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Motivated by the emergence of higher-order van Hove singularities (VHS) with power-law divergent density of
states (DOS) (ρc(ω) = ρ0/|ω|r , 0 < r < 1) in materials, we investigate a multichannel Kondo model involving
conduction electrons near the higher-order van Hove filling, termed power-law diverging multichannel Kondo
model. This model considers M channel and N spin degrees of freedom. Employing a renormalization group
analysis and dynamical large-N approach, our results reveal the emergence of a pseudogap behavior in the
spectral properties of the local impurity at the overscreened fixed point. We precisely determine the conditions
under which the pseudogap behavior occurs, either by tuning the exponent r or the ratio κ = M/N to values
such as r∗ or κ∗. This pseudogap phase of spinon exhibits distinct physical properties that could have an impact
on the properties of real systems. The results of this study provide novel insights into the pseudogap behaviors
in strongly correlated systems and offer a playground to study the interplay between higher-order van Hove
singularities and multichannel Kondo physics.
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I. INTRODUCTION

Understanding exotic phenomena in strongly correlated
electronic systems is a central problem in condensed matter
physics. Among these phenomena, the Kondo effect is of
particular interest, describing the screening of a single mag-
netic impurity by itinerant electrons, resulting in the formation
of a many-body singlet state below a characteristic Kondo
temperature TK in metals [1]. When the magnetic impurity
is screened by multiple conduction channels symmetrically,
intriguing physics emerges, including non-Fermi liquid (NFL)
behaviors [2,3] and fractionalized quasiparticles [4–6]. These
exotic effects may have relevance for real heavy-fermion ma-
terials [7,8]. In certain limits, such as the large-N limit, the
multichannel Kondo model becomes exactly solvable, making
it an ideal playground for studying strong electron corre-
lation effects [9–11]. Unlike its single-channel counterpart,
whose low-temperature properties can be described using
Fermi-liquid theory around a strong-coupling fixed point [12],
the multichannel Kondo model exhibits a stable intermediate
overscreening fixed point and a non-Fermi liquid ground state.
Analytical studies based on conformal field theory have shed
light on this intriguing behavior [3,13].

The electron density of states (DOS) ρc(ω) = ρ0|ω|−r

(where |ω| � D, and D is the bandwidth) of the bath plays
a crucial role in determining the low-temperature behaviors of
the Kondo model [14,15]. In the framework of the renormal-
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ization group (RG), different forms of DOS lead to distinct
fixed points along the RG trajectories. To further elaborate on
this point, let us consider the multichannel overscreened case
as an example. For the case of a flat DOS (r = 0), the RG anal-
ysis reveals an unstable local moment (LM) fixed point and a
stable overscreened (OS) fixed point when the channel num-
ber exceeds 2S (S is the impurity spin size) [11]. On the other
hand, for the pseudogap DOS (−1 < r < 0), the RG flow
diagrams exhibit more intricate structures: a LM fixed point
at weak coupling and an OS phase at intermediate coupling,
separated by a quantum critical fixed point [15]. However, in-
vestigations of the single-channel Kondo model with S = 1/2
and single impurity Anderson model with a diverging DOS
indicate the presence of a stable ferromagnetic-coupling fixed
point and an antiferromagnetic strong-coupling fixed point
with a power-law dependence of the coupling strength on the
Kondo temperature TK [16,17].

An intriguing quantum phenomenon in correlated systems
is the pseudogap phase observed in cuprate superconductors
[18,19]. Despite decades of extensive studies, the microscopic
nature of the pseudogap phase remains elusive. Various pro-
posals, including those involving pairing [20,21], spin [22,23],
or charge [24] fluctuations, have been put forward in attempts
to explain this exotic phase. Regardless, phenomenological
description of the pseudogap phase features a diverging self-
energy, generally following �PG(ω) ∝ ωα where α < 0. For
instance, the self-energy of the pseudogap phase takes the
form �(ω, k) ∝ [ω + ε′

k]−1 in the doped resonating valence-
bond spin liquid with a kinetic energy εk = −2t (cos kx +
cos ky) involving nearest-neighbor hopping t [25,26], as well
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as in the Hatsugai–Kohmoto model with ε′
k = εk + U/2,

where εk represents the bare kinetic energy, and U denotes
the long-range interaction strength [27]. We will demonstrate
a pseudogap behavior in the self-energy of the spinon in
the overscreened multichannel Kondo model with a diverging
DOS.

