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The parton theory constructs candidate fractional quantum Hall states by decomposing the physical particles
into unphysical partons, placing the partons in integer quantum Hall states, and then gluing the partons back into
the physical particles. Field theoretical formulations execute the gluing process through the device of emergent
gauge fields. Here we study numerically the process of going from the integer quantum Hall effect of two species
of fermionic partons to the fractional quantum Hall effect of bosons by introducing an attractive interaction
between the fermions of different species and continuously increasing its strength to glue them into bosons. To
properly capture the physics in the bulk, we implement this process in a lattice version of the spherical geometry,
which allows us to keep the full Hilbert space. Even though the two end-point states are topologically distinct, we
find that, for the small system sizes accessible to our study, the energy gap remains open, indicating a crossover

between these two states.
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I. INTRODUCTION

The integer and the fractional quantum Hall effects [1,2]
are the prototypical examples of topological phases of matter,
characterized by the Chern number [3-5]. They are fundamen-
tally distinct in many important ways. The integer quantum
Hall effect (IQHE) is a property of noninteracting electrons,
whereas the fractional quantum Hall effect (FQHE) occurs
due to the interaction between electrons. Furthermore, the
IQHE state has fermionic excitations, whereas the excitations
of the FQHE have fractional charge and fractional statistics
[6-9]. For these reasons, one would a priori not expect there
to be any way to connect these phenomena adiabatically.

The composite fermion (CF) theory [10,11] revealed a uni-
fied underlying description in which the FQHE at the fractions
v =n/(2pn £ 1) with p, n integers, is explained as the v = n
IQHE of CFs binding 2p flux quanta. This inspired ingenious
ideas that demonstrate adiabatic continuity between the IQHE
and the FQHE by trading external magnetic flux for statistical
flux in such a fashion that the intermediate anyon system
always maps into the IQHE system in a mean field sense
[12-19].

In this paper, we propose and demonstrate for small sys-
tems accessible to numerical studies, adiabatic continuity
between the IQHE and the FQHE through a different route.
This is inspired by the parton construction of the FQHE
[20,21], which provides another paradigm for the under-
standing of the FQHE in terms of IQHE. In the parton
construction, each electron is divided into m species of ficti-
tious fermionic particles called partons. Because of the Fermi
statistics of electrons, m must be an odd integer. One places
each species of partons in the IQHE state ®,, with filling
n, (A=1,...,m) to produce [[;_, CID,M({z;A)}), which will
be referred to as the (ny, no, ...) state. One finally glues the
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partons back together (i.e., sets z;’\) = z;) to recover electrons

in an incompressible state. The resulting wave function

m

W, ({z;h) = [ [ @n () ()
=1

yields a state at filling factor v = (3_, n;l)_l. (More gener-
ally, one can take partons to be either bosons or fermions,
and place them in any known incompressible states.) This
construction provides a large class of candidate FQHE states,
which include not only the previous Jain CF states but also
many new states some of which support non-Abelian excita-
tions [22]; many of these new states have been shown to be
plausible for several observed FQHE states that are not expli-
cable in terms of noninteracting CFs [23—-31]. The subject of
our article is to follow the parton construction to seek a new
scheme for connecting IQHE to FQHE in an adiabatic fashion.

Let us illustrate the issue by taking the simple example
of the 1/2 bosonic FQHE. We first divide each boson into
two fermionic partons and place each species in v = 1 state,
obtaining the (1,1) state

Wz} {w;}) = @1 ({z; D P ({w;})

N N
= [TG@-2 [Twi-wp, @
i<j=1 i<j=1

where z; = x; —iy; and w; = x; — iy; are the positions of
the two parton species. The ubiquitous Gaussian factor is
suppressed for simplicity. Next, we introduce an attractive
contact interaction —U )_; ; 8%(zi —w ;) between the different
species with U > 0 and increase the value of U from 0 to oo
to glue partons together to form bosons. The Pauli principle
of the partons results in a short-range repulsion between the

©2024 American Physical Society


https://orcid.org/0000-0003-0082-5881
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.075157&domain=pdf&date_stamp=2024-09-5
https://doi.org/10.1103/PhysRevB.109.075157

KUDO, SCHIRMER, AND JAIN

PHYSICAL REVIEW B 109, 075157 (2024)

bosons. Since the filling factor is 1/2 for bosons, the “final”
ground state in the strong interaction limit is expected to be
the Laughlin-like state:

ATT@p [V = vy =A[ [ @)% (VD). 3)
J

i<j J

where v; = z; —w;, V; = (z; + w;)/2, ¥y, is the bosonic
Laughlin state at filling factor 1/2, and A represents antisym-
metrization with respect to all fermions within one species.

