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Topological gap opening without symmetry breaking from dynamical quantum correlations
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Topological phase transitions are typically associated with the formation of gapless states. Spontaneous
symmetry breaking can lead to a gap opening, thereby obliterating the topological nature of the system. Here
we highlight a completely different destiny for a topological transition in the presence of interaction. Solving a
Bernevig-Hughes-Zhang model with local interaction, we show that dynamical quantum fluctuations can lead
to the opening of a gap without any symmetry breaking. As we vary the interaction and the bare mass of the
model, the continuous gapless topological transition turns into a first-order one, associated with the presence of
a massive Dirac fermion at the transition point, showing a Gross-Neveu critical behavior near the quantum critical
endpoint. We identify the gap opening as a condensed matter analog of the Coleman-Weinberg mechanism of
mass generation.
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I. INTRODUCTION

The discovery of symmetry-protected topological phases
of matter [1–8] has enriched the landscape of phase transitions
beyond the conventional Landau paradigm of the symmetry
breaking [9,10]. In the presence of a given symmetry, the
possible electronic band structures of an insulator can be
divided into distinct equivalence classes, which can only be
connected through the continuous closure of the energy gap
from both sides of the transition through a topological quan-
tum phase transition (TQPT). The corresponding formation of
symmetry-protected massless Dirac fermions at the transition
is a distinctive feature of the topological insulators [11–15].

The presence of interactions can change the above scenario
and a gapped state can also appear at the transition. The
standard phenomenology for this to occur requires a sponta-
neous symmetry breaking (SSB) [4,16–20]. Indeed, breaking
a continuous symmetry opens a gap in the energy spectrum
or, equivalently, gives a finite mass for the Dirac electrons
which is understood in terms of the Anderson-Higgs mech-
anism. Clearly, a SSB can lead to break any of the symmetry
protecting the topological state, thus leaving behind a topo-
logically trivial long-range ordered phase. A similar scenario
can be described within a static mean-field (MF) picture in the
channel where SSB takes place.

A great deal of attention has been recently drawn to dif-
ferent fields [21–23] to possible mechanisms of spontaneous
mass generation which preserve the symmetry, beyond the
conventional SSB description. Here we show that such a
process describes the gap opening for Dirac electrons at the
boundary of a topological insulator. More concretely, we
address the question of whether or not electron-electron in-
teractions can drive the formation of a spontaneous mass for
the otherwise gapless electrons at a topological transition. The
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lack of a gap closing at the TQPT is expected to change
the character of the transition, which becomes necessarily
discontinuous despite the symmetries protecting the topologi-
cal phase being preserved.

For the sake of definiteness, we consider a two-dimensional
Bernevig-Hughes-Zhang (BHZ) model augmented via the in-
clusion of local electron-electron interactions that preserve
some symmetries of the model. Without interactions, this
model features a TQPT through the formation of a gapless
state. The control parameter of the transition is the energy
splitting between two electronic orbitals playing the role of a
mass term. As a consequence, the difference in the occupation
of the orbitals, or orbital polarization, is expected to assume
a prominent role. Since the orbital symmetry is broken by the
mass term, the concept of SSB does not apply to the TQPT.
Within a MF theory, the interactions simply dress the mass
term, shifting the topological transition without changing its
nature with respect to the noninteracting limit.

In this paper, we go beyond MF using a variational ap-
proach including quantum fluctuations not only of the orbital
polarization but also in the other particle-hole channels. We
demonstrate a scenario in which a gap opens at the TQPT
without breaking any of the symmetries of the model. We
show explicitly that the quantum fluctuations in the different
channels make the TQPT discontinuous for sufficiently large
interactions [24,25]. The first-order line ends in a critical
endpoint, where we show a Gross-Neveu quantum critical be-
havior as a function of the relevant coupling strength [26]. As
we shall discuss in the following, the mechanism we revealed
is reminiscent of the Coleman-Weinberg (CW) theory of mass
generation [27,28].

The rest of the paper is organized as follow. In Sec. II, we
introduce the model and set up the starting point of our analy-
sis. We address the MF solution of the model in Sec. III, while
in Sec. IV we develop a nonperturbative method to investigate
the quantum fluctuations near the TQPT. In Sec. V, we show
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the existence of a spontaneous gap formation and characterize
its critical behavior. Finally, in Sec. VI we summarize our
results.