In this study, we conduct a comprehensive investigation of
the multichannel Kondo model with SU(N) spin and SU(M)
channel symmetry, taking into account a power-law diverging
density of states of conduction electrons in the large-N limit.
The analytical results are obtained through RG analysis and
scaling relations, further substantiated by numerical confirma-
tion through dynamical large-N calculations. This allows an
in-depth exploration of the dynamical properties of the model
in proximity to the fixed point. Significantly, our findings
reveal the emergence of a pseudogap phase in the spectral
function of the local impurity by tuning the exponent r of
the conduction electron DOS or the ratio κ = M/N . Such
pseudogap phase exhibits distinct resistivity and susceptibil-
ity behaviors compared to cases with constant or pseudogap
DOS.

The structure of the paper is organized as follows: In
Sec. II we introduce the large-N version of multichannel
Kondo model with power-law diverging DOS and present the
fermionic representation of SU (N ) spin. Section III is dedi-
cated to RG analysis using a small r expansion to derive the
phase diagram of the model. We explore the dynamical prop-
erties of the fixed point in the antiferromagnetic (AFM) side,
employing the scaling relation in the large-N limit in Sec. IV.
The results are further substantiated through numerical large-
N calculations in Sec. V. To conclude, we summarize the
paper with a discussion of 1/N corrections, the realization of
the model in materials, and prospects for further studies in
Sec. VI.

II. MODEL

We begin with the following large-N Hamiltonian for the
multichannel Kondo model [10,11]:

HMK =
∑

k

c†
ασ,k(εk − μ)cασ,k + JK

N

∑
α

S · sα, (1)

where the symmetry of local spin is extended from SU (2) to
SU (N ). We choose antisymmetric representation of SU (N )
which in terms of pseudofermions (spinon) operators fσ
as Sσσ ′ = f †

σ fσ ′ − Q/Nδσσ ′ where σ = 1, . . . , N is the spin
flavor and Q = ∑

σ f †
σ fσ . Here we choose particle-hole sym-

metric case where Q = N/2, enforced through a Lagrange
multiplier λ. Accordingly, the channel is also extended to
SU (M ), where α = 1, . . . , M is the indices of the channel.
In order to get meaningful results, the Kondo interaction,
which is corresponding to the coupling strength between the
local magnetic impurity and conduction electrons, is scaled to
JK/N . This allows us to express the Kondo term as [11]

JK

N

∑
α

S · sα = JK

N

∑
σσ ′

( f †
σ fσ ′ − δσσ ′/2)c†

ασ ′,kcασ,k′ . (2)

The cασ,k represents the electron annihilation with the dis-
persion εk and the chemical potential is denoted by μ.

FIG. 1. Feynman diagrams in a large-N limit where the black
solid or dashed line represents the propagator of fermionic spinons
or conduction electrons. (a) Correction to Zf . (b) Correction to ZJ to
the first order in JK . (c) Correction to ZJ to the second order in JK .

This large-N model possesses the SU (N ) × SU (M ) symme-
try. In the calculation, we fixed the ratio κ = M/N in the
large-N limit. A key feature of our investigation is the con-
sideration of a power-law divergent DOS, characterized by
ρc(ω) = ρ0/|ω|r . Here, 0 < r < 1 is a positive number. No-
tably, the value r = 1/3 corresponds to the case of biased
bilayer graphene [28], while r = 1/4 pertains to kagome met-
als AV3Sb5 (A = K, Rb, Cs) and “magic” twisted-bilayer
graphene, known for higher-order van Hove singularities
(VHS) [17,29–32].

We introduce Green’s functions Gc(τ, k) =
−〈Tτ cασ (τ )c†

ασ (0)〉 and G f (τ ) = −〈Tτ fα (τ ) f †
α (0)〉, which

describe the conduction electrons and spinons, respectively.
The bare Green’s functions are given by

Gc(iωn) = 1

iωn − Ek
, G f ,0(iωn) = 1

iωn − λ
, (3)

with Ek = εk − μ and fermionic Matsubara frequency iωn.
Our analysis focuses on the AFM Kondo coupling in the
large-N limit with a fixed value of κ . We perform a renormal-
ization group (RG) analysis and then present the dynamical
and transport properties in the vicinity of the region where
pseudogap behavior emerges, employing the dynamical large-
N approach.