The initial and the final states, i.e., (1,1) and 1/2, appear
drastically different. First, while the initial (1,1) state resides
in the lowest Landau level (LLL) of the partons, the final 1/2
state involves all Landau levels (LLs) of the partons because
of the delta function; i.e., the LLs of partons must strongly
mix to form bosons and their LLs. Second, the initial and
final states are topologically distinct. While the former has
fermionic excitations, the latter has anyonic excitations. [We
note that the charge of both excitations is one, but for funda-
mentally different reasons. For (1,1) it is simply a charge one
fermion, whereas for the 1/2 state it is a fractionally charged
excitation of charge-two bosons.] For these reasons, one might
expect the gap to close at some point as we go from the (1,1)
fermionic state to the 1/2 bosonic state.

We nonetheless address this question by numerical diago-
nalization. Such studies have been very useful in clarifying the
physics of the FQHE, as well as for confirming the validity of
various concepts. A numerical study of the present problem
faces two major hurdles. First is the absence of an energy
cutoff, which requires one to include all LLs of the partons.
Second, the method of the standard Haldane pseudopotentials
[7] also is not applicable here, as all LLs must be included in
the calculation.

We circumvent these problems by working on a lat-
tice version of the spherical geometry, namely a subdivided
icosahedron lattice, which has a finite Hilbert space. Many
numerical studies of the FQHE have made use of the spher-
ical geometry. We formulate a gauge convention to realize a
uniform magnetic field on the subdivided icosahedron lattice.
Using this setting, we numerically show that, at least for
finite systems that we could study, the IQHE states of the
partons are adiabatically connected, without any gap closing,
to the bosonic FQHE states as we increase the strength of the
attractive interaction.

The idea of going from a two-component integer quantum
Hall state to a one component bosonic FQHE has been con-
sidered in the past [32-35]. Repellin et al. have studied the
problem on a lattice in the torus geometry and they find that
the ground state becomes doubly degenerate at some value of
the interaction, as expected given that the 1/2 FQHE state is
doubly degenerate on torus; they also identify a phase transi-
tion by considering the entanglement spectrum [34]. Yang and
Zhai have derived the effective field theory of the quantum
phase transition [32].

In the spherical geometry (a subdivided icosahedron lat-
tice) used for our calculations, all incompressible FQHE states
are nondegenerate. Also, the two terminal states, for example
the (1,1) and the 1/2 states, occur at the same shift in the
spherical geometry. The absence of a gap closing may seem
inconsistent with the fact that the nature of the low-energy

excitations changes qualitatively, from fermionic to anyonic,
in the two limits. (Note that the fractional charge and statistics
of the quasiparticle excitations can be defined for fairly small
systems for the bosonic Laughlin 1/2 state [36,37].) However,
there exist other examples where the excitations change their
character qualitatively even though the gap does not close (for
small systems), such as the transition between the Jain and the
Gaftnian states at v = 2/5 [38—40] and the crossover between
the BCS to the BEC state where the low-energy excitations go
from broken pairs to density waves.

For completeness, we also study this problem in the torus
geometry, where a FQHE state is known to have degeneracies
due to translation symmetry (and, additional degeneracies for
non-Abelian states). Our results are consistent with those of
Ref. [34]. In a previous work studying an adiabatic process
through anyons, the dimension of the Hilbert space changes
discretely due to algebraic constraints of the braid group
[41,42], resulting in a peculiar structure in the adiabatic evolu-
tion: the ground state degeneracy changes wildly even though
the energy gap varies smoothly [14]. This may be understood
from the fact that apart from the degeneracy, the states have
the same underlying topology. For our present case, we find
that the IQHE state of partons evolves into one of the degener-
ate FQHE ground states of the physical particles, while other
states approach it to produce the required degeneracy for the
ground state in the U = oo limit. These additional states carry
a nontrivial many-body Chern number, and the collection of
degenerate states exhibits the same Hall conductance as the
IQHE state of partons.

