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Superconductivity with Wannier-Stark flat bands
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We investigate superconducting transport in the DC field induced Wannier-Stark flat bands in the presence
of interactions. Flat bands offer the possibility of unconventional high temperature superconductivity, where
the superfluid weight, Dy, is enhanced by the density overlap of the localized states. However, construction of
flat bands typically requires very precise tuning of Hamiltonian parameters. To overcome this difficulty, we
propose a feasible alternative to realize flat bands by applying a DC field in a commensurate lattice direction.
We systematically characterize the superconducting behavior on these flat bands by studying the effect of the
DC field and attractive Hubbard interaction strengths on the wave function, correlation length, pairing order
parameter, and the superfluid weight D,. Our main result is that the superfluid weight is dramatically enhanced

at an optimal value of the interaction strength and weak DC fields.

DOI: 10.1103/PhysRevB.109.075153

I. INTRODUCTION

Flat band systems are systems that exhibit at least one band
where the particle energy does not depend on its momen-
tum; the flat band is, therefore, dispersionless. Topologically
nontrivial flat bands have proved to be promising in the
search for high temperature superconductivity [1-16]. The
merit of superconductivity on isolated flat bands is twofold:
(a) due to quenched kinetic energy any finite interaction is
relevant, resulting in a strongly correlated system, where su-
perconducting transport arises from the correlated hopping of
the fermions; and (b) both the critical temperature (7;) and
superfluid weight (D;) depend linearly on the attractive in-
teraction (U), and are thus exponentially enhanced compared
to dispersive bands with weak attraction between electrons
[7-9,14,15,17]. In these systems, flat band superconductivity
at weak interaction was shown to be dominated by a single
isolated flat band [2,5-7]. The superconducting properties of
the many-body system, in the presence of a weak attraction,
are largely dependent on both the wave function and the band
topology in the noninteracting limit [6-9,11].

In a very wide range of flat-band systems, the localized
state is compact, i.e., the particle is localized on a small
number of sites beyond which its wave function is exactly
zero. For example, on the Creutz lattice, the localized state
extends over only four sites on two neighboring unit cells
[2,16]. On the sawtooth lattice, the compact localized state
(CLS) is supported on only three sites [18,19] also on two
neighboring unit cells. In systems with isolated flat bands
with compact localized states, the CLS must span more than
one unit cell in order for the linear dependences D, ox U and
T. « U to emerge [3,7,11,20]. In systems where the CLS is
confined to only one unit cell, superconductivity is suppressed
[3] and does not depend linearly on U. To optimize Dy fur-
ther, the system parameters must be chosen such that the
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overlap between neighboring CLS is maximized, resulting
in the maximization of the density overlap of the Wannier
functions [3,6].

Often, the construction of flat bands requires subtle fine
tuning of Hamiltonian parameters. To design flat bands, a spe-
cific set of rules have to be followed, and hopping potentials
are fixed with precise values chosen to ensure flatness of the
band [21-25]. While these systems have been experimentally
realized in superconducting wire networks, atomic lattices and
optical lattices, flat bands with longer-range hopping, e.g.,
beyond nearest neighbors, which provide control over the
CLS, become difficult to fabricate [26—32]. Flat band super-
conductivity was observed experimentally in twisted bilayer
graphene, but the bilayers have to be stacked precisely at a
“magic” angle at which band flatness is maximized (though
not being perfectly flat) [1].

It is, therefore, interesting to examine the possibility of
obtaining flat band systems without the need for fine tuning.
In addition, as mentioned above, in a vast class of flat band
systems, the localized state is compact, its wave function be-
ing supported, typically, on up to two unit cells, beyond which
it is strictly vanishing. It is, therefore, also useful to examine
flat band systems where the localized state is not compact;
in other words where the localized state wave function de-
cays gradually, thus increasing overlap among the localized
states populating the system. Such increased overlap has been
shown to enhance superconductivity [18,19].

A rather large class of systems and models exist where ap-
proximate flat bands are present without the need to fine tune
parameters (although other constraints are present) [33-37].
In addition, the localized states in these systems are not com-
pact and therefore favor superconductivity. However, these
systems differ in two important ways from the systems we
study here. First, the flat band is a surface band, while, in our
system below, the flat band is in the bulk. Second, in these
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systems there is one isolated flat band. In the system we will
examine below there are many closely separated flat bands
and the gaps between them are easily adjusted, as is the wave
function spread across several bands.

When a static DC field is oriented in a lattice commensu-
rate direction of a D > 2 Bravais lattice, it was shown that
flat bands of dimension D — 1 are formed in the direction
perpendicular to the DC field, and the emergence of flat bands
is independent of the field strength [38]. These Wannier-Stark
flat bands do not have CLS, only superexponentially local-
ized wave functions which depend on the field strength. We
propose that this method of generating flat bands comes with
two advantages for superconductivity: (a) no fine tuning is
required and (b) there is no CLS which, therefore, increases
the density overlap of the wave functions and potentially en-
hances superconductivity. In practice, one can, for example,
emulate this in ultracold atomic gas experiments, by tilting
the system at an angle so that the gravitational field acts in the
chosen commensurate direction of the optical lattice [39-42].