III. RG ANALYSIS BY SMALL r EXPANSION

In this section we perform a renormalization group analysis
based on dimensional regularization with minimal subtraction
of poles [33,34] in the power of 1/r. We introduce the renor-
malization field fσ,
 and dimensionless coupling constant
JK,
 at an energy cutoff 
 running from the bandwidth D
to 0, as fσ = Z1/2

f fσ,
 and JK = ZJZ−1
f JK,

r , respectively.

Here Z f and ZJ represent the renormalization factors for fσ,


and JK,
. Within this calculation, the Hamiltonian includes
counterterms which remove the singular part during RG cal-
culations, and this counterterm Hamiltonian [34] is

HCT =
∑

σ

(Z f − 1)λ f †
σ fσ + (ZJ − 1)

JK,

r

N

∑
α

S · sα.

(4)

We first perform the renormalization of the Green’s function
of f . It is given by

G−1
f (ω + λ) = ω − � f (ω + λ) = Z f G−1

f ,0(ω + λ). (5)

In the large-N limit, the self-energy � f (ω) is contributed by
the diagram as shown in Fig. 1(a). Hence the self-energy at
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finite temperature is

� f (iωn) = −J2
K,

2r

N2

T 2

V 2

∑
σ,α

∑
k,k′

∑
iω1,iω2

G f (iω1)

× Gc(iω2, k)Gc(iωn + iω2 − iω1, k′)

= J2
K,
κ
2r

∑
k,k′

f (Ek ) f (−Ek′ )

iωn − λ + Ek − Ek′
, (6)

where f (ω) = 1/(eω/T + 1) is the Fermi-Dirac distribution
function. ωn,1,2 are fermionic Matasubara frequencies. At zero
temperature, we have

� f (ω + λ) = −
∫
R

dω1dω2
J2

K,

2rκρ2
0

|ω1|r |ω2|r (ω + ω1 − ω2)

= −J2
K,
κρ2

0ω�(2r − 1)

(



ω

)2r

� J2
K,
ρ2

0κ

2r
ω + J2

K,
κρ2
0ω ln

(



ω

)
, (7)

where
∫
R dω1ω2 = ∫ 0

−∞ dω1
∫ +∞

0 dω2. �(x) is the Euler
gamma function, and we use the following integral

∫ 1

0
dx(1 − x)ε1−1xε2−1 = �(ε1)�(ε2)

�(ε1 + ε2)
. (8)

By demanding that the pole 1/r of the self-energy can be
canceled, the Z f = 1 − � f (ω + λ)/ω becomes

Z f = 1 − κρ2
0 J2

K,


2r
. (9)

The first-order correction to the interaction vertex �J ≡
JK,

rγJ in the large-N limit is described by Fig. 1(b), which
reads

γ
(1)

J (iωb) = JK,

r�ZS (iωb), (10)

where iωb is the bosonic Matasubara frequency. The particle-
hole bubble �ZS (iωb) is defined as follows:

�ZS (iωb) = T

V

∑
iω1,k

G0
f (iω1)Gc(iω1 − iωb, k)

= 1

V

∑
k

f (Ek )

iωb + Ek − λ
. (11)

Then we have

γ
(1)

J (ω + λ) = JKρ0�(r)�(1 − r)

(



ω

)r

� JKρ0

r
+ JKρ0 ln

(



ω

)
, (12)

and the second-order correction in JK,
 to the interaction
vertex is illustrated in Fig. 1(c). It can be straightforwardly
calculated as

γ
(2)

J (ω + λ) = −J2
K,
�2

ZS (ω + λ) = −J2
K,
ρ2

0

r2

(



ω

)2r

. (13)

To cancel out the poles in γ
(1)

J and γ
(2)

J , ZJ becomes

ZJ = 1 − JKρ0

r
+ J2

K,
ρ2
0

r2
. (14)

In the framework of the renormalization group procedure, the
bare vertex interaction JK remains the same, and the beta func-
tion for JK,
 is defined as β(J ) = ∂JK,
/∂ ln(D/
) which is
determined by [34]

d

d ln(D/
)

(
ZJZ−1

f JK,

r
) = 0, (15)

which leads to

β(J ) = r

1/JK,
 + ∂ ln(ZJ Z−1
f )

∂JK,


. (16)

By expanding the above equation to the third order in JK,
, we
can obtain

∂ J̄K

∂ ln(D/
)
= rJ̄K + J̄2

K − κ J̄3
K , (17)

where the dimensionless coupling constant J̄K = JKρ0. No-
tably, there exists a stable fixed point at J̄OS = (1 +√

1 + 4κr)/(2κ ), representing the overscreened Kondo phase,
and an unstable trivial fixed point J̄LM = 0 indicating a
local-moment phase. Moreover, our RG analysis reveals the
existence of a stable ferromagnetic coupling fixed point with
J̄FM = (1 − √

1 + 4κr)/(2κ ). In this work, we focus on the
overscreened fixed point JOS , which governs the low-energy
physics in the antiferromagnetic coupling regime.

