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Impact of correlations on topology in the Kane-Mele model decorated with impurities
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We propose an effective model for the study of the interplay between correlation and topology by decorating
the Kane-Mele model with a set of localized interacting orbitals hybridized to just one sublattice, breaking
the inversion symmetry. We show that, in the time-reversal symmetric case, the interplay between interactions
and hybridization extends the stability of the topological phase and depending on the driving mechanism very
different behaviors are observed after the topological phase transition (TPT). We discuss the fate of the TPT in the
presence of weak ferromagnetic order, by introducing a weak local magnetic field at the localized orbitals, which
splits the two band inversion points. One of the platforms to apply this model to are ferrovalley compounds,
which are characterized by two independent band inversion points. Understanding this family of materials is
crucial for the development of the valleytronics. An alternative to spintronics, which uses valley polarization as
opposed to spin degrees of freedom as the building block, promises great opportunities for the development of
information storage.
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I. INTRODUCTION

In the past two decades, the topological phase transitions
(TPT) have attracted considerable attention [1,2]. They can
be driven either by applying external factors to the system
or by tuning the interplay of intrinsic factors. In the first
category are TPTs caused by pressure [3,4], temperature [5],
and magnetic [6,7] or electric field [8]. The latter category
includes studies exploring the impact of correlations [9,10],
long-range order [11,12], or lattice geometries [13]. In the
case of correlations an additional complication arises from
the fact that most of the topological classifications were ob-
tained for noninteracting systems [14,15]. Proper extension
of the topological invariant to many-body systems is still
under debate [16–18]. Nonetheless, the interest in studying
the interplay between electronic correlations and topology has
been steadily growing for many years and is still an active
field [7,19–23]. In particular, we should mention the field
of the flat bands in two-dimensional and three-dimensional
[24] systems. More specifically, the study of the magic-
angle twisted bilayer graphene was addressed as a topological
heavy-fermion problem with a relevant role of the electronic
correlations [25].

A compound with a single band inversion usually be-
comes more trivial as a function of the Coulomb repulsion
since the Coulomb repulsion promotes the opening of a triv-
ial band gap. This was shown in model studies using both
mean-field [26,27] and many-body [28] approaches. The same
happens in the density functional theory approach if we use an
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exchange-correlation functional that has more electronic cor-
relations such as modified Becke-Johnson [29], HSE, or
strongly constrained and appropriately normed [30].

Additional complexity in the topological phase diagram of
a system can arise if it has two band inversions at inequivalent
k points. In the case of two band inversion at different k points
with different gap closures as a function of the Coulomb
repulsion a two-stage correlation-driven topological transition
was reported [31]. A more complex topological phase diagram
can be obtained under time-dependent light irradiation [32].
More in general, if we have a complex Fermi surface the
electronic correlations are able to induce topology [33,34].
Going beyond the single-particle picture, several topological
Mott insulators have been proposed [7,9].

One of the possible platforms to validate these results is
provided by the family of two-dimensional (2D) materials
called ferrovalley compounds [35]. These compounds have
two inequivalent band inversions at K and K ′. Due to the
presence of two inequivalent band inversions, these systems
can host a more complex correlation-driven TPT [31,36–38].
One path to obtain the ferrovalley compounds is through the
decoration of a monolayer with adatoms, which is also a
promising avenue to achieve new topological phases [39] or
enhancing certain properties of already existing phases [40].
Decoration of 2D materials allows for engineering a system
that has specific hybridizations and interactions to achieve
different model Hamiltonians, such as the one examined in
this paper.

In this work, we propose and study an effective model
describing a hexagonal lattice, in which spin-orbit coupling
(SOC) and inversion symmetry breaking through hybridiza-
tion with strongly correlated orbitals coexist. By construction,
it could play the role of a minimal model applicable to the
compounds, which can host ferrovalley physics. There the
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interplay between these two factors is believed to be respon-
sible for a wide range of phenomena such as the quantum
anomalous Hall (QAH) phase. The hexagonal lattice with
SOC is modeled using the Kane-Mele model (KMM) and
the inversion symmetry-breaking hybridization is modeled
through coupling between one of the sublattices of the KMM
and localized correlated orbitals. In order to extend our stud-
ies to a ferrovalley case, in the second part of this paper
we will introduce a local magnetic field acting only on the
localized orbitals. This model differs from the standard model
of topological Kondo insulators [10], where SOC is at the cor-
related impurity sites enforcing symmetry constraints on the
hybridization term and giving rise to topology. It is also dif-
ferent from the standard periodic Anderson model on KMM
[41], where the impurity is always half filled thus promoting
the emergence of Kondo physics. In Sec. II we introduce
the Hamiltonian and the cluster perturbation theory method
(CPT) used to solve it. In Sec. III we will discuss the phase
diagram of the model Hamiltonian without a time-reversal
breaking local magnetic field. Lastly, in Sec. IV, we will
discuss the effect of the local magnetic field on the TPT in the
KMM model and how it relates to the two-stage TPT reported
in ab initio studies of ferrovalley materials [31].