II. MODEL AND METHOD

We solve an interacting BHZ model on a square lat-
tice [1,2,24,29,30],

H =
∑

k

ψ
†
kH0

k ψk +
∑

i

Hint
i , (1)

where ψk = [ck1↑, ck2↑, ck1↓, ck2↓]T and the operators ckασ

annihilate an electron with momentum k, orbital α = 1, 2,
and spin σ =↑,↓. If we define �μν = σμ ⊗ τν , with σμ

and τν the Pauli matrices, respectively, in the spin and
orbital subspaces the single-particle Hamiltonian reads H0

k =
[M−2t (cos(kx )+ cos(ky))]�03+ λ sin(kx )�31 + λ sin(ky)�02,
where M � 0 is the energy separation between the two
orbitals which plays the role of the mass term, and t and
λ are the intra- and interorbital hopping amplitudes. The
model is invariant under time-reversal T and inversion P
symmetries, U (1) spin rotation around the z axis [20,31–33].
In the following, we set our energy unit so 2t = 1 and focus
on the regime of two electrons per site, i.e., half filling. The
noninteracting model has a continuous topological transition
between a quantum spin Hall insulator (QSHI) for M < 2 and
a trivial band insulator (BI) for M > 2 through the formation
of a gapless Dirac state at M = 2 [1].

We assume a generic local interaction which preserves in-
version P and U (1) spin symmetry around the z axis [18,34],

Hint
i = −gN

2
N̂2

i − gT

2
T̂ 2

zi − gS

2
Ŝ2

zi − gR

2
R̂2

zi, (2)

where N̂i = 1
2ψ+

i �00ψi is half of the total occupation per site,
T̂zi = 1

2ψ+
i �03ψi and Ŝzi = 1

2ψ+
i �30ψi are, respectively, the z

component of the orbital polarization and the spin opera-
tors and R̂zi = 1

2ψ+
i �33ψi; ψi is the Fourier transform of

ψk. In the numerical calculations, we will consider gN =
−(3U − 5J ), gT = U − 5J , gS = U + J , and gR = U − J to
recover the density-density version of the popular Kanamori-
Hubbard [35] model used in a variety of works to study the
interplay between the Hubbard U and the Hund’s exchange
J and their effect on TQPTs [24,36,37]. For the sake of sim-
plicity, here we disregard the contributions of spin-flip and
pair-hopping terms, which do not qualitatively modify the
conclusions of this paper. We consider nonmagnetic solutions
to study T symmetry-preserving transitions [38,39]. To sim-
plify the notation, in the following we define �a=N,T,S,R as the
set 1

2�μν=00,03,30,33 to highlight the different channels.
The starting point of our analysis is to rewrite the partition

function of the interacting model Eq. (1) in terms of an ef-
fective problem coupled to space- and time-dependent (real)
bosonic fields �q = 	a=N,T,S,R

q , by performing a Hubbard–
Stratonovich (HS) transformation [40]. We emphasize that our
results are general with respect to the change of signs of gT

occurring for values of J/U > 1/5. Although a negative cou-
pling to the HS decoupling would result in a purely imaginary
field, we can formally reduce to the case of real bosonic fields

taking into account the negative part of the coupling, as for
instance implicitly done for the charge channel term.

The partition function reads Z ≡ e−βF = ∫
D� e−βNF [�]

in terms of the free-energy functional

F [�] =
∑

aq

|	a
q|2

2ga
− 1

βN Tr ln(−G−1
kq ), (3)

where q = (q, iνm), k = (k, iωn), with q, k wave vectors in
the first Brillouin zone (BZ) and νm, ωn the bosonic and
fermionic Matsubara frequencies, respectively, β is the in-
verse temperature and N the total number of sites. Tr indicates
the trace over momentum, frequency, orbital, and spin. Fi-
nally, Gkq = (iωn + μ − H0

k δk,k−q − Vq)−1 is the interacting
one-body Green’s function, where Vq = −∑

a 	a
q�a is an ef-

fective time-dependent potential depending on �q.