IV. LARGE-N LIMIT WITH AFM COUPLING

To explore the Kondo overscreened phase with AFM cou-
pling both analytically and numerically in the large-N limit,
we introduce charged bosonic fields in each channel Bα (τ )
which conjugates to

∑
σ,k f †

σ (τ )cασ,k(τ )/
√

N , enabling the
decoupling of the Kondo interaction Eq. (2) [11,35]:

∑
α

[
B̄α

1

JK
Bα + 1√

N

∑
σ

( f †
σ cσ,αBα + B̄αc†

σ,α fσ )

]
. (18)

We define the Greens’ function GB(τ ) of the bosonic fields Bα

as GB(τ ) = ∑
α〈Tτ Bα (τ )B†

α (0)〉/M. In the large-N limit, the
saddle point equations are given by [36]

G−1
f (iωn) = iωn − λ − � f (iωn), (19)

G−1
B (i�n) = G−1

B,0 − �(i�n), (20)

with G−1
B,0(i�n) = −1/JK . The self-energies of fσ and Bα are

given by

� f (iωn) = −T

N

∑
α

∑
iωm

G0(iωm)GB(iωn − iωm), (21)

�(i�n) = T

N

∑
σ

∑
iωm

G0(iωm)G f (iωm − i�n), (22)

which are represented by the Feynman diagrams in Figs. 2(a)
and 2(b). iωm,n is the fermionic Matsubara frequency and i�n

is the bosonic Matsubara frequency. And the Green’s function
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FIG. 2. The leading Feynman diagrams in large-N limit for the
self-energy of (a) f and (b) B field, respectively. (c), (d) is one of the
1/N correction diagrams for f and B, respectively. The green wavy
line denotes the propagator of B field.

for the conduction electron G0(iωn) is defined as

G0(iωn) ≡ 1

V

∑
k

1

iωn − Ek
=

∫
dω′ ρc(ω′)

iωn − ω′ . (23)

Before employing the numerical dynamical large-N calcu-
lation for the above saddle-point equations Eq. (19)–(22) to
obtain the Green’s functions G f and GB, we first consider the
case in low-energy and zero-temperature limit. It is more con-
venient to rewrite the saddle-point equations in the imaginary
time as

� f (τ ) = −κG0(τ )GB(τ ),�(τ ) = G f (τ )G0(−τ ). (24)

In the low-temperature regime T −1
K � τ � T −1 → ∞ where

TK is the Kondo temperature acting as short-time cutoff of
the problem, it is expected that self-energy governs the saddle
point equations as [11]

G f (iωn)� f (iωn) = −1,�(i�n)GB(i�n) = −1. (25)

By solving spectral representation Eq. (23), the local
Green’s function for conduction electrons is G0(iωn) =
Cρ0|ωn|−rsgn(ωn) with constant C. In the low-energy and
zero-temperature limit, we assume the following scaling
forms:

G f (iωn) = iA1|ωn|�1−1sgn(ωn), (26)

GB(i�n) = A2|�n|�2−1, (27)

where A1,2 are prefactors and �1/2 > 0 are the scaling ex-
ponents to be determined. The retarded Green’s function can
be obtained by analytical continuation as GR(ω) = G(ω + iη)
with the following results:

GR
f (ω) = − A1e−i �1

2 π

(ω + iη)1−�1
, GR

B(ω) = i
A2e−i �2

2 π

(ω + iη)1−�2
, (28)

with a positive infinitesimal value η. Thus in the low-energy
and zero-temperature limit, the spectral function for f or B
field A f ,B(ω) = − Im GR

f ,B(ω)/π is

A f (ω) = −A1 sin
(

�1
2 π

)
π |ω|1−�1

, AB(ω) = −A2 cos
(

�1
2 π

)
sgn(ω)

π |ω|1−�2
.

(29)

FIG. 3. The scaling exponent �1 as functions of (a) r and (b)
κ = M/N by solving Eqs. (34) and (35).

