑
|q|=qc

ε−(qc)γ−(−qc)γ−(qc)

→ 1

2

∑
|q|=qc

ε−(qc)〈M−qc〉〈Mqc〉. (35)

Therefore, the order parameter becomes a pure SCVW. On the
other hand, when the parameter α is very large, θqc → π/2,
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FIG. 1. (a) Eigenvalue ε−(q) in Eq. (31) as a function of wave
vector q for a 2D system of nonrelativistic electrons interacting via
nonretarded Coulomb interaction and PSOI. The function exhibits
a minimum that touches the horizontal axis for rs = r∗

s [given in
Eq. (32)]. For this value of rs, the minimum is located at q = qc,
where qc is given in Eq. (33). (b) Same as (a) but for the eigenvalue
ε+(q). The function is monotonically decreasing and it never van-
ishes. In both plots we have set α = 0.1, e = 1, and m = 1, which
corresponds to qc � 0.91kF .

and the effective free energy becomes

f → 1

2

∑
|q|=qc

ε−(qc)γ−(−qc)γ−(qc)

→ 1

2

∑
|q|=qc

ε−(qc)〈n−qc〉〈nqc〉, (36)

i.e., the order parameter is a CDW.
To summarize, we found that the order parameter of a

2D electron gas in the presence of PSOI is always a linear
combination of CDW and SCVW, rather than a single one
of them. In the next subsection, we will also clarify that
the corresponding static correlation functions [χnn(qc, 0) and
χMM (qc, 0)] are simultaneously divergent at the critical point,
and therefore the phase transition can be detected in either
channel. However, for small or large values of α, the or-
der parameter tends to a pure SCVW or CDW, respectively.
This result also implies that, for sufficiently weak PSOI in-
teractions, the system is not expected to develop a CDW.
We stress that this does not imply a complete absence of a
phase transition in the system. Contrary to the case of the

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

FIG. 2. The value of the mixing angle θqc between CDW and
SCVW phases as a function of α. For small α, the order param-
eter becomes a pure SCVW. Conversely, for large values of α it
approaches a pure CDW. Therefore, the PSOI improves the stability
of CDW broken symmetry phases compared to the conventional 2D
electron gas.

standard 2D electron gas, this mean-field result indicates that,
at sufficiently high densities, the attraction due to the PSOI is
always strong enough to counterbalance the Coulomb repul-
sion. However, if the electron densities required become too
high, the k · p approximation used to describe a real material’s
band structure with the Hamiltonian in Eq. (1) may not be
applicable. As a consequence, the results of this paper [based
on Eq. (1)] may lose their validity [18]. Taking into account
such band structure effects is beyond the scope of the present
paper. Thus, disregarding this aspect, it can be stated that
in the mean-field approximation, a phase transition always
occurs in a 2D electron gas at a sufficiently high density, and it
is always a mixture of SCVW and CDW. It is also interesting
to note that, for large values of the PSOI coupling α, the order
parameter acquires a significant CDW component, at odds
with what is expected in conventional 2D electron gases where
a spin-density wave dominates [29].

B. Static correlation function

To derive the static correlation function, we now transform
the effective action in Eq. (22) by introducing the fields ζ±(q)
as

ρ(q) = ζ−(q) cos ϑq − ζ+(q) sin ϑq, (37)

ξ (q) = ζ−(q) sin ϑq + ζ+(q) cos ϑq. (38)

where ϑq here is another unitary transformation parameter
introduced for the purpose of orthogonalizing with an action
of Eq. (22). Using these relations, Eq. (22) becomes

S[ζ−, ζ+] = V β

2

∑
q

ζ±(−q)�−1
± (q)ζ±(q), (39)

where

�−1
± (q) = �−1

0 (q) + 1

2
�−1

1 (q)

±

√√√√(
U (q) − �−1

1 (q)

2

)2

+ (
�−1

0 (q)
)2

. (40)
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FIG. 3. (a) Density-density static correlation function plotted as a
function of wave vector q and for α = 0.1, e = 1, and m = 1 (which
corresponds to qc � 0.91kF , as indicated by the black arrow in the
figure). (b) SCVW static correlation function plotted as a function of
wave vector q. Both functions shows a prominent peak, which moves
to the left and increases in magnitude when rs → r∗

s , signaling the
onset of the phase transition at r�

s .