III. MEAN FIELD

The natural lowest-order approximation of Eq. (3) is a
static MF solution, where the bosonic fields 	a

q are approxi-
mated with time-independent and spatially uniform quantities.
The presence of the mass term explicitly breaks the symmetry
between the orbitals, leading to a finite values of the orbital
polarization Tz already in the noninteracting model. The non-
magnetic solution (	S

MF = 	R
MF = 0) at half filling (	N

MF =
1), reduces to the single self-consistency equation 	T =
gT

βN Tr(GMF
k �T ) where GMF

k = (iωn − H0
k + 	T �T )−1 is the

MF Green’s function. Thus, the MF solution simply corrects
the mass term M so the model describes a continuous TQPT
occurring at the critical line M − 1

2	T
MF = 2 [41] as reported

in the phase diagram of Fig. 1(b). All along this line, the en-
ergy gap closes through the formation of a gapless Dirac node
at the � point as in the noninteracting model. As we show
in Fig. 1(a) (dotted line), the orbital polarization smoothly
evolves across the topological transition. Coherently with the
above scenario, a direct inspection of the MF free energy
shows only one minimum for every value of gT and M.

IV. CORRECTIONS FROM QUANTUM FLUCTUATIONS

In this paper, we overcome the limitations of the MF by
approximating the exact free-energy functional with a second-
order expansion in the fluctuating fields, whose coefficients
are variationally chosen [42]. This approach enables us to
derive a closed expression for the covariance matrix as the ran-
dom potential Vq has a Gaussian statistics. We underline that
our methodology significantly differs from conventional per-
turbation theory in which the expansion is performed around
the MF solution [43]. As a matter of fact, our approach thor-
oughly incorporates all higher-order fluctuation corrections
by considering a variationally determined dressed propagator.
This corresponds to systematically correct the expectation
values of the fields around which we perform the expansion:
�̄ �= �̄MF. This latter point turns out to be crucial. Assuming
�q → �̄ + �q, we can write

F [�] � F (2)[�] = F [�̄] + 1

2

∑
abq

	a
qAab

q 	b
−q, (4)
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FIG. 1. (a) Orbital polarization 	̄T /gT as a function of gT measured with respect to the TQPT point g∗
T . The open symbols correspond

to the fluctuation-corrected results. The dotted line is the MF solution for M = 1.50. (b) Phase diagram in the M-gT plane comparing the
topological transition line in the two approximations. The solid lines (black and red) denote a continuous TQPT, while the dashed line (red)
marks a discontinuous one. Data from DMFT are indicated with filled symbols (gray). Insets A, B, and C show the free energy F as a function
of the orbital polarization for the three points marked on the curves. (c) Static and homogeneous components 〈〈|	a

q=0|2〉〉 for a = T, N, S, R of
the potential fluctuations as a function of gT across the topological transition for M = 1.70.

where the variational principle F � F (2) +
〈〈F [�] − F (2)[�]〉〉, with F (2) =− 1

β
ln

∫
D� e−βNF (2)[�],

leads to the new stationary condition 〈〈∂	a
q
F [�]〉〉 = 0 and

Aab
q =〈〈∂	a

q
∂	b−q

F [�]〉〉. The symbol 〈〈·〉〉 indicates that the
averages over the possible configurations are calculated using
the second-order probability density of the fluctuating field.

The coefficients Aab in the free-energy expansion Eq. (4)
depend on the averaged dressed Green’s function 〈〈Gkq[�]〉〉,
which cannot be calculated exactly. To circumvent this prob-
lem, we can introduce an auxiliary potential �k implicitly
determined by the condition [44,45] ∂F (2)

∂�k
= 0, which in turn

implies that 〈〈Gkq[�]〉〉 coincides with an interacting Green’s
function in which �k plays the role of a self-energy Gk =
[iωn + μ − H0(k) − �k]−1.

The stationary condition and the expression for Aab
q become

	̄a

ga
= 1

βN Tr(Gk�a); Aab
q = δab

ga
− χab(q). (5)

The first expression contains the fluctuation-corrected Green’s
function, hence it leads to corrected values of the �̄, while
the second can be seen as an optimized version of the
random-phase approximation (RPA), as we shall discuss in the
following [42]. Indeed, χab(q) = − 1

βN
∑

k Tr[Gk�aGk+q�b]
is the susceptibility matrix in the space of the different chan-
nels which, in the presence of odd hybridization between the
orbitals, has diagonal structure χaaδab. Moreover, the symme-
tries of the interaction ensure that χSS = χNN and χRR = χT T .
�k can be written explicitly up to second order as

�k = V̄ +
∑

qa

Gk−q
〈〈∣∣	a

q

∣∣2〉〉
, (6)

where 〈〈∣∣	a
q

∣∣2〉〉 = 1
βN

[
1

g−1
a − χaa(q)

− ga

]
. (7)

The diagonal form in the channel index allows us to ana-
lyze the contribution of each fluctuating term of the interaction
to the potential �k [46]. We emphasize that, formally, the
second term in Eq. (6) plays the same role of the one-loop
quantum correction of the effective CW potential [27].