After doing Fourier transformation for Eqs. (26) and
(27), the imaginary-time Green’s functions can be obtained
as

G f (τ ) = A1

2 cos
(

�1
2 π

)
�(1 − �1)

sgn(τ )

|τ |�1
, (30)

GB(τ ) = A2

2 sin
(

�2
2 π

)
�(1 − �2)

1

|τ |�2
, (31)

and G0(τ ) ∼ sgn(τ )/|τ |1−r . Here we use the following inte-
grals∫

dτeiωτ sgn(τ )

|τ |� = i2
�(1 − �) cos

(
�
2 π

)
|ω|1−�

sgn(ω), (32)

∫
dτeiωτ 1

|τ |� = 2
�(1 − �) sin

(
�
2 π

)
|ω|1−�

. (33)

Putting back Eqs. (26), (27), (30), and (31) into Eqs. (24) and
(25), we find that �1/2 must satisfy the following equations:

�1 + �2 = 1 + r, (34)

κ�(�1 − 1)�(1 − �1) cos2

(
�1π

2

)

= �(r − �1)�(�1 − r) cos2

(
r − �1

2
π

)
. (35)

At r = 0, there exists only one solution [11] �1 = 1/(1 +
κ ) and �2 = κ/(1 + κ ), coinciding with the fact that the
oversreened phase is the only fixed point for the flat DOS
conduction bath. We now fix κ = 1/2 and tune r slightly
away from zero, say r = 0.1, the exponent �1 extracted from
Eqs. (34) and (35) is approximately 0.767, which is larger than
2/3. As we tune the diverging DOS to a value at r∗ ≈ 0.314
(where �1 = 1), the pseudogap phase emerges. Importantly,
our analysis reveals that the strongly divergent DOS of con-
duction electrons significantly enhances the corrections to the
self-energy � f (ω) of spinons, ultimately resulting in singular
behavior in the pseudogap region. In Fig. 3, we present the
solution for the exponent �1 across the range of r and κ ,
demonstrating the existence of κ∗ when �1 = 1 at a fixed r.
It should be noted that r∗ or κ∗ does not represent a quantum
critical or phase transition point but rather a condition for the
emergence of pseudogap behavior.

Now let’s turn to discuss the observable in the power-law
diverging multichannel Kondo model. One crucial observable
is the resistivity arising from scattering of magnetic impurity.
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In the dilute limit, this contribution is given by [9,37]

ρ(T ) ∼ −
[∫

dω
∂ f (ω)

∂ω

ρc(ω)

Im[T (ω)]

]−1

. (36)

Here, T (ω) represents T-matrix for conduction electrons.
In the large-N limit, the impurity contributed to conduction
election is of 1/N order. Nevertheless, it has been demon-
strated that 1/N corrections are irrelevant for power-law
exponent of Green’s functions, making them valid for finite
N as well [9,38] (refer to the discussion in Sec. VI). Thus in
the large-N , the T-matrix is given by the convolution of G f

and GB, defining as [11]

T (τ ) = −G f (τ )GB(−τ ). (37)

In the case of flat DOS (r = 0), the resistivity ρ(T ) ap-
proaches a constant in the low-temperature limit [9,11], given
by ρ(T ) = ρ(0)[1 − γ (T/TK )κ/(κ+1)] for κ < 1, where γ is a
constant and TK is the Kondo scale in the considered problem.
On the other hand, in the pseudogap case (r < 0) at the scaling
invariant oversreened fixed point, the resistivity diverges fol-
lowing a power-law behavior ρ(T ) ∝ (TK/T )−2r , where the
−2r contribution arises from the pseudogap DOS and the
scattering matrix T (ω, T ).

In the diverging DOS case (r > 0), the resistivity exhibits
distinct behaviors in comparison to the flat and pseudogap
multichannel Kondo models. It vanishes at zero tempera-
ture, following the form ρ(T ) ∝ (T/TK )2r , which deviates
significantly from the Fermi liquid for r � 1. This nontrivial
power-law behavior of ρ(T ) in the power-law diverging mul-
tichannel Kondo model, which differ from the ρ(T ) ∝ T 1−r

in the absence of local impurity [39], signifies that the Kondo
screening effect strongly modifies the temperature behavior of
resistivity.