While our model is motivated by the parton theory of
the FQHE, it is interesting to ask if it can be realized by
considering systems where the partons are real (as opposed
to fictitious) fermions. In principle, it applies to a system of
spin-up and spin-down electrons each at an integral filling.
In the limit when the electrons are noninteracting, both the
up and down spin electrons fill an integer number of LLs,
which is the case at even integer fillings in typical experi-
ments. In the other limit with a strong onsite attraction, they
exhibit a FQHE state of bosonic bound states consisting of two
electrons. Achieving a strong attractive interaction between
spin-up and spin-down electrons appears unrealistic, however.
The same is true for a system of fermions in two layers. A
more promising platform is ultracold atomic systems. One
can, in principle, achieve FQHE states in cold atom systems
by creating a synthetic magnetic field through either rotation
or complex hopping phases. We refer the reader to Ref. [43]
for recent progress as well as for references to the earlier
literature. One can thus imagine starting with the IQHE states
of two species of noninteracting fermions (which could be
the same fermionic atoms but in different internal states).
By tuning through the Feshbach resonance it is possible to
make the short range interaction between the different species
of fermions dominant and attractive. Our study suggests that
as the strength of the attractive interaction is enhanced, the
system with a finite number of particles will evolve, without
gap closing, into a FQHE state of bosonic molecules. This
is therefore a possible way to generate bosonic FQHE states
in cold atom systems. The physics here is reminiscent of the
BCS to BEC crossover [44,45], which has been realized in
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FIG. 1. A schematic depiction of the crossover from the IQHE of
two species of fermions to the FQHE of their bosonic molecules. The
left panel shows two species of fermions, red and blue, each at filling
factor one. Each thick arrow represents a flux of magnitude i/e. As
the inter-species attractive interaction is dialed up, the fermions form
charge-2e bosonic molecules at filling factor 1/2, because now there
are twice as many //2e flux quanta. The bosonic molecules capture
a single h/2e flux quantum each (represented by a thin arrow) to
become composite fermions at filling factor one, thereby forming an
incompressible FQHE state.

ultracold Fermi gases [46—48]. Figure 1 illustrates the physics
pictorially.

II. ICOSAHEDRON WITH A MAGNETIC MONOPOLE

The spherical geometry [7], which considers N electrons
moving on the surface of a sphere subjected to a radial mag-
netic field produced by an enclosed magnetic monopole, is
very convenient for the study of the FQHE. As noted in the
introduction, this geometry is not suitable for the problem at
hand, which requires a consideration of arbitrarily high LLs.
To circumvent this issue, we begin by constructing a lattice
analog of the quantum Hall problem in the spherical geometry
[7,49,50]. We choose a regular icosahedron because it is the
Platonic solid with the most faces [51] resembling a sphere.
This similarity is expected to result in a better representation
of a continuous sphere than that provided by other polygons.

We subdivide each triangle into four new equilateral trian-
gles and repeat the process n times [52]. We call the resulting
figure an n-icosahedron. Figure 2(a) shows illustrations with
n =0, 1, and 2. As mentioned below, this subdivision struc-
ture proves helpful for assigning the Peierls phases that
describe the magnetic field. The numbers of faces, edges,
and vertices of an m-icosahedron, denoted by F,, E,, and
V.., respectively, satisfy the recurrence relations F,; = 4F,,
By = 2E, + 3F,, and Vir1 =Vu + Ep. USng (Fo, Eo, Vo) =
(20, 30, 12), we have

(Fu, En, Vi) = (20 x 47,30 x 4,10 x 4" +2).  (4)

As a sanity check, one can verify the Euler’s polyhedron
formula V, — E, + F, = 2 for any n.

The tight-binding Hamiltonian for an n-icosahedron is
given by

H=—1)Y uele, Q)
(i))
where 6’? is the creation operator for a fermion on site i
and (ij) indicates summation over all nearest neighbors. The
Peierls phases «;; are chosen to produce a radial magnetic
field. For a O-icosahedron (namely icosahedron), one can eas-
ily assign «;; by using the string gauge [53]. In Fig. 2(b), we
show the unwrapped net of the icosahedron with the gauge
convention. Here, we select one triangle as the “root” triangle,
and draw strings starting from this triangle to all other trian-
gles called “normal” triangles. Then, we set ¢;; = 2w ¢n;j,

n=2
F2=20x42

n=1
F1=20x4!

(a n=0
Fo=20x4°

FIG. 2. (a) n-icosahedron with n = 0, 1, and 2. F,, is the number
of (smallest) triangles. (b) The unwrapped “net” of a 0-icosahedron,
i.e., an icosahedron. Each site is labeled. Strings emanate from the
root triangle, indicated by the “R” and terminate at each of the other
(normal) triangles. (c) The Peierls phases o;; = 27 ¢n;;, where n;;
is the number of strings that cross the bond ij. The direction of the
arrow is toward right as we cross any edge. The total flux through any
closed loop (in units of the flux quantum) is the sum of phases for a
traversal along that loop in the counterclockwise direction. Fluxes of
—19¢ and ¢ pass through the root triangle and each of the normal
triangles, respectively.

where n;; is the number of strings that cross the bond ij as
shown in Fig. 2(c), and ¢ is the flux through a single triangle in
units of the flux quantum ¢y = hc/e (we will see that ¢ takes
fractional values). This encodes a flux of (1 — Fy)¢ through
the root triangle and ¢ through all other normal triangles.
A uniform magnetic field is obtained if e~ -F0)¢ — i27¢
ie, ¢ =Ny/Fy with Ny =0,1,..., Fp —1 = 19. Note that
N, corresponds to the total magnetic fluxes in units of ¢y and
is always an integer, consistent with the Dirac quantization
condition.