II. MODEL

The model Hamiltonian discussed in this work written in
the second quantization form consists of three terms:

H = Hlatt + Hhyb + Himp, (1)

Hlatt = −t
∑

〈i, j〉,σ
c†

i,σ c j,σ − μ
∑
i,σ

c†
i,σ ci,σ

+ it ′ ∑
〈〈i, j〉〉,σ,σ ′

νi, jc
†
i,σ sz

σ,σ ′c jσ ′ , (2)

Hhyb = J
∑

i∈A,σ

(d†
i,σ ciσ + H.c.), (3)

Himp =
∑
i∈A

Ud†
i,↑di,↑d†

i,↓di,↓

+
∑

i∈A,σ

(εd + σM )d†
i,σ di,σ − μ

∑
i∈A,σ

d†
i,σ di,σ , (4)

where ci,σ , d j,σ ′ are the fermionic annihilation operators of
(itinerant) electrons in the orbitals forming the lattice and
localized orbitals, respectively, at sites i and j and with spin
projection σ and σ ′. The Hlatt describes the standard Kane-
Mele model [14,42], with real hopping t between the nearest
neighbors in the honeycomb lattice and a complex hopping
it ′ between next-nearest neighbors. The summations 〈i, j〉
and 〈〈i, j〉〉 reflect the range of each hopping term. Since
the honeycomb lattice is bipartite we introduce capital Latin
letters A, B to distinguish between the two sublattices. The
KMM is a version of the Haldane model in which the time-
reversal symmetry is recovered through the introduction of
a spin-dependent sign of the complex hopping—hence the
Pauli matrix z (sz

σ,σ ′) in the last term of Hlatt . The parame-
ter νi, j = ±1 in this term distinguishes between a clockwise
and counterclockwise movement of particles within each sub-
lattice. Such hopping was shown to describe a spin-orbit

coupling [42]. The Hhyb combines all terms that connect the
lattice with correlated localized orbitals. In the following we
will consider the decoration of only a single sublattice with
localized orbitals; thus summation is over i ∈ A. Parameter J
quantifies the strength of the hybridization between the elec-
trons in the localized and lattice orbitals. Finally, Himp is a set
of local Hamiltonians, each having a Hubbard-type interaction
term characterized by the strength U , local potential εd , and
Zeeman-like term coupling impurity electrons to an external
magnetic field M. The latter is introduced to mimic either
intrinsic or externally driven instability of the system to form
magnetic moments. The parameter μ in Hlatt and Himp is the
chemical potential. It will be tuned to study the 2/3 and 1/3
filled cases for which the TPT is allowed; cf. text below for
a detailed discussion. In the following, when U �= 0, then
εd = −U/2 will be assumed. To set the energy scale we use
t = 1.

To solve the interacting Hamiltonian (1) we will use the
cluster perturbation theory method. This method, introduced
by Senechal et al. [43], builds upon the strong coupling ex-
pansion of the Hubbard model [44,45] and allows one to
study both strong local correlation and kinetic effects [46].
The k-dependent solution of the full Hamiltonian is built from
an exact solution of an isolated cluster G0(ω) and matrix ele-
ments describing intercluster coupling in the reciprocal space
V (	k) through RPA-like expression

G(ω, 	k) = G0(ω)[1 − V (	k)G0(ω)]−1. (5)

The solution of the isolated cluster is usually obtained either
analytically for simple subsystems or through the exact diag-
onalization method in the case of more complex clusters. The
results presented in this work were obtained using the latter
approach, with the isolated cluster being the unit cell of the
lattice in Eq. (1). It consists of three sites: two representing
the nonequivalent sub-lattices of the KMM and the third site
representing the localized orbitals, shown as blue, red, and
green circles in Fig. 1. The localized nature of the interacting
orbital in this model makes the intercluster coupling matrix
V (	k) effectively a 2 × 2 matrix, as opposed to a 3 × 3 matrix
in a generic case. The 2 × 2 submatrix of V (	k) has almost the
same elements as the H (	k) matrix for the bare KMM. The
difference is in its off-diagonal elements, where the hopping
between the atoms within the same unit cell is missing. The
effects connected to this matrix element are included in G0(ω).
The reduced dimensionality of V (	k) in the model studied here
is responsible for the strong presence of local (intracluster)
dynamics in the spectrum of the lattice systems.