The dynamical susceptibility of the local impurity [35]

χ (τ ) = −G f (τ )G f (−τ ) (38)

also exhibits anomalous scaling behavior. In the low-
energy and zero-temperature limit χ (ω) ∝ ω1+η, where η is
a positive anomalous scaling exponent given by η = 2�1 − 2
in the pseudogap phase when r > r∗. At r = r∗, the exponent
η vanishes, and dynamic susceptibility becomes linear-in-ω at
low energy, i.e., χ (ω) ∝ ω. This peculiar anomalous scaling
behavior of the dynamic susceptibility can serve as a hallmark
for diagnosing the occurrence of the pseudogap phase in ex-
periments. This constitutes one of the key points of this work.

V. NUMERICAL RESULTS

To validate our analytical analysis beyond the low-energy
and temperature limits, we numerically solve the dynami-
cal large-N equations in real-frequency space across a broad
temperature range. The parameters are fixed at κ = 1/2 and
JK/D = 0.8 throughout the entire calculations unless explic-
itly stated otherwise. We employ a logarithmically dense
frequency grid, and speed up convergence using a modified
Broyden’s scheme [40]. Through analytical continuation, the

FIG. 4. (a) The r dependency of Af (ω) with corresponding
power-law exponent in scaling region. (b) the r dependency of AB(ω)
with corresponding power-law exponent in scaling region. The tem-
perature is set to be 10−7D.

self-energies in Eqs. (21) and (22) become

Im�R
f (ω) =−κ

π

∫
x

ImGR
B(x)ImGR

0 (ω − x)[b(x) + f (x − ω)],

Im�R(ν) = 1

π

∫
x

ImGR
f (x)ImGR

0 (x − ν)[ f (x) − f (x − ν)].

(39)

The real parts are given by Kramers-Kronig relation. Once the
self-consistent solutions are obtained, the local spin suscepti-
bility and T-matrix defined in Eqs. (37) and (38) are calculated
as follows:

Imχ (ν) = 1

π

∫
x

ImGR
f (x)ImGR

f (x − ν)[ f (x − ν) − f (x)],

ImT (ω) =−1

π

∫
x

ImGR
f (x)ImGR

B(x − ω))[b(x − ω) + f (x)].

(40)

The impurity entropy, defined as s = S − S0 where S is the
total entropy and S0 is the entropy in the absence of im-
purity, can be obtained using the Kadanoff-Baym formalism
[36,41] as

s = −
∫

dω

π

db

dT
κ
[
Im ln

(−1/GR
B

) + Im�R
BReGR

B

]

+ df

dT

[
Im ln

(−1/GR
f

) + Im�R
f ReGR

f − κRe�̃R
c ImGR

0

]
,

(41)

where �̃R
c (ω) = T (ω) and b(ω, T ) is the Bose-Einstein distri-

bution function. In Fig. 4(a), we present the spectral function
of spinons A f (ω, T ) at different r at relatively low temper-
ature. As seen in the figure, the scaling behavior is evident
for all value of r considered here, consistent with our scaling
analysis. Moreover, the pseudogap phase with positive scaling
exponent begins at a value that agrees well with the analytical
r∗ obtained above. This manifests as a peak at finite energy ω0

as marked in Fig. 4(a). Interestingly, we observe that ω0 ∼ TK

with TK as Eqs. (A15) derived in Appendix A in the case of
a power-law diverging DOS. The remarkable result suggests
that TK is the only relevant energy scale in our model. The
exponent extracted from the scaling region of Im G f ,B(ω) in
Figs. 4(a) and 4(b), through numerical fitting, also agrees well
with the solution of Eqs. (34) and (35).
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FIG. 5. (a) The r dependency of the imaginary part of T-matrix.
with corresponding power-law exponent in scaling region (b) the r
dependency of Im[χ (ω)] with corresponding power-law exponent in
scaling region. The temperature is set to be 10−7D.

Moving on to Fig. 5, we further examine the dynami-
cal physical quantities T-matrix and local spin susceptibility.
These quantities can be calculated by the convolution of the
single-particle Green’s functions using Eq. (40). The scal-
ing form of G f and GB leads to power-law behavior in the
T-matrix and susceptibility, with the exponent controlled by
r. These results validate the statement made in our analyt-
ical analysis, particularly the vanishing anomalous scaling
exponent of local spin susceptibility at r∗ for a fixed κ . By
utilizing the T-matrix, we can calculate Kondo contribution of
resistivity from Eq. (36). For r � 0 case, the T-matrix is either
constant or singular for low frequency at zero temperature,
resulting in NFL behavior in resistivity, as shown in Fig. 6(a).
However, the resistivity behaves differently for r > 0, where
exponent equals to 2r, leading to a decrease of the resistivity
when lower the temperature. The numerical calculations of
static susceptibility in Fig. 6(b) are also consistent with the
above analytical analysis.