For an n-icosahedron with n > 0, it is technically harder
to place strings and systematically assign «;;. We instead
employ an inductive approach. Assume that we have «;; for
an n-icosahedron, where a flux of —(F;, — 1)¢, passes through
a root triangle, and a flux ¢, passes through each of the
F, — 1 normal triangles. This is satisfied in the case of n = 0
discussed above. When subdividing each triangle to four parts
for an n + 1-icosahedron, we define a new set of o;; as shown
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FIG. 3. This figure shows how a triangle ABC can be subdivided
into four equilateral triangles such that the magnetic flux through
each is equal. (a) A flux of ¢, in a normal triangle is divided into four
equal units of ¢,,1; = ¢, /4 through the convention shown. The value
of the phase associated with each arrow on the figure on the right
is shown in the box. (b) This shows the Peierls phases for the root
triangle after subdivision. A flux of —(F, — 1)¢, in the root triangle
is divided into three fluxes of ¢, /4 and one of —(F, 11 — 1)@41.

in Fig. 3(a) for a normal triangle and in Fig. 3(b) for the
root triangle. We can simultaneously perform this subdivision
for all triangles. In the resulting n + 1-icosahedron, a flux
of ¢n+1 = ¢, /4 passes through each of the F,;; — 1 normal
triangles while a flux of —(F,+; — 1)¢,+1 passes through the
root triangle. Starting from the string gauge at n =0, an
iteration of this procedure systematically produces «;; for an
n-icosahedron.

Now, we use the symbol ¢ instead of ¢, for simplicity for
the flux through a single triangle of an n-icosahedron. The
condition for the uniform magnetic field is

e—i27‘[(F,,—1)¢ — ei2ﬂ¢’ (6)

(b) 4-icosahedron

v

‘,‘(" i :
4

7

o

DX

)

. No+1 states ] )

0 5 10 15 20 0 5 10 15 20
oF. PF4

FIG. 4. Single-particle energies for (a)l-icosahedron and (b) 4-
icosahedron. The energy E is measured in units of 7. The dashed
lines represent ¢ F, = integer in which the magnetic filed is uniform
and the total flux is given by Ny = ¢F,. The N, + 1 lowest energy
states form a lattice analog of the LLL on a sphere.

ie., ¢ =Ny/F, with Ny, =0,1,..., F, — 1. In Fig. 4(a), we
plot the single-particle energies as functions of ¢F; for a 1-
icosahedron. If ¢ F; is a small integer (<7), the lowest energy
states form a multiplet of (¢ F; + 1) exactly or nearly degener-
ate states. This is consistent with the degeneracy of the lowest
Landau level (LLL) on a sphere. (The exact degeneracy comes
from some symmetry of an icosahedron [50].) As ¢ increases,
the energy splitting within the multiplet becomes larger due to
the effect of the lattice. Figure 4(b) shows the energy spectrum
for a 4-icosahedron. The numbers of faces and sites are much
larger than those of a 1-icosahedron and, therefore, the effect
of the lattice is suppressed and nearly degenerates states asso-
ciated with the LLL on a sphere are observed in a wide range
of integer ¢ Fy. These results demonstrate the validity of our
lattice discretization of the spherical geometry.

III. HUBBARD HAMILTONIAN FOR PARTONS

Let us come to the many-body problem. The main purpose
here is to investigate the transition between two quantum Hall
states associated with the parton construction: a tensor product
of IQHE states of two species of partons and a FQHE state of
bosons that are bound states of two partons.

To this end, we consider a system of two-component lattice
fermions (partons) in a magnetic field, with an attractive on-
site interaction (because of the Pauli principle, this implies
attraction only between partons of different species). By la-
beling the species by spin our problem reduces to the standard
Hubbard model of spin 1/2 particles as

H=—t Z Z el e e, —U Zﬁnﬂu, (N
i

(ij) o=1.{

in a magnetic field. Here 6}; is the creation operator for a
fermion on site i with spin o, and we define #1;, = 6;6,-(,.
The charge depends on the spin, denoted by e; and e, which
implies the relation ;4 /at;jy = eq /ey .