Previous studies have shown extensively that the multiband
mean-field theory describes the superconducting properties of
flat band systems remarkably well in comparison with den-
sity matrix renormalization group (DMRG) computations and
determinant quantum Monte Carlo (DQMC) [2,3,5,6,9,12].
Thus, in this study, we investigate interacting fermions in
the Wannier-Stark flat band systems using the full multiband
mean-field theory [2,3]. In particular, we show the dependence
of the superfluid weight, pairing order parameters, lattice
filling, and correlation functions on both the DC field and
interaction strengths.

Our main result is that the flat band enhancement of su-
perconductivity persists in Wannier-Stark systems despite the
trivial topology of the underlying lattice. Consequently, su-
perconductivity can be readily improved in Bravais lattices
by applying a static field in a commensurate direction, which
induces Wannier-Stark flat bands. These flat bands act as
superconducting transport channels with the additional ad-
vantage of a tuneable spread of the wave function and band
gaps. At weak Hubbard attraction and sufficiently strong DC
field, the pairing order parameter is enhanced, while the su-
perfluid weight is large due to the transport being supported
by multiple flat bands, growing linearly with the interaction.
Moreover, for sufficiently large DC field strength, the cor-
relation length is smaller than a lattice spacing, typical for
flat bands, indicating that bound Cooper pairs are very small,
essentially on a single site.

The paper is organized as follows. We introduce the Hub-
bard Hamiltonian on the Wannier-Stark lattice in two and
three dimensions in Sec. II. Additionally, we briefly outline
how to compute the superconducting quantities. Thereafter,
in Sec. III, we characterize the superconducting properties
of Wannier-Stark flat bands and develop an understanding
of its dependence on the DC field and Hubbard interaction
strengths. Finally, in Sec. IV we conclude with the main
takeaways from this study and the future outlook.

II. MODEL AND METHODS

We begin by considering the two-dimensional (2D) square
lattice with a DC field Ee, in the plane of the lattice and
oriented in a commensurate direction, and the on-site

attractive Hubbard interaction term. The Hamiltonian can be
expressed with the single particle and interaction components,
as

H — uN = Hs + Hj, (D
where

Hg = —t Z(C;,y,acx-‘rl,y,ﬂ + C;,y,aCX,.V-‘rl,(’ +H.c.)

X,y,0
+ Xz(Eez -r — /L)ci’y’acx,y’(,,
X,5,0
H =-U ZCI,_V,Tcx,y,ﬁcl,y,ﬁx,y,i- 2)

X,y

Here, r = xae + yaey, with x,y € Z and a is the lattice
constant. C}:MG (Cx,y,0) creates (annihilates) fermions of spin
o € (1, ]) onsite (x,y). ¢ is the hopping parameter, u is the
chemical potential which controls the filling of the lattice, and
U > 0 is the Hubbard interaction strength. Note that the field
E couples to the local particle density and has the form of a
local chemical potential. It can, therefore, be introduced into
the system as an electric field, or as a local chemical potential
for example by adding a linear term to the confining potential
in a system of ultracold atoms loaded in an optical lattice. We
define the orthogonal vectors e, and ey, which are respectively
parallel and perpendicular to the DC field direction. For the
commensurate DC field direction, e, is parallel to some lattice
vector. For specific calculations, we set e, = (ex — ey)/ﬁ

and ey, = (e, + €y)/+/2 in this study, where lattice sites can
then be labeled with z, w € Z.

x,y+1
z—1,w+1

X,y x+1,y
zZ,W z+1w+1

FIG. 1. Square lattice with DC field direction e, indicated. Orig-
inal and new coordinates of the square lattice are shown as x, y and
Z, w. In the z, w basis (which is in the same plane as the (x, y) basis),
both coordinates have to be simultaneously changed (£1) to describe
hopping in the original basis.

075153-2



SUPERCONDUCTIVITY WITH WANNIER-STARK FLAT ... PHYSICAL REVIEW B 109, 075153 (2024)

The Hamiltonian in the z, w basis is

t 1
Hs = _E Z (Cz,w,acz+l,w+l,0 + C;w,aczflv“”rl’a +He)+ 5 Z (Fz— M)C;w’gcz,w,as

w0 o
U T
H; = ) Z CZ,w,TCz,w,Tcz,w.,icz’w’¢ v
Zw
with F = 2.