Equations (5) and (6) provide a closed system of nonlinear
equations for �k and the bosonic fields �̄. Previous studies
suggest that the interaction effects on the TQPT are mainly
local and that nonlocal fluctuations play a minor role [47].
Thus, to further simplify the treatment, in the following we
will assume a local �k � �(iωn). We solve this system it-
eratively using a linear mixing algorithm which typically
converges in 10 − 20 steps. The BZ is discretized with a
linear grid of 20 × 20 points and the Matsubara axis with
L = 8192 frequencies using an effective inverse temperature
β = 500. The convolution in Eq. (6) is evaluated using a fast
Fourier transform algorithm. We discuss the results obtained
for J/U = 1/8 and λ = 0.3.

In Fig. 1(a), we show the evolution of the orbital polariza-
tion, obtained from the self-consistent value of the bosonic
field T̄z = 	̄T /gT . The behavior at the transition point g∗

T (M )
changes qualitatively according to the value of the bare mass
M. For a value close to M = 2, i.e., the noninteracting transi-
tion point, the orbital polarization is continuous with respect
to the increasing interaction gT . This corresponds to a smooth
modification of the BI into a nontrivial insulator through the
formation of a gapless state at the TQPT. Starting from a far-
ther point, the orbital polarization displays a critical behavior
at the transition characterized by a divergent susceptibility
∂MT̄z. Beyond this point, for any value of M, the orbital po-
larization is characterized by a discontinuous evolution across
the topological transition. This is in stark contrast with the
continuous behavior obtained in MF for the same value of
the mass, see Fig. 1(a), and it agrees with previous results
obtained via dynamical mean-field theory (DMFT) [24]. The
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FIG. 2. (a) The denominator of Eq. (8) as a function of the orbital
polarization 	̄T /gT across the TQPT in the fluctuation-corrected ap-
proximation and for different values of the bare mass M. The narrow
grey stripe indicates the minimum with its numerical uncertainty.
(b) The gap � along the TQPT line as a function of the interaction
gT . MF is the dotted grey line, while fluctuation-corrected results are
indicated by open symbols and solid line. The (red) dashed line is a
linear fit A(gT − gc

T )β=1 (A � 0.042) of the critical behavior.

agreement with DMFT is indeed even quantitative, as shown
by the data reported in Fig. 1(b).

These results can be summarized in a phase diagram in
the plane gT -M [see Fig. 1(b)], where we compare the MF
and fluctuation-corrected results for the TQPT. The two tran-
sition lines remain close for small values of the interaction gT .
Accordingly, the free-energy functional F displays a single
minimum as a function of 	T [inset A in Fig. 1(b)]. However,
upon increasing the interaction strength, the two curves start
deviating significantly, signaling a crucial impact of the fluc-
tuations.

A direct information about the contribution of the fluctua-
tions in the different channels is reported in Fig. 1(c). The fast
increasing behavior with the interaction gT in all the channels
stops at the topological transition towards the QSHI, where
these quantities display a discontinuous drop and a succes-
sive slow increase. The terms 〈〈|	a

q|2〉〉 enter, through Eq. (7),
in �(iωn) giving it a dynamical nature which significantly
deviates from its static MF form V̄ = −	̄T �T . This results
in a crucial shift of the self-consistent saddle point value of
the bosonic fields. Moreover, as discussed above, while the
MF always describes a continuous transition, in the corrected
theory the boundary line is continuous up to a critical value gc

T

of the interaction beyond which it becomes of first order. This
reflects in the behavior of the free energy near the TQPT point
in the intermediate to strong coupling regime, i.e., gT > gc

T . In
insets B and C of Fig. 1(b), we compare the free energies of a
QSHI state near the topological transition for, respectively, the
MF and the fluctuation-corrected approximation, where two
minima are found: a stable QSHI and a metastable BI.