As mentioned previously, we arrange parameters such that
the state at U = 0 is an IQHE state (n4, n}) and the state for
U — oo is a FQHE state at —"- . The intermediate state will

nytny
. _mny
be labeled (14, n,; P ).
Now, we specialize to a balanced configuration with Ny =
N, = N. The system at U = 0 is decomposed into two spin
parts, with the integer filling factor n,—4 ; and the “shift” S,

related by

N
Ny, = — —S,, ®)
ng
where Ny, is the number of fluxes in units of ¢, = h/e,.
The shift on a sphere (torus) is given by S, =n, (0). At
U/t = 400, on the other hand, the ground state is macroscop-
ically degenerate, where all sites are either doubly occupied
or empty. As derived in Appendix, this degeneracy is lifted at
any finite but large U where the effective Hamiltonian in the
second-order perturbation theory is given by

~ iaT. o(.l. N ~ 5.0
Her = —ﬂ Zb}e( it I!)bj — ﬂ Zsjnj + 2,3 Zninj.
(ij) J (ij)
)]

075157-4



CROSSOVER FROM INTEGER TO FRACTIONAL QUANTUM ...

PHYSICAL REVIEW B 109, 075157 (2024)

Here, g = 242 /U, l;j is the creation operator of a hard-core

boson on site j, fi; = l;jB j, and s is the coordination number
of site j. The hard-core repulsion comes from the Pauli princi-
ple of the partons, which prevents two bosons from occupying
the same site. The filling factor v, and the shift Sy, for these
bosons are defined by

N

Ny = — — Sp,
(8 o b

(10)

where Ny, is the number of fluxes in units of ¢, = h/e, with
e, = e4 + e. The numbers of fluxes for each particle satisfy

Ny, + Ny, = Ng,. 11
This relation reduces to
= &’ (12)
ny +ny
Sp =8 +8,. (13)

We investigate adiabatic continuity between the (n4,n,)
state and the ﬂ% state via exact diagonalization as we vary
U from O to a sufficiently large number. This article focuses
on basic examples where (14, n; n';fju) = (1,5 5) with s
integer. The simplest case is (1, 1;1/2), which interpolates
between the (1,1) and 1/2 states as U is increased from 0O to
U/t > 1. (Due to the contact interaction, the ground state of
H. at v, = 1/2 is the lattice analog of the Laughlin state.)
Systems on an l-icosahedron or on a torus are considered
below. We will also consider the case of (ny,ny; % =
(1,2;2/3) and (1,3;3/4) in the torus geometry. (We can-
not access these systems on a l-icosahedron. For the (1,2)
state, say, we must have a minimum of 2N = 8 particles
because it takes a minimum of four particles to fill the two
LLs. The dimension of the Hilbert space for this system is
12 528 324 900 which is too large to perform exact diago-
nalization with computer resources currently available.) For

exact diagonalization, we use the Lanczos method [54].

IV. NUMERICAL DIAGONALIZATION
A. 1-icosahedron

We begin with two species of fermions on a 1-icosahedron.
Figure 5(a) shows the energy spectrum for (ny, n; H:Triu =
(1,1,1/2) for a system of 2N = 4 fermions. (We measure
all energies relative to the energy of the ground state.) As
mentioned above, the (1,1) ground state at U = 0 is the tensor
product of two IQHE states. The increase of U from 0 leads to
reconstruction of the single-particle spectrum from fermionic
to bosonic LLs, which results in many level crossings as
shown in the figure. However, the ground state adiabatically
evolves as U is varied without any gap closing. While Fig. 5(a)
shows the gap in the range of U/t € [0, 20] (we quote energies
in units of ¢), its inset plots the gap with U/t € [20, c0) as
a function of #/U. As t/U decreases, the gap remains open
in units of B = 2t>/U and approaches the energy gap of the
vy = 1/2 Laughlin state computed by diagonalizing the effec-
tive Hamiltonian Heg in Eq. (9). In Fig. 5(c), we show results
for a system of 2N = 6 fermions. Due to large matrices, we
plot only a few lowest energy states. Again, the energy gap
of the (1,1) state monotonically decreases and approaches the

(a) GS,2N =4 (b) QH,2N =4
3.0 3.0
2.5 2.5
& 2.0 & 2.0
15 15
=] <]
M 1.0 [ 1.0
0.5 0.5
0.0 Sstatf)sol
"0 5 10 15 20
U
(c)GS,2N=6 (dQH,2N=6 (e)QP,2N=6
2.0 1.0 0.5
bl
1.5 0.8 0.4
ﬁﬁ 10 0.6 0.3
o 0.4 0.2
= 0.5 0.2 0.1
0 1 state ~ 10 statgs\ 3states(\’