In the z, w basis, we apply the mean-field decoupling on the Hubbard interaction term (Appendix A), recognizing that the
mean-field parameters A*/U = (¢, y 1€z w,|) and p5 = (Cz,w,acz,w,ﬂ should depend on z,

~ 1 B U 2
H, = —5 Z(Azcj,w,lcz,w,T + AA'*Cz,w,TCZ,wqi) — E Z(,O%C;uhiczyw,i + plcz,w,TCvaxT)
zZ,w Zw

1 Z A2 12
+ L Z(Upmi +1A7/0), @)

where 171 is the mean-field approximation of the interaction term, and L,, is the number of sites in the w direction. Here, A*/U
and pZ are the pairing order parameter and filling on sites with equal values of z. A% itself is an energy and represents the spin
gap, i.e., the energy needed to break the pair. The factor % in Egs. (3) and (4) accounts for double counting and arises when we
sum over z and w due to the two sublattices, as shown in Fig. 1. While the translational symmetry in the e, direction is broken
due to the DC field, the system remains translationally invariant in the e, direction. Under Fourier transformation in w, we can

express the Hamiltonian as

2(H — uN) = —t Z(Clk,gcz-&-l,k,neik + c;k,gcz—l,k,aeik +H.c)+ Z(FZ - /\L)clkygcz,k,a

z,k,0

z,k,0

- Z(AZC;_;{&CZ,/QT + AZ*Cz,k,Tcz,—k,i) -U Z(P?C;k,fz,k,¢ + picz‘_k,TCz,k,T)

z.k

=D WIMEW + Ly Y (Upip] + 8P /U)+ Ly ) (Fz—pu—Upj)
k z z

T (k) D
M(k) = ,
® ( D —TT(—k))
0 —2tcos(k) —F—pu—Upj="  —2tcos(k) 0
T(k) = coe 0 —2t cos(k) —pu—=Upi™ —2t cos(k) 0 ‘e ,
0 —2tcos(k) F —pu— U,oj=1 —2tcos(k) O
D = diag(A= "t AT A0 AT AT ), (5)

the last term in the Hamiltonian results from anti-
commutation relations, \I/;k is the Nambu spinor and the
matrix M (k) is the Bogoliubov—de Gennes Hamiltonian.
2Lax + 1 is the total number of sites in the e, direction.
In the absence of interaction, we obtain 2L, + 1 one-
dimensional flat bands along the e,, direction, each labeled
by index z, for any finite value of F'. The wave functions of
the flat band eigenstates are superexponentially localized, and
can be expressed analytically via Bessel functions. In the case
where the DC field is oriented along the main diagonal, the
extents of the wavefunction in the ey, and e, directions are the

[
same [38]. For a particle at (z = 0, w = 0),

Wz =0.ry)=J 2t J 2t
=Vrw)=Jo\ =% -\l %7 )
Z w F w F
2t 2t
W w=0)=J . (-= (=),
’ F) “\F

where r,, and r, are integers indexing the number of sites
away from the center, and J,(x) are Bessel functions of the
first kind and decay at least as a factorial, 1/n!, which is
faster than exponential. In the limit L,,x — 0o, F # 0, there

(6)
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will be an infinite number of flat bands labeled by z in the
w direction. Each flat band corresponds directly to sites with
equal z coordinates, where consecutive flat bands have a gap
of Egp = F. However, in real systems, and computationally,
Lmax would be finite, resulting in dispersive bands near the
edges z = £Lnax, as shown in Fig. 2. In order to characterize
accurately flat band superconductivity, these dispersive bands
have to be fully occupied or empty.

Similarly, in 3D systems, one can orient the DC field along
commensurate directions, and obtain flat bands in the planes

J

perpendicular to it. Here, we consider the cubic lattice with
a DC field of strength E in the e, direction, and define the
orthonormal vectors
—1 1 1
e, =—0| 1] e=—|-1], e

N
V2\ o V6 \ 2 V3l
@)

as the new basis. We can then express the mean-field Hamil-
tonian in momentum space,

6(H — uN) = —1t Z c,;’kﬁ’y,ackwkﬂﬁ],(,[z cos(ky)e ™ + %] + H.c.

ko kg,y .0

aky t y i y i
+ Z ( 3 M)cku,kﬁq)/sack“’kﬁ’y‘a -U Z (P Chy iy Charkpy b T P €k 1k v 1)

ko kg, vy .0 ko kg, y
AY il i AV* L.L UoY o |Ay|2 8
= Y A A bt ek ) + Lol )\ Up 0] + T ®)
ko kg, y 12

where —Lyux < ¥ < Linax, ¥ € Z, giving rise to 2Ly + 1
quasi-two-dimensional flat bands in the tight-binding descrip-
tion shown in Fig. 2. Factor 6 is due to the sites in the new
basis that do not exist originally. In the 3D system, the flat
bands are labeled with y.

To characterize the superconducting state, we calculate
the pairing order parameter A*/U in 2D (AY /U in 3D), the
superfluid weight and the single-particle Green’s function.
The set of mean-field parameters, o) and A*Y)/U, in the
presence of interaction are obtained by iteratively solving the
self-consistent equations (Appendix A).