By utilizing the change of variables in Eq. (18) and setting
iωn = 0, we can find the density-density and M − M static
correlation functions as

χnn(q, 0) = cos2 ϑq�−(q) + sin2 ϑq�+(q)

− 2 cos ϑq sin ϑq(�−(q) − �+(q))

+ sin2 ϑq�−(q) + cos2 ϑq�+(q), (41)

χMM (q, 0) = ( sin2 ϑq�−(q) + cos2 ϑq�+(q))
(4mα)2

. (42)

The two response functions are plotted in Figs. 3(a) and 3(b),
respectively. Comparing the two figures, we see that they both
exhibit peaks at the same values of q. The peaks shift to the
left as the parameter rs/r∗

s approaches one, and grow in size.
This behavior clearly parallels that of ε−(q), which vanishes
for q = qc in the limit rs/r∗

s → 1. This fact shows that the
phase transition due to PSOI, which occurs simultaneously in
the density and SCVW channel, can be detected by measuring
either correlation function.

V. PAIR-DENSITY-WAVE STATE

The previous discussion has shown that, even in the pres-
ence of repulsive Coulomb interactions, the PSOI in a 2D
electron system effectively provides an attractive potential
and can induce phase transitions when the density is suffi-
ciently high. We have studied phase transition in the CDW
and SCVW channels. In addition to the possibilities dis-
cussed above, here we analyze PDW and Amperean-like
superconductivity. In both cases, Cooper pairs have nonzero
momentum. Two-body calculations for PSOI-coupled elec-
trons indicate that bound states of particles of equal spins
are independent of the center-of-mass momentum [16]. This
makes it challenging to generate a PDW and Amperean-like
superconductivity by condensing such pairs. Therefore, here
we assume that only bound states formed with electrons of
opposite spins (also known as convective bound states [16])
participate in the superconductivity.

The discussion of the pairing instability here mirrors the
derivations given in the previous sections. Thus, we will be
brief on several details, which are analogous to what discussed
above.

We note that Amperean-like superconductivity can emerge
thanks to the second term on the last line of Eq. (5), which can
be rewritten as

S(2)
int = −1

2
(B|U |B)

= −1

2

∫ β

0
dτ

∑
s1s2

s1s2

∑
p,k,k′

Vk′k(p)φ∗
s1,k′+ p

2
(τ )

×φ∗
s2,−k′+ p

2
(τ )φs2,−k+ p

2
(τ )φs1,k+ p

2
(τ ), (43)

where the symmetrized interaction is

Vk′k(p) = 4α2U (k′ − k)

[
(k′ − k) × p + k + k′

2

]

×
[

(k′ − k) × p − (k′ + k)

2

]
. (44)

The term in Eq. (43) has a structure which is very similar
to the conventional Amperean pairing [30]. However, it de-
scribes an attractive interaction between spins, rather than
charge currents, and therefore is not expected to produce a
time-reversal-symmetry broken state.

We start by introducing the PDW and Amperean-like
pairings

�p(k, τ ) ≡ �(−k + p/2, k + p/2, τ )

= φ↓(−k + p/2, τ )φ↑(k + p/2, τ ), (45)

�p(k, τ ) ≡ �(−k + p/2, k + p/2, τ )

= i2α(k × p)

×φ↓(−k + p/2, τ )φ↑(k + p/2, τ ), (46)
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respectively, which allow us to express the effective interac-
tion action as

Seff
int [φ

∗, φ] = 1

V

∫ β

0
dτ

∑
p,k,k′

Uk′−k[�∗
p(k′, τ )�p(k, τ )

+�∗
p(k′, τ )�p(k, τ ) + �∗

p(k′, τ )�p(k, τ )]

= (�‖U‖�) + (�‖U‖�) + (�‖U‖�)

≡ (� + �‖U‖� + �) − (�‖U‖�) (47)

where we introduced the notation [27]

(α‖O‖β ) =
∫ β

0
dτdτ ′

∫
drdr′α∗(r, τ, r′, τ ′)

×O(r − r′, τ − τ ′)β(r′, τ ′, r, τ ), (48)

(α‖O−1‖β ) =
∫ β

0
dτdτ ′

∫
drdr′α∗(r, τ, r′, τ ′)

× 1

O(r − r′, τ − τ ′)
β(r′, τ ′, r, τ ). (49)

We decompose both fourth-order interaction terms by in-
troducing two H-S complex bosonic fields X and Y and
integrate out the fields φ and φ∗. We obtain