: 0.0 0
0 5101520 0 5 101520 0 5 10 15 20
U U U

FIG. 5. Many-body energy at (n;, n;; ":Ti¢ y=(1,1;1/2)on a
1-icosahedron. We set = 1. GS/QH/QP represent ground state,
quasihole state, and quasiparticle state. 2N is the total particle num-
ber (Ny = N, = N). The number of magnetic fluxes is (a) Ny, =1,
(b) 2, (c) 2, (d) 3, and (e) 1. We plot the lowest N, energies at each
U with [(a) and (b)] New = 100, (c) 2, (d) 11, and (e) 4. The inset in
(a) shows the gap for the first-excited state scaled by g =2/U as a
function of 1/U. The blue dashed line indicates the value computed
by using H.g.

value estimated by the v, = 1/2 Laughlin state as U increases.
These results demonstrate adiabatic continuity between the
(1,1) state of partons and the bosonic 1/2 Laughlin state for
systems with 4 and 6 fermions. A study of larger systems is
not possible due to the very large dimension of the Fock space
(the dimension is 12 528 324 900 for 2N = 8§ particles).
Next, we consider elementary excitations, beginning with
the neutral excitation. The first excited states at U = 0 and
U = 20 in Fig. 5(a), which are associated with an exciton,
are not adiabatically connected. In fact, they have different
counting: there is 16-fold degeneracy at U = 0 while fivefold
degeneracy at U = 20. (Hereafter, we consider two states to
be degenerate if their energy difference, scaled by ¢ or 8 in
the weak or strong interaction regime, is less than 0.1. One
can ascertain the extent of the degeneracy by referring to
figures.) These degeneracies are in agreement with the known
degeneracies for the continuum sphere. For the (1,1) state,
we have two copies of one filled LL of two fermions. The
monopole strength is Q = 1/2, and thus the angular momenta
of the excited fermion is 3/2 and the hole is 1/2. These
produce 3/2® 1/2 =1 2, giving a total of eight states
for each species of fermions, producing a degeneracy of 16.
In the large U limit, we have the two particle bosonic 1/2
state, which maps into the 2 particle v = 1 state of CFs. This
again produces 3/2® 1/2 =1@ 2, but the L =1 is known
to be annihilated by LLL projection [55], producing a total
of 5 states. The absence of adiabatic continuity reflects the
qualitatively different characters of the excitations in the two
limits: quasiholes/quasiparticles of the (1,1) and the v, = 1/2
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Laughlin states obey different statistics, namely fermionic and
semionic, respectively. It is interesting to note that in both
limits the charge of the elementary excitation is the same, but
for the (1,1) state it is simply an excited fermion, whereas for
the bosonic 1/2 state, it is a charge 1 Laughlin quasihole in
the 1/2 state of charge-2 bosons.

Figures 5(b) and 5(d) show the spectrum for systems with
one additional flux for each species (or two additional fluxes
for the bosonic system). These are the quasihole states. Again,
there is no adiabatic continuity, as expected. For Fig. 5(b)
there is a ninefold degeneracy at U = 0 while a sixfold de-
generacy at U = 20. The degeneracies in the two limits are
consistent with the known degeneracies on sphere. For exam-
ple, for the 2N = 4 particle system: the angular momentum of
each quasihole for the (1,1) state is 1, producing L =1® 1 =
0 & 1 & 2, and for the 1/2 Laughlin state with two quasiholes,
we have L = 0 & 2. Figure 5(e) plots the spectrum for quasi-
particle states of 2N = 6 fermions. The obtained degeneracies
at U = 20 in Fig. 5(e) are consistent with the corresponding
degeneracies on sphere.

B. Torus

As discussed above, in the torus geometry the (14, 1) =
(1,s) state with s integer is nondegenerate, whereas the
nﬁfzi = 1}, state has (1 + s)-fold degeneracy coming from
translation symmetry. In this section we investigate the evolu-
tion of the system in the torus geometry as a function of U.

We consider a square lattice with N, x N, = 6 x 6 sites.
Periodic boundary conditions are imposed in both directions
unless otherwise stated. In Figs. 6(a)-6(c), the evolution of
the lowest few eigenstates are shown for (ny,ny; njﬁ:’il) =
(1,1;1/2), (1,2;2/3) and (1, 3;3/4). While the ground state
is nondegenerate for small U, it has a degeneracy of 2, 3,
and 4, respectively, at large U. The inset of Fig. 6(a) shows
that, as #/U decreases, the gap for the second-excited state
scaled by B = 2¢2/U approaches to the value estimated by
diagonalizing H.s. These results are consistent with those of
Ref. [34].