The superfluid weight, D;, at T =0 is calculated by
applying a phase twist ® (Appendix B) in the direction per-
pendicular to the DC field,

d?Egs
Dy(qlD) =nLy —— s
do? |4,
)
dzEGS
Dy(g2D) =7 ,
do? |4,

where the (q1D) indicates the quasi-one-dimensional system,
and (q2D) the quasi-two-dimensional one. Egg is the ground
state energy [43-45]. Note, Dy, =7 Zz(y) pf(y), where p?
(pY) is the superfluid number density in the one-dimensional
(two-dimensional) flat band z (y). While results are presented
for both systems, we focus our analysis on the 2D (quasi-1D)
Wannier-Stark lattice.

Mean-field calculations can also accurately provide infor-
mation about the single-particle correlation function along
and perpendicular to the field in the presence of interactions,
with

G, (ry) = <Cz,w,(fc;w+rw,ff )s

G, (rz) = <Cz,w,c7c;r+;~z,w,g), (10)

(

where r,, r, € Z, and we compute these quantities for the
2D Wannier-Stark lattice to obtain insights about the spatial
extent of the Cooper pairs [46].

In this study, we choose © = —% to obtain a half-filled
7z =0 (y =0 1in 3D) flat band, and choose sufficiently large
L.y, such that all dispersive bands due to finite size effects
are either completely full or empty. All energies are measured
in the units of the hopping potential + = 1, the lattice constant
is fixed at @ = 1, and the temperature is 7 = 0.

III. RESULTS AND DISCUSSION

A. 2D square lattice

We define F = f/—‘% for the square lattice with the DC field

of strength E along the main diagonal. In the presence of a
DC field, Eqqp = F. As we increase F', energy gaps between
neighboring diagonals become bigger and the wave functions
are increasingly localized in real space. With the interplay
between the DC field strength and attraction, we find a strong
dependence of the z-band filling and the pairing order param-
eter on these parameters.

The first ingredient for superconductivity is the existence
of the Cooper pairs, quantified by the pairing order parameter,
A*/U, and the single-particle correlation length, &, charac-
terizing the spatial extent of the pair. For dispersive bands
in 2D, the critical temperature of pairing is of the order of
kgT, ~ A(T = 0) ~ ¢~%Y  but it has been shown that kT, ~
A(T = 0) ~ U for flat bands [7,8,14,15,17,20]. We show in
Figs. 3 and 4 the z-band filling, p?, and pairing order param-
eter, A°/U, at F = 0.5 and F = 1, with a range of attraction
strengths 0.1 < U < 7. While the filling on the z = 0 band
is p=% = 0.5 for all values of U and F (as per our choice
of the chemical potential), the spread of partially filled bands
(0 < p* < 1) narrows with increasing DC field and attraction
strength (Fig. 3). Since A*/U is nonzero only for bands with
partial filling, the number of bands with finite and large A*/U
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- =

FIG. 2. D — 1 Wannier-Stark flat bands with finite a L,,,. Bands
acquire finite dispersion at the edges of the spectrum due to finite
size effects. Top: The 2D square lattice with ' = 1. Bottom: The 3D
cubic lattice with F' = 1.

also decreases, as is evident in the narrowing peak about z = 0
in Fig. 4. Due to the larger band gap and the faster decay
of the wave function as F' increases, the number of partially
filled z bands decreases, even at finite interaction. On the other
hand, as U increases, the Cooper pairs are more tightly bound,
increasing the A“ peak, but narrowing the spread of the
wave function in the e, direction.

For these values of the DC field, F = 0.5 and F =1, the
pairing order parameter, A*="/U, on the half-filled band is
finite for any weak interaction and increases with |U |, which
is usually observed for interacting flat band systems [2]. In
contrast to dispersive bands, in flat band systems with CLS,
the Cooper pair sizes are smaller than a single lattice spacing
[2,3] for any value of U, thus there is no BCS-BEC crossover,
and the pairing order parameter remains large even for weak
interaction. However, here, as both the DC field and U are
further decreased, the pairing order parameter is substantially
suppressed (Fig. 5). In the limit F — 0, the pairing order

F=0.5

1.0 A

0.6 A

0.4 A

0.2 A

0.0 A

-10 -8 -6 -4 =2 0 2 4 6 8 10
z

1.0 A

0.6 A

0.4 A

0.2 A

0.0 A

FIG. 3. Values of z-band filling, p°, for 0.1 < U < 7 with (top)
F =0.5 and (bottom) F = 1, where light (dark) color represents
weaker (stronger) interaction strength. Solid lines are shown for
U = 0.1 and U = 7. Since we have equal populations for the up and
down spins, pi = pj = p*. z-bands with 0 < p* < I are partially
filled, and p*=° = 0.5 for all values of U. Due to the larger energy gap
between the flat bands as F increases, the number of partially filled
bands decreases. With stronger attractive interaction, the number of
bands with partial filling also decreases.

parameter of the half-filled square lattice with a dispersive
band is recovered on the z = 0 flat band, as the single particle
wave function is increasingly spread out across the square
lattice, even in the presence of a DC field.