Z =
∫

D[X,Y ]e−S[X,Y ], (50)

where

S[X,Y ] = −(X‖U−1‖X ) + (Y ‖U−1‖Y )

+
∞∑

l=1

1

l
Tr[(G0�)l ]. (51)

Here, the noninteracting Green’s function (G0) and self-
energy (�) matrices are

G0(x, τ ; x′, τ ′) =
[

G0(x, τ ; x′, τ ′) 0
0 −G0(x′, τ ′; x, τ )

]
,

(52)

�(x, τ ; x′, τ ′) =
[

0 �12(x, τ ; x′, τ ′)
�21(x, τ ; x′, τ ′) 0

]
,

(53)

respectively, with

�12(x, τ ; x′, τ ′) = δ(τ − τ ′)[X (x′, x, τ )

+ i2α(∇x × ∇x′ )(X (x′, x, τ )

+ Y (x′, x, τ ))], (54)

�21(x, τ ; x′, τ ′) = δ(τ − τ ′)[X ∗(x′, x, τ )

+ i2α(∇x × ∇x′ )(X ∗(x′, x, τ )

+ Y ∗(x′, x, τ ))]. (55)

Similar to the derivation of Eq. (18), the relationship be-
tween the vacuum expectation values of the H-S fields and the
pairing fields is given by

〈X (x, x′, τ )〉 = U (x − x′)〈�(x, x′, τ ) + �(x, x′, τ )〉,
〈Y (x, x′, τ )〉 = −U (x − x′)〈�(x, x′, τ )〉. (56)

We will assume that mean-fields acquire the form [30]

〈�p(k, τ )〉 ≡ δp,Q�Q(k),
(57)〈�p(k, τ )〉 ≡ δp,Q�Q(k),

i.e., Cooper pairs have a finite momentum in both the PDW
and Amperean channels.

Within the Gaussian approximation, we truncate again
the effective action to quadratic order in the self-energy. By
substituting Eqs. (56) and (57) into Eq. (50), after some
straightforward algebra we obtain the Landau-Ginzburg free
energy density

f =
(

�∗
Q

�∗
Q

)T

�(Q)

(
�Q
�Q

)
, (58)

where we denoted as �Q and �Q the vectors with components
�Q(k) and �Q(k), respectively, and

�(Q) = −
(
U + U (�2 + �3)U U + U�2U

U + U�2U U�2U

)
. (59)

In these equations, every product includes integration over the
momentum Q with measure 1/V . In Eq. (59), U , �2, and �3

are matrices with elements

Uk,k′ = U (k − k′),

�2,k,k′ = δk,k′
V

β

∑
ωn

G0(k, iωn)G0(Q − k,−iωn),

�3,k,k′ = (4α2)δk,k′
V

β

∑
ωn

(k × Q)2

⊗ G0(k, iωn)G0(Q − k,−iωn). (60)

In analogy to what shown in the previous sections, the
system becomes unstable against developing superconducting
phases when an eigenvalue of the kernel �(Q) becomes zero
[30,31]. It is important to note that since |Q| �= 0, �Q(k) is
generally not even for k → −k. This implies that electron
pairs do not only occur in the singlet channel but also possess
a singlet-triplet structure (although the spins of the two elec-
trons are always opposite), depending on the angle between k
and Q. This observation is consistent with previous two-body
calculations [16]. For the general case of U (q), this eigenvalue
problem is formidably complex and solving it requires em-
ploying heavily numerical methods. To gain qualitative insight
in the instability, in this paper, we consider the case of a local
(delta) interaction, whereby U (q) = U for all values of q. This
greatly simplifies the Landau-Ginzburg free energy density,
that becomes

f =
(

�̃∗
Q

�̃∗
Q

)T

�̃(Q)

(
�̃Q

�̃Q

)
, (61)

where now

�̃(Q) = −
(

U + U (�̃2 + �̃3)U 2α(U + U�̃2U )
2α(U + U�̃2U ) 4α2(U�̃2U )

)
. (62)

In these equations,

�̃Q = 1

V

∑
k

〈
φ↓

(
−k + Q

2

)
φ↑

(
k + Q

2

)〉
,

�̃Q = i

V

∑
k

(k × Q)

〈
φ↓

(
−k + Q

2

)
φ↑

(
k + Q

2

)〉
, (63)
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and

�̃2(Q) = 1

V β

∑
k,ωn

G0(k + Q, iωn)G0(k,−iωn),

�̃3(Q) = 4α2

V β

∑
k,ωn

(k × Q)2G0(k + Q, iωn)G0(k,−iωn).