To investigate the topological structures of states, we cal-
culate the many-body Chern number C, which is the sum of
the Chern numbers of the eigenstates that we associate with
the ground state multiplet (or an excited state multiplet) on

the torus. It is given by [5]

1
C=— [ d*F, (14)
2ni J72
A A,
F = h — 8_’ (15)
Ny any
Axy) = Tr[@bT i } (16)
Mx(y)

where T2 =1[0,27] % [0,27], ® = (1P, |Pjg1), .-,
|®j1n)), |P;) is the jth lowest energy state, and 7j = (1y, 1)
are the twist angles defined as

AT _ineat
Netinsiyo — € Cigiyo a7

el =eel (18)
ix,Nyt+iy,0 iy,iy,0°

nyng
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FIG. 6. [(a)-(c)] Many-body energy on a torus at
(4, my; n’;g”nﬁ )=(1,5;25) with (@) s=1, (b) 2, and (¢) 3.
We quote energies in units of ¢. The total particle number is [(a) and
(c)] 2N =6 and (b) 4. We plot the lowest N, energies with (a)
Ny = 3, (b) 4, and (¢) 5. The inset in (a) shows the gap (E5 — E;)/B
with 8 = 2/U as a function of 1/U. The blue line indicates the value
computed by using Hey. [(d)—(f)] Spectral flows for the systems
considered in [(a)—(c)] as functions of n,. We set n, = 27 n,/8 with

ny,=0,1,...,7. The color expresses “n” of E,. The numbers in
orange are the many-body Chern number C of the circled states.

For numerical calculation, we compute the discretized local
Berry curvature F using the method in Ref. [56]. Fig-
ures 6(d)-6(f) show the spectral flows at several U for the
system considered in Figs. 6(a)-6(c), respectively. The pa-
rameters in Figs. 6(d)-6(f) are (ny,n,; ,:TT”}L) =835

with s =1, 2, and 3, respectively. The energy in Fig. 6(d)
is insensitive to the twist angles 7, which is consistent with
a property of a gapped phase [57]. (As shown in Fig. 7, the
Berry curvature is also nearly flat. This is consistent with the
expected behavior of the quantum Hall systems [57-61].) The

unique ground state at U = 0 in the figures carries C = 1 + s,
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FIG. 7. Discretized local Berry curvature F/i for the system
considered in Fig. 6(e). The Berry curvature is defined with the M
lowest energy states with [(a) and (b)] M =1 and [(c) and (d)] 3.
The Chern number is given by summing F over all mesh points.

consistent with the Hall conductance of

62 62
Oy = IT + s%. (19)

As U increases, some states with the nontrivial Chern number
go down and eventually the 14 s-fold degenerate ground

state with C = 4s is observed at U = 20. Since the boundary

conditions for He are given by (n°f, n) = (2n,, 21,), the

Hall conductance with respect to bosons is

2 2
Cetr € s g

- l—i—sz_ 1+sz’

(20)

Oxy

where Cegt = C/2? corresponds to the Chern number integrat-
ing over (n°, ™) instead of (1., n,). Using e, = ¢4 + ¢, and

x J
2 2 2
ey/ey, =ny/ny =s, one can show l—jrs%" = %T +s%. This
implies that the quantum Hall states at U =0 and U = 20
exhibit the same Hall conductance, despite having different

Chern numbers.

V. CONCLUDING REMARKS

In this paper, we have developed an adiabatic scheme con-
necting IQHE and FQHE for systems with a finite number of
particles, motivated by the parton construction of the FQHE.
Specifically, we begin with an IQHE state of two species of
fermionic partons and vary the attractive onsite interaction
between partons from 0 to co so they produce a FQHE state
of bosonic bound states of partons. Because this involves a
drastic reorganization of the states, it is necessary to include
the full Hilbert space, and therefore we consider particles
moving on a lattice. We consider both the spherical geometry,
where the lattice is a subdivided icosahedron, and the torus
geometry. Systems with four and six fermions are accessible

15

FIG. 8. (a) Ground state energy E; ”T‘:’ﬁi):

(1,1;1/2) on a l-icosahedron. The results in red and blue are for
the systems considered in Figs. 5(a) and 5(b), respectively. The inset
shows the first derivative dE,/dU . (b) Second derivative d’E; /dU*>.

at (ny, ny;

to our study. In the spherical geometry, we find that the (1,1)
fermionic state adiabatically evolves into the 1/2 bosonic
state. In the torus geometry, we find that the (1,1), (1,2), and
(1,3) fermionic states merge into degenerate multiplets of the
1/2, 2/3, and 3/4 bosonic FQHE ground states. In contrast,
there is no adiabatic continuity for the excited states. This
observation—namely that the nature of excitations changes
while the ground state evolves adiabatically—resembles the
relation between the v = 2/5 Jain state and the Gaffnian state
[39,40] or the BCS to BEC crossover.