This is an interesting feature of Wannier-Stark flat bands
that is distinct from flat bands with CLS, and can be un-
derstood as follows. As F is decreased, the wave function
becomes less localized, while the existence of flat bands
persists. Figure 6 (top) shows the single-particle correlation
function as a function of distance along the flat band at z = 1
[47], i.e., transverse to the field, and (bottom) the correla-
tion length for various values of U and F. It is clear in the
top panel that this correlation function decays exponentially,
Gy (ry) ~ e”wﬁ/g, thus yielding the correlation length, &,
which characterizes the size of the pair. The +/2 factor in the
exponent arises from the distance between consecutive sites
in the e, direction. At fixed F', the decay is faster for larger U,
resulting in smaller pairs with smaller values of £. The bottom
panel of Fig. 6 shows the correlation length in the ey, direction
as a function of F and U. It is clear, then, that at small values
of U and F the correlation length exceeds the lattice spacing,
and that, therefore, the pair extends over several unit cells in
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F=0.5

N/U

AU

0.1 A

0.0 A

-
N
w
ES
v
o
~

FIG. 4. Values of A%/U for 0.1 < U < 7 with (top) F =0.5
and (bottom) F = 1, where light (dark) colors represent weaker
(stronger) interaction strength. Lines are shown for U = 0.1 and
U =7. A*(z =0)/U increases with stronger interaction. Addition-
ally, the spread becomes narrower as F' and the band gap increase,
corresponding directly to the partially filled bands in Fig. 3.

the transverse direction. In addition, as F' and/or U decrease,
the pair wave function also spreads out along the direction
of the DC field, e, as seen in Fig. 7. However, the decay of
the wave function in the direction of the DC field is faster
than exponential and is essentially given by a rescaling of
the U = 0 wave function, Eq. (6). This spread of the wave
function along e, and ey, as F and U decrease causes the order
parameter, A*/U, to decrease as seen in Fig. 5.

It is interesting to elaborate some more on the behavior of
the correlation functions along and transverse to the applied
DC field as F or U decrease. First, we emphasize that, for
any nonzero value of F, the flat bands exist. At U = 0, the
wave function is given by Eq. (6) and is the same along and
transverse to the applied DC field: it spreads isotropically as
F decreases, and it decays faster than exponentially. When
U > 0, the wave function becomes a scaled Bessel function
in the direction of the applied field, as seen in Fig. 7, and
therefore still decays faster than exponentially. However, in
the transverse direction it decays exponentially (Fig. 6). Fix-
ing U at a small value and calculating £ as a function of F', we
find that £ increases rapidly as F decreases, Fig. 6 (bottom).
We show in Fig. 8 (right) a cut along U = 1 demonstrating this
rapid increase which appears to be a power law divergence
& ~1/F. Going to an even smaller values of F was too
challenging, since it required extremely large system sizes.

AZ=O/U

0.0 0 1

FIG. 5. The values of A*%/U on the half-filled z = 0 band as a
function of F' and U. The red points are A/U of the half-filled square
lattice with a dispersive band, when F = 0.

On the other hand, fixing F' at some small value and taking
U — 0, the behavior is different: at first £ increases, but then
eventually it decreases, Fig. 8 (left). This is because, as U
vanishes, the wave function reverts to its noninteracting limit
and decays faster than exponentially in all directions.

The second essential ingredient for superconductivity is
for the pairs to exhibit phase stiffness which is manifested
by nonzero superfluid weight, Eq. (9). The spread of the
single-particle flat band wave functions, causing an increase
of overlap of the wave functions of the particle population,
was previously found to have direct implications on the su-
perfluid weight when U # 0 [3,6]. We therefore investigate
the dependence of D; on F and U.

We observe in Fig. 9 (and Fig. 13 in Appendix B) that
for each value of F' the superfluid weight at first increases
linearly with U, reaches a peak at around U = 2, and then
decreases. The linear dependence on U, for small U, has been
previously shown to be caused by the flat band, with nonzero
minimal quantum metric [3,5,6,48,49]. Note that in these
cases the CLS wave function covers more than one unit cell.
For quasi-one-dimensional non topological bands, i.e., with
vanishing minimal quantum metric, the CLSs are localized
within one unit cell, resulting in a suppression of superfluid
transport leading to Dy o U® with o > 2. Interestingly, the
quasi-one-dimensional flat bands in our case, resulting from
the applied DC field, are nontopological, i.e., with vanishing
quantum metric, yet yield D; o< U for small U. The reason
for this is that in the current system the localized state is not
compact: the wave function, Eq. (6), extends over more than
one unit cell and results in nonzero overlap between the wave
functions of the particle population, which then can lead to
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10° F=0.5
XN e U=1
102 A k!f'.l u=2
10-4 | mtaTte, = U=3
% wa ~ x U=4
NN ~ "l _
10-6 - \:\‘\ l-\. Q"\ Y Uu=5
= S o,
< 1078 N "Ry 'S
[} NN, N N J
S Y . %o,
S N " S
-10 'S u LS
10 ¢ «\: \c\‘ l,\ o® QQ\'
10712 \w‘\o\?\ l.“\ ;."‘Q\
14 b A Y
10 1 e . <
1016 T T — T L3 T T
0 5 10 15 20 25 30 35 40
r'w
E(z=1)