(64)

The integrals in Eq. (64) are divergent in 2D. To handle such
divergences we calculate them in d = 2 − 2ε dimensions.
For |Q| < 2kF , setting the mass m = 1, a direct computation
yields [32–34]

�̃2(Q) = 1

4π
[ε−1 + ln 4π − γ − ln(2εQ/2)], (65)

�̃3(Q) = −4α2 Q2

4π
{μ + (εq/2 − μ)

× [ε−1 + ln 4π − γ − ln(2εQ/2)]}, (66)

where γ � 0.5772 is the Euler-Mascheroni constant. The di-
vergences in Eqs. (65) and (66) can in principle be removed
by renormalizing the interaction U , the PSOI coupling α, and
the chemical potential μ [35]. In this paper, for simplicity, we
adopt the modified minimal subtraction scheme [33], which
yields

�̃R
2 (Q) = 1

4π
ln

(
Eb

2εQ/2

)
, (67)

�̃R
3 (Q) = −4α2 q2

4π

[
μ + (εQ/2 − μ) ln

(
Eb

2εq/2

)]
, (68)

where Eb = (4π )2U −2 is the two-particle binding energy
[25,36]. By substituting Eqs. (67) and (68) into Eq. (62), we
find that, when the parameter rs falls below a critical value,
one eigenvalue of �̃(Q) vanishes. It is important to note that
this conclusion is independent of the direction of Q. Since Q
can be chosen in an arbitrary direction, this in turn implies a
degeneracy of the energy of ground states featuring unidirec-
tional mean-field modulations [24]. Our mean-field results for
many-body systems are in qualitative agreement with previous
calculations for two-body PSOI problems [16]. The vanishing
of one eigenvalue of �̃(Q) at finite |Q| essentially mirrors the
findings of [16], which concluded that pairs exhibit a moat-
band dispersion with a minimum at finite relative momentum.
The critical value of rs and corresponding qc, and their relation
to the parameters α and U , are illustrated in Fig. 4.

From this result, we see that PSOI can induce not just
the CDW and SCVW phases but also superconducting PDW
phase. However, due to the subtraction of divergences per-
formed in Eq. (67) it is not possible to directly compare the
critical values of parameters at which CDW/SCVW and su-
perconducting phase transitions occur. In practical situations,
determining which phase transition occurs first requires fur-
ther analysis, i.e., the implementation of a full renormalization
scheme, which is beyond the scope of this paper.

VI. CONCLUSIONS

In this paper we have derived the Ginzburg-Landau ef-
fective theory for a PSOI two-dimensional electron system
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0.0
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FIG. 4. (a) The critical value of r∗
s for the PDW state as a function

of α for U = 1 and m = 1 with α ranging from 0.1 to 10. (b) The crit-
ical value qc for the PDW state as a function of α. Other parameters
are the same as in (a). This mean-field result indicates that for any
given α, it it possible to find an electron density such that a PDW
phase transition occurs. The value of qc corresponding to such phase
transition increases as α increases.

by using a double H-S transformation. The effective theory
is written in terms of macroscopic averages of observable
quantities, in particular the density and the vorticity of the
spin current. These emerge naturally from the H-S decoupling
of the Coulomb interaction and PSOI. By working at the
level of Gaussian (mean-field) approximation, we find that the
order parameter is a combination of CDW and spin-current-
vorticity wave. The divergence of the correlation function for
this order parameter reflects in the divergences of correlation
functions of involved observables; in particular, of the density-
density correlation function, thus explaining the observations
of Ref. [18].

On the other hand, because of the attractive interaction
introduced by the PSOI term between pairs of electrons
with certain spin and momentum configurations, we have
investigated the possibility of superconducting broken phases
characterized by the presence of a PDW state. We have found
that the order parameter can acquire, among others, the form
of an Amperean-like coupling. However, divergences that
exist in the pair correlation functions, which require treat-
ment with renormalization schemes, prevent us from directly
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comparing the PDW phase transition point with the non-
superconducting ordered phase transitions discussed above.
Further work, beyond the scope of the current paper, is
needed to explore the relationship and competition between
them.
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