V. CRITICAL BEHAVIOR

We thus find that a quantum critical point (QCP) separates
the continuous from the discontinuous regime on the topolog-

ical transition line, where we also found a divergent orbital
susceptibility. Indeed, the uniform orbital susceptibility XT =
∂M	̄T

q=0 reads, using Eq. (5),

XT = −2gT χT T (0)

1 − gT χT T (0) + λ
, (8)

which reminds us of the RPA result with a correction λ that
stems from the implicit dependence of �(iωn) on the orbital
polarization. This quantity also accounts for the contributions
of all the other channels of the interaction through the expres-
sion of �(iωn), see Eq. (6) [48]. At the MF level, we find
�(iωn) = −	̄T �T , so λ = 0 and XT reduces to the RPA form.
For a Hubbard-Kanamori interaction, the RPA XT diverges
only either for negative U or negative M (which lead to dif-
ferent physics), in agreement with the continuous TQPT we
always find. Note that this result also holds true when all the
coupling constants but gT vanish and the interaction reduces
to gT

2 T̂ 2
z [49].

To compute λ, we consider the zero-frequency limit of
�(iωn) where we obtain λ � χT T ∂T̄z

�. Since ∂T̄z
� < 0, this

correction is negative and tends to enhance XT . The signifi-
cance of the negative λ factor, as well as the crucial role of the
dynamical effects from all interaction channels on the orbital
polarization, becomes even more apparent in the repulsive
scenario, i.e., gT < 0. In fact, in this case, without including
λ as a form of coupling renormalization, it would be impos-
sible for the denominator in Eq. (8) to vanish altogether. This
further clarifies why the discontinuity was unexpectedly first
observed in the J/U > 1/5 regime [24].

For a fixed value of M, the TQPT corresponds to the
maximum of the response function which connects the con-
tinuous transition to a Widom line [50–52]. The minimum of
the denominator in Eq. (8) approaches zero when we reach
the QCP, as shown in Fig. 2(a). As we discussed above, in
a noninteracting TQPT, the spectral gap closes at the tran-
sition. We now compute the gap in our scheme from the
zero-frequency limit of the self-energy � = Re�(iωn →0) −
V̄ . In Fig. 2(b), we report the behavior of � at the TQPT
as a function of the interaction strength gT . While in MF
the gap is always zero, including the fluctuations we find a
finite gap above the QCP (gT > gc

T ). A finite value of the
gap � corresponds to give a mass to the Dirac fermions
at the boundary line. This is consistent with a spontaneous
symmetric mass generation process [21–23]. The presence
of such finite gap (or mass) makes it impossible to con-
tinuously connect the trivial with the nontrivial phase and
leads to a first-order TQPT. In addition, we find numerically
that the critical behavior near the QCP falls in the Gross-
Neveu universality class [22,26], with an estimated critical
exponent β � 1.

VI. CONCLUSIONS

In this paper, using a nonperturbative analytical ap-
proach to include interactions in the BHZ model, we have
demonstrated the crucial role of fluctuations in the different
local particle-hole channels to qualitatively change the nature
of the TQPT. Within a MF, the interactions only lead to a
renormalization of the bare mass of the model (coupled to the
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orbital polarization) so the TQPT has the same character of
the noninteracting model. Within our approach, the fluctuation
contributions change the MF parameters and lead to a discon-
tinuous TQPT for large interactions with a QCP separating the
continuous and discontinuous branches. This effect is intrin-
sically related to a spontaneous gap opening (mass formation)
for the otherwise gapless Dirac nodes at TQPT point without
any symmetry breaking. The gap follows a Gross-Neveu crit-
ical behavior. This process of spontaneous mass generation
takes place through a condensed matter analog of the CW
mechanism in which one-loop quantum fluctuations lead to
a mass without symmetry breaking [27]. We expect that our
mechanism can be applied to other models for topological
phase transitions but also to a wider class of phenomena. A
natural example is that of Lifshitz transitions in interacting
electronic systems [53], where the continuous deformation of
the Fermi surface topology characteristic of noninteracting

systems is expected to share the same destiny of the TQPT,
i.e., to become discontinuous for large interactions.
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