; 20

FIG. 6. Top: Correlation function on the 2D Wannier-Stark lat-
tice decays exponentially along the ey, direction, shown for ' = 0.5.
Bottom: Correlation length as a function of U and electric field
strength in the e,, direction. For sufficiently strong DC fields (F > 1),
the correlation length saturates to a value less than one lattice spacing
asU — 0.

a linear dependence on U. At very large U, the physics is
very well described by an effective extended hard-core Bose-
Hubbard model which exhibits a decreasing D; as U increases
[2,3,16,49,50]. These two branches of Dy, linear increase at
low U and decrease at large U, meet in the intermediate U
regime where the physics is dominated by band mixing and
D, displays a maximum.

We expect this maximum value to be of the order of the rel-
evant band width of the unbiased noninteracting lattice which
is proportional to the hopping # = 1. For a fixed nonzero DC
field value, the single-particle wave function extension along
the z direction is proportional to % Let us assume that F < 1,
which corresponds to the most interesting regime of large
superfluid weight. For U < F we expect very weak superfluid

10°
1072
1074
106

10-8

|Go(r2)|

10—10
10—12

10—14

10—16

10°
1072
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FIG. 7. The correlation function on the 2D Wannier-Stark lattice
in the e, direction, |G, (r;)|. Top: At F = 0.5 and several 1 < U < 5.
The black solid line is the noninteracting wave function at F = 0.5,
W(r, w =0)=J_._(—4)J.(4) [see Eq. (6)]. Bottom: At U = 1 and
several 1 < F < 5. The solid lines correspond to the noninteracting
wave functions as defined in Eq. (6).
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FIG. 8. Correlation length along the e, direction on the 2D
Wannier-Stark lattice. Left: Fixed F as a function of U for three
values of F. The lines are included to guide the eye. Right: Fixed
U as a function of F.
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FIG. 9. Superfluid weight on the 2D Wannier-Stark lattice along
the e,, direction as a function of DC field and Hubbard interaction
strengths. (Details in Appendix B.)

features, as discussed above. Increasing U will couple more
and more flat bands and thus increase the superfluid weight.
When U reaches a value around U ~ ¢ all bands within the
reach of one eigenfunction extent along the z direction are
coupled. Further increase of U will not lead to a further
increase of the weight, but instead lead smoothly into the
regime of hard core bosons, which means instead a decrease of
the superfluid weight. Therefore, Up.x ~ ¢, and we can expect
that the value of the superfluid weight at the maximum will
increase as F' is further decreased since more and more flat
bands participate. For the case F > t, we expect Up,x — 0
and a suppression of superfluidity with increasing F, since the
density overlap between localized flat band states will quickly
decrease.

Remarkably, as the strength of the DC field is decreased,
the superfluid weight is enhanced dramatically, unlike the
pairing order parameter, A*/U, which decreases as discussed
above. This enhancement of D, can be understood as follows:
The wave function asymptotics of this Wannier-Stark system
in the noninteracting limit is [38]

2|re]

1

|r. |12

Since any finite DC field breaks the periodicity in the e,
direction, a weak DC field produces multiple flat bands in
the ey direction with diminished gaps of Eg,, = F between
consecutive z bands. Additionally, the wave function in the
e, direction broadens ~ £, directly increasing the number of
partially filled z bands which can participate in supercurrent
transport. Consequently, as F' becomes smaller, but nonzero,
the flat bands become more closely packed, and more of them

are covered by the spreading wave function and are doped

t

W (r;, w=0)| ~ 7

(11)

0.0 0.5 1.0 1.5 2.0

/U (Umax)

N?=

0.0 0.5 1.0 1.5 2.0

0.0 0.5 1.0 1.5 2.0
F

FIG. 10. Top: The value of U, corresponding to the peak in
Dy as a function of F. Middle: Pairing order parameter at Uy, as a
function of F. Bottom: The maximum attainable superfluid weight
as a function of F.

(see Fig. 3). This results in the observed improvement of D;.
Note that F' can be very small but cannot be zero: When
F = 0, the system reverts to the usual single (dispersive) band
Hubbard model. We emphasize that while the pairing order
parameter is a local quantity and converges to the dispersive
square lattice limit as F — 0 and the wave function spreads,
the superfluid weight describes the dissipationless transport
of the entire system and depends on the number of bands con-
tributing to flat band superconductivity. Moreover, the system
is effectively quasi-one-dimensional in the presence of a DC
field, thus the square lattice limit of Dy will not be recovered
even as F' — 0, and is in fact dramatically enhanced with a
weak DC field strength.

It is interesting to study the dependence of the maximum
attainable superfluid weight, Dy, as a function of the DC field
strength. We observe in Fig. 10 that the interaction strength
and pairing order parameter which correspond to the maxi-
mum D; do not vary significantly as the DC field strength is
changed. As previously explained, Uy,.x is attained when all
partially filled bands are coupled, at U ~ t. However, due to
the increasing spread of the wave function and narrowing of
band gaps, the maximum D; grows and diverges as F — 0.