It is also interesting to see how impurity entropy s(T )
evolves on parameters. We address this by using Eq. (41).
Figure 7(a) illustrates the impurity entropy as a function of
temperature for different values of r. At high temperatures,
all curves converge to a value close to the free-moment case,
which is ln 2. As the temperature decreases, the entropy starts
to decline at a characteristic temperature corresponding to
TK , and this increases with higher values of r due to the
enhanced DOS at the Fermi level. Figure 7(b) depicts the finite
temperature phase diagram of the model with a fixed r = r∗,

FIG. 6. (a) The temperature dependency of resistivity for differ-
ent r. The dashed and dotted line are the fitting for low temperature.
(b) The temperature dependency of static local susceptibility for
different r.

FIG. 7. The temperature dependency of impurity entropy for
different r. (b) s(T, JK ) as function of temperature and Kondo in-
teraction for r = r∗. The dashed line corresponds to the fitting using
Kondo temperature formula in Appendix A.

as investigated through the impurity entropy. Two distinct
phases, distinguished by different impurity entropy values,
are separated by a crossover region. The high-temperature
free-moment phase contracts to zero at zero temperature, and
the overscreened phase dominates the entire zero-temperature
region, indicating the unstable nature of the LM fixed point.
The crossover temperature aligns well with the Kondo tem-
perature obtained analytically in Appendix A. Figure 7(a) also
demonstrates that the impurity entropy at zero temperature is
a function of r which decreases with increasing of r.

VI. DISCUSSIONS AND CONCLUSIONS

A natural consideration in the context of the large-N limit
is whether the system remains stable when we account for
fluctuations in the finite-N case. It has been demonstrated that
N = 2 continuous-time quantum Monte Carlo results agree
well with the dynamical large-N results [38]. This agreement
can be understood by following the argument presented in
Ref. [9]. Here, we demonstrate that the saddle-point exponents
remain unchanged at the 1/N level in our power-law diverging
multichannel Kondo model. In the functional integral formu-
lation, a generic diagram with L loops involving Im G−1

f must
contain L propagators of the B field, L propagators of conduc-
tion electrons, and L − 1 propagators of spinons. For example,
L = 4 in the diagram of Figs. 2(c) and 2(d). The most sin-
gular part, therefore, behaves as δ Im G−1

f (ω) ∝ |ω|ζ f (L)/N
where ζ f (L) = L − rL + (�2 − 1)L + (L − 1)(�1 − 1). At
the saddle point with the relation �1 + �2 = 1 + r, we have
ζ f (L) fulfills ζ f (L) = 1 − �1. Similarly, we find δ Im G−1

B ∝
|ω|ζB (L)/N , where ζB = 1 − �2. Importantly, this argument
holds for both r � 0 and r > 0 cases. Thus, fluctuations are
irrelevant in altering the exponents governed by saddle points,
ensuring the robustness of the pseudogap phase against 1/N
fluctuations.

In conclusion, we have investigated the multichannel
Kondo model with power-law divergent DOS both ana-
lytically and numerically within the large-N limit. At the
overscreened fixed point, we have observed scaling behaviors
for the spinons and B fields, leading to the emergence of the
pseudogap behavior in the spectral properties of spinons by
tuning the exponent r or the ratio κ . When r = r∗ for the given
κ , both the resistivity and dynamical local spin susceptibility
exhibit power-law behaviors, with ρ(T ) ∝ T 2r∗

and χ (ω) ∝
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ω. These vanishing power-law behaviors of resistivity and
local susceptibilities deviate from the strange metal, marginal
Fermi liquid, and Landau-Fermi liquid behaviors. Finally, we
mention possible applications of our results. In twisted-bilayer
graphene systems, the DOS exhibits power-law divergence at
the magic angle. In these systems, a local moment can be
introduced either by substitution or effectively through intrin-
sic AA-stack configurations of the system [42,43]. The valley
degeneracy of graphene can serve as an independent channel,
leading to multichannel physics [44]. Our work suggests the
potential existence of a pseudogap-type spectrum in spinon
excitations in these systems. While the spinon considered in
our study is primarily local, a recent study which demonstrates
the lattice version of the model with minimal Heisenberg
coupling spontaneously develops spinon dispersion [45]. In
spin-liquid systems, the itinerant spinons behave like normal
electrons, leading to the development of the Kondo screen
observed by scanning-tunneling spectroscopy [46]. Future
studies could explore whether such a pseudogap spectrum of
local spinons could persist on the lattices, where spinons are
itinerant, giving rise to a pseudogap phase analogous to its
counterpart in electrons in the cuprate systems. One could also
extend the current multichannel model to particle-hole asym-
metric case, considering the impact of potential scattering in
real systems. Additionally, an extension of the study to the
ferromagnetic side could provide insights into the properties
of the ferromagnetic fixed point.
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APPENDIX: THE KONDO TEMPERATURE FOR
POWER-LAW DIVERGING MULTICHANNEL