It is evident that the crossover from (1,1) to 1/2 state takes
place at approximately U ~ 10. In Fig. 5, the energy gap
separating the ground state and the first excited state changes
its behavior qualitatively at U =~ 10. In the torus geometry,
the ground state goes from a nondegenerate state to a nearly
degenerate doublet at U =~ 10. Reference [34] has identified a
transition at this value by a consideration of the entanglement
spectrum. Finally, Fig. 8 shows the ground state energy E,
the first derivative dE;/dU (in the inset), and the second
derivative d2E; /dU?. While E| is a continuous function of U,
—d’E;/dU? has a peak at U ~ 10, which becomes sharper
as the particle number increases. Following the work of Wu
et al. [35], this suggests a continuous phase transition in the
thermodynamic limit.

Our work can be generalized in many directions. An im-
mediate extension involves examining the adiabatic continuity
between the v = 1 IQHE states of three species of fermionic
partons and the v = 1/3 FQHE state of fermions. This can be
demonstrated using a generalized Hubbard model of spin-1
fermions, which incorporates the onsite attractive interaction,
—U, and the nearest-neighbor repulsive interaction, V. Under
appropriate conditions, the system exhibits the IQHE state at
U =V =0 while the v =1/3 FQHE state at U — oo and
V >0.

It is also natural to ask how the edge states of the IQHE
evolve into those of the FQHE in our adiabatic scheme.
This may in principle be accomplished either by creating
a confinement potential on the sphere or by evaluating the
entanglement spectrum of the uniform ground state. Unfor-
tunately, the system sizes required for a meaningful study
of the edge states are too large for our exact diagonalization
calculation.
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Mean field theory [62] has suggested emergence of super-
conducting states in the Hubbard model with a magnetic field.
A numerical investigation allowing for a competition between
the FQHE and the superconducting states is left for a future
study.
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APPENDIX: EFFECTIVE HAMILTONIAN

In this section, we derive the effective Hamiltonian Heg in
Eq. (9) using the degenerate perturbation theory. Let us rewrite
the Hamiltonian in Eq. (7) as H = Hyi, + Hine With

Hu= 1Y Y dre, (AN
(ij) o=1.4
Hp = —U Y firhiyy. (A2)
i

At t/U = 0, the ground state is macroscopically degenerate,
where all sites are either doubly occupied or empty. This
degeneracy is lifted by the second order perturbation: Heg =
PHkinQﬁQHka, where P is the ground state subspace of

Hiy, Hi P = EgP, and Q = 1 — P. Since there are two Hlims

in Heg, it is enough to consider the two-site problem to get the
expression. We have

He[e],€], 10)] = PHiqnQ QHiinPl2],¢], 10)]

EO — Hiy,

t . R . A
= PHkin—(elaZMC;TC}Ll + e T ;i) |0)

—2t A
= (e’(‘)‘z'““‘)‘z'“cT N cmcu) |0,
(A3)
SIS — t2 i(a o NS
Heff[c;cil |0)] = T(e( 12+ ‘“)cJf ch + CZTCN) |0) ,
(A4)
Her |0) = 0, (AS)
Heff[a}Taj iegTeg 110y =0. (A6)

Within the subspace P, é:fT EL obeys the commutation relation:
P[é;}éi‘y éjTéN]P =P - (ﬁiT -

Replacing ¢ AT AT
Eqgs. (A3)- (A6) as

iy N8P =6;;.  (AT)

with a bosonic operator blT, we rewrite

Hesb} |0) = —B(e"™ 1 H0b] |0) + b} 10)), (A8)
Heib} |0) = — ("1 H*20b7 |0) 4 b} 10)), (A9)
He;0) = 0, (A10)

Heb( b} 10) = 0, (A1)

where B = 2¢2/U . Here, bosons created by I;J”S are hard-core

due to b? = (A‘T Au )? = 0. The relations in Egs. (A8)—(Al1)
are satlsﬁed by the following expression:

Her = —B (T 0pTh, + Hee.) — By + fn) + 2Bifa,
(A12)

where 7; = Bjé,. The expression for a similar problem in
Ref. [63] lacks the last term. By summing up H.g in Eq. (A12)
over all bonds for a given system, one obtains the general form
shown in Eq. (9).
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