For superconductivity to remain robust at finite tempera-
ture, both D and A% need to be nonzero and large. A large Dy
means more carriers to participate in the supercurrent. Since
A? is the energy to break a pair (the spin gap), the larger its
value the higher the critical temperature, T, ~ A?. We see in
Fig. 10 that the maximum Dy is obtained for 2 < Upax < 3, and
at the same time A®/Up,x > 0.2 as F is varied. In other words,
the critical temperature, T, ~ A® 2> 0.4 remains roughly con-
stant as F is decreased while D;(Un.x) increases rapidly.
Therefore, superconductivity is much enhanced at small but
nonzero F.
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AY=0/U

2 u
0.0 0

FIG. 11. The pairing order parameter A¥=°/U as a function of
the DC field and interaction strengths on the half-filled y = 0 band
for the cubic lattice. The red points are the pairing order parameter
on a half-filled cubic lattice with a dispersive band, when F = 0.

B. 3D cubic lattice

For completeness, we extend the study to the 3D Wannier-
Stark lattice defined in Eq. (8). By applying a DC field in the
e, direction, we have F = f/—% with E the DC field strength.

The flat bands which result are perpendicular to e, and have
an energy gap of F' between consecutive planes (Fig. 2). Here,
the y = 0 band is fixed at half filling.

Overall the results are similar to the 2D case. As before, we
observe a decrease of the pairing order parameter, A¥=°/U, as
both the DC field F' and attraction strengths U decrease, due
to the delocalization of the single particle wave function as F
is tuned to zero. However, at weak interaction, we still have a
large and finite value for sufficiently strong F' (Fig. 11). In the
limit F — 0, we recover the pairing order parameter of the
cubic lattice shown in red points in Fig. 11.

Figure 12 illustrates the dependence of superfluid weight,
Dy, on the DC field and interaction strength for the 3D
Wannier-Stark lattice. Again, there is a strong enhancement
of Dy when the DC field strength is weak, which produces
multiple partially filled flat bands with small band gaps.

IV. CONCLUSIONS

In this study, we characterize in detail the superconducting
properties of interacting fermions in Wannier-Stark flat band
lattices obtained by applying a DC field along a diagonal of
the square lattice. Superconducting transport has two main
ingredients: the formation of Cooper pairs which become a
condensate (or quasi-condensate) and their nonzero superfluid
weight due to the phase stiffness of pairs. We calculated

Superfluid Weight

20 19

FIG. 12. The superfluid weight perpendicular to e, in the 3D
Wannier-Stark lattice as a function of U and F. (Details in
Appendix B.)

the pairing order parameter, correlation functions, and the
superfluid weight while systematically varying the DC field
and interaction strength, and uncovered the dependence of the
superconducting properties on these parameters.

We showed that, unlike flat band systems with a compact
localized state, CLS, here transport is supported cooperatively
by multiple flat bands as the spatial extent of the wave function
spreads across several z coordinates corresponding directly
to flat z bands (or y bands in 3D). Therefore, the physics
is different from flat band systems with CLS and nonzero
minimal quantum metric where superconductivity at weak
interaction is governed by the eigenstates and quantum ge-
ometry of the flat band. Despite the trivial topology of this
system, we have demonstrated that it supports flat band super-
conductivity due to the noncompact nature of the localized
state. Furthermore, the superconductivity can be enhanced
easily on these Wannier-Stark flat bands by tuning the ampli-
tude of the applied DC field. Reducing the DC field strength
increases the number of partially-filled flat band channels that
contribute towards superconductivity and the overlap of the
single-particle wave functions.

The results presented would be qualitatively similar for any
commensurate direction that the DC field is oriented in, and
on all Wannier-Stark flat band systems, independently of the
underlying Bravais lattice. We propose that the experimental
realization of Wannier-Stark flat band systems is advanta-
geous as they require less fine tuning but can similarly result
in flat band superconductivity. For example, it is possible to
study this system in experiments with ultracold atoms loaded
in optical lattices. In this situation, the DC field is emulated
by the gravitational field when the lattice is tilted at an angle
[39—42]. Moreover, there is no CLS, and the density overlap
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of the noninteracting wave functions can be controlled with
the DC field strength, which increases the coherent transport
of the Cooper pairs.