KONDO MODEL

We start with following flow equation for multichannel
Kondo model with a constant DOS [47]:

∂ J̄

∂ ln ω
= −J̄2 + κ

2
J̄3. (A1)

This model exhibits an intermediate fixed point located at
J̄∗ = 2/κ . The initial value of J̄ is J̄ (ω = D) = J̄K . The flow
equation can then be reformulated as

∂ J̄

∂ ln ω
= 2

κ
(J̄ − J̄∗)

(
J̄

J̄∗

)2

. (A2)

Let us introduce the parameter � = 2/κ , which corresponds
to the slope of the beta function. The solution to the flow
equation can be obtained through integration:

∫ J̄

J̄K

dJ̄

�(J̄ − J̄∗)( J̄
J̄∗ )2

=
∫ ω

D
d ln ω. (A3)

This integration yields

1

�

[(
J̄∗

J̄
− ln

J̄

J̄ − J̄∗

)
−

(
J̄∗

J̄K
− ln

J̄K

J̄K − J̄∗

)]
= ln

ω

D
,

(A4)

which can be further expressed as

(J̄ − J̄∗) = (J̄K − J̄∗)

(
ω

DJ̄
1
�

K e− J̄∗
�J̄K

)�

J̄e− J̄∗
J̄ . (A5)

The Kondo temperature can then be defined as

TK = DJ̄
1
�

K e− J̄∗
�J̄K = DJ̄

κ
2

K e− 1
J̄K . (A6)

Now, let us consider the power-law DOS case. For the
single-channel Kondo model, the flow equation is [16]

∂ J̄

∂ ln ω
= −rJ̄ − J̄2. (A7)

The strong-coupling fixed point is at infinity. Consequently,
upon integration, the equation becomes

∫ �1

J̄K

dJ̄

−rJ̄ − J̄2
=

∫ ω∗

D
d ln ω. (A8)

Here, ω∗ is the energy regime where J̄ � 1, indicating the
breakdown of perturbation theory. Thus TK = ω∗. Integration
yields

ln J̄K

J̄K +r

r
= ln

(
TK

D

)
, (A9)

leading to

TK = D

(
1 + r

J̄K

)−1/r

. (A10)

Based on two special cases mentioned above, we are now
ready to derive the Kondo temperature for the flow equa-
tion under consideration in this paper:

∂ J̄

∂ ln ω
= −(rJ̄ + J̄2 − κ J̄3). (A11)

The fixed point is given by J̄∗ = 1+√
1+4κr
2κ

. The flow equa-
tion can be expressed in the following form:

∂ J̄

∂ ln ω
= (J̄ − J̄∗)J̄

(
r

J̄∗ + κ J̄

)
. (A12)

Solving this equation through integration yields

1

r

[
− ln J̄ + ln(J̄ − J̄∗)

r
(r+J̄∗2κ )

+ ln(r + κ J̄∗J̄ )
J̄∗2κ

r+J̄∗2κ

]∣∣∣∣
J̄

J̄K

= ln
ω

D
. (A13)
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Expressed in the following form:

J̄ − J̄∗ = (J̄K − J̄∗)

(
ω

DJ1/r
K (r + κ J̄∗J̄K )−

J̄∗2κ

r(r+J̄∗2κ )

)r+J̄∗2κ

× [
J̄1/r (r + κ J̄∗J̄ )−

J̄∗2κ

r(r+J̄∗2κ
)]r+J̄∗2κ

. (A14)

Therefore, the Kondo temperature is

TK = DJ̄1/r
K (r + κ J̄∗J̄K )−

J̄∗2κ

r(r+J̄∗2κ ) ; (A15)

it is straightforward to verify that Eq. (A15) reduces to
Eq. (A10), or Eq. (A6) when κ → 0, or r → 0, respectively.
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