It would be insightful to analyze the many-body in-
teractions and superconducting properties on non-Bravais
Wannier-Stark lattices and topological flat Wannier-Stark
bands, like the ones proposed in Refs. [51] and [52]. Since the
effective dimension of the superconducting channel is D — 1,
it would also be interesting to explore the effect of disorder on
Wannier-Stark flat bands.
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APPENDIX A: MEAN-FIELD APPROXIMATION
ON WANNIER-STARK FLAT BANDS

To derive the mean-field expression of the interaction term
in Eq. (4) of the main text, we first recognize that sites on
equivalent z bands are identical, but the mean field parameters
should depend on the index z. In other words, the pairing and
filling on different z bands should be distinct. We can then
write a trial Hamiltonian for the interaction part,

Hltrldl—__Z(AZ w, ) ZwT+A Csz"wJ,)

z .F T
) Z(pTCz,w,icz,w,i F PGy (AD
Zw

with the mean-field parameters A*/U, ,o%, pi to be defined.
We write the Gibbs-Bogoliubov inequality at 7 = 0 [53],

U .
f }
() <_32<0sz cw A€o,y Cow, | ) uial
Z,w
1
+§Z AZ le szJ‘_A Csz 7w¢)>tnal
Z,w

U
+ E Z«’O%C;w,icz,ww + piczyw,Tcz,w,T»trial
zZw

+ (Hl,trial ) trial (Az)

where (- - - )yia denotes expectation values with respect to the
weight e~ AHuia /7, ..\ Minimizing, we obtain the mean field

interaction term and the mean-field parameters,
~ 1 B
(Hy) = (Hyiat) + 5L Y (U pi 05 + 17 /0),

(T
p? - (Cz,w,Tcz,w,T)’

(T
pi - (Cz,w,icz,uw)’
AZ

F = (Cz,w,Tcz.w,i)‘

With this approximation, we can write the Hamiltonian in
the Bogoliubov—de Gennes (BdG) form in reciprocal space
and diagonalize,

(A3)

2(H — uN) =Y W] M(k)Wy + const
k
= Z W Pk)A(YP~" (k)W + const
k
= Z I A(k)T'y + const, (A4)
where k

const = L, Z(Up?,oj +|AJU +Fz— o — Up).
Zz

The Nambu spinor W comprising the operators c_, ' and

CI w,, ¢an be identified to be

W = Py, (AS5)

where I'; consists of operators for quasiparticle excitation,
Vus n=1,2,..., 2Ly + 1 corresponding to positive eigen-
values and yn, n=2Lnx+2,2Lnax +3,...,2QLnax + 1)
corresponding to negative eigenvalues. The columns of P(k)
are eigenvectors, u,, of M(k). Recognizing that there are no
quasiparticle excitations in the ground state, (y,’y,) = 0, the
only contributing terms are (y,y,’) = 1 and we can determine
the mean field parameters self-consistently with the eigenvec-
tors of the BAG Hamiltonian.
To find A% and pZ, we compute

AZ 1 2 s +1
U T L. E Uy U 420 410
vk n=1
2Lmax+l 2
L
Py = Z Z U et 2 L1 1 (A6)
2(2Lqu+1>
7
Py =7 § § Uy |
k n= 2Lmax+2

where u,, ,, is the mth element of eigenvector u,. Since the
eigenvectors are inherently dependent on the mean-field pa-
rameters which enter the BAG Hamiltonian, Eqs. (A6) are the
set of self-consistent equations that have to be satisfied to find
the mean-field parameters and ground state of the system.

APPENDIX B: THE SUPERFLUID WEIGHT

To compute the superfluid weight, we determine the
ground state energy in the presence of a phase twist, ®.
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FIG. 13. Top: Superfluid weight on the 2D Wannier-Stark lattice
along the e, direction as a function of the attraction strength. Bottom:
Superfluid weight on the 2D Wannier-Stark flat bands as a function
of the DC field strength behaves as a power law at weak interaction.

For the 2D square lattice, we apply a phase twist in the
e, direction to calculate the superfluid weight. Specifically,
we implement a local gauge transformation on the operators,
with ¢, o = C,uw.oe™? and ¢ = ﬁ% is the phase gradient.

In the 3D case, we can choose to "éompute the superfluid
weight in any direction, e;, where § = no + mpB on the 2D
flat band and we replace the operator ¢y g6 —> Ca.p.y.0€°%.
The phase gradient, ¢, depends on the direction we apply the
phase twist; for example in the o direction the phase gradient

FIG. 14. Superfluid weight perpendicular to e, on the 3D
Wannier-Stark lattice as a function of the attraction strength.

is ¢y = L;f’[a, and in the 8 direction the phase gradient is
¢p = —®__ Following this procedure, the superfluid weight
Lﬁ«/ga

can be shown to be independent of the direction in which we
apply the phase twist.

In the main text, we showed how the superfluid weight
varies as a function of both F' and U. Here, we include cuts of
the surface plot in Figs. 13 and 14 for the 2D and 3D Wannier-
Stark systems respectively. For any DC field strength, the
superfluid weight increases at weak interaction with transport
governed by the density overlaps of the single-particle wave
function on the flat bands, peaks at intermediate U, and de-
creases as the spread of the partially filled flat bands decreases
at strong U'.

Additionally, we show in Fig. 13 the power law depen-
dence of the superfluid weight on the DC field strength, for
0.2 < F <2, at weak to intermediate interactions of U =
0.1, 1, and 2. We see that the effect of the wave function
broadening as L+ is especially evident for U = 0.1, where

F
D. ~ F—l.097
s .
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