The information about the topological state of the system
will be read out from the generalized spin-Chern number (Cs)
defined as a difference of generalized Chern numbers [16]
for each spin species. The need for Cs comes from the time-
reversal symmetry of this model at M = 0, which leads to the
cancellation of a normal (generalized) Chern number similar
to the standard quantum spin Hall system (QSH) [47,48]. The
Cs invariant is an extension of the standard Chern number to
many-body systems through the utilization of the eigenstates
of the effective Hamiltonian

Heff (	k) = −G−1(0, 	k). (6)
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FIG. 1. Depiction of the lattice model described by Hamiltonian
(1). The blue and red dots are the two nonequivalent lattice sites in
the KMM and the green dots are the localized orbitals. The black
lines show standard hopping amplitude and blue and red dashed lines
with arrows are the directional complex hoppings. Green lines are the
hybridization J terms between the lattice and the localized orbitals.
At the latter, there is a Hubbard interaction illustrated as two levels
separated by U .

It inherits the spin Sz conservation symmetry after the full
many-body Hamiltonian so it can be written as

Heff (	k) = H↑
eff (	k) ⊕ H↓

eff (	k). (7)

Now the generalized spin-Chern number Cs can be defined as
Cs = Cs(↑) − Cs(↓), where Cs(σ ) is a standard Chern number
of Hσ

e f f (	k). It can be obtained by, e.g., Kubo formula:

C(σ ) = 1

2π

∫
BZ

d2k �σ
	k , (8)

with

�σ
	k =

∑
n�nF
m>nF

Im

〈
ψn

	k,σ

∣∣∂k1Hσ
eff

∣∣ψm
	k,σ

〉〈
ψm

	k,σ

∣∣∂k2Hσ
eff

∣∣ψn
	k,σ

〉
(
E (n)

	k − E (m)
	k

)2 . (9)

Here |ψn
	k,σ

〉 is an eigenstate of Hσ
eff with energy E (n)

	k and nF is
the number of occupied bands. This is a nonzero quantized
quantity in the topological phase of this model due to Sz

conservation [48,49]. In the text below, every time nontrivial
topology is mentioned it will mean Cs(σ ) �= 0. The accuracy
of this approach in determining the topology on a many-body
state is currently under debate [17,18], yet it provides an
estimate for the qualitative behavior of the topological phase
diagram. In addition, it has been frequently used in similar
studies of the interplay between correlations and topology
[50–53]. Using this approach will allow for qualitative com-
parison against these results.

We will consider only clusters that are geometrically the
same size as the unit cell of the underlying KMM. Because the
additional (localized) orbital does not have intercluster cou-
pling, the effective Hamiltonian will inherit the same lattice
symmetries as the KMM except for the inversion symmetry.

III. TIME-REVERSAL SYMMETRIC CASE

We will start with the analysis of the Hamiltonian (1) in the
absence of magnetic field M (M = 0), i.e., the time-reversal
symmetric case. In the noninteracting limit, when U = 0, the
presence of localized orbitals can drive a topological phase
transition through the interplay of two factors: (i) the hy-
bridization strength J and (ii) the position of the localized
orbital level εd . The latter sets the initial position of the flat
band, of localized orbitals, relative to the dispersive bands
formed by the itinerant electrons. The former mixes the two
types of orbitals giving rise to k dependence in the otherwise
flat band at εd .

The three orbital unit cell of the model means that the
insulating phase can only be obtained for an even number
of electrons. We will focus mainly on the 2

3 filling and only
mention the 1

3 filling in cases, where it could lead to situations
that are physically different. We will also consider the case of
the flat band within the lattice electrons bandwidth, as later
this configuration will allow us to explore the onset of Kondo
screening once the correlations are included.

From the point of view of the TPT the K/K ′ points in the
Brillouin zone (BZ), where the gap inversion in the KMM
takes place, are crucial. The noninteracting Hamiltonian in the
orbital basis for one of the spin channels is given by

Hnon,σ (	k) =

⎡
⎢⎢⎣

ασ (	k) 0 0

0 −ασ (	k) J

0 J εd

⎤
⎥⎥⎦. (10)

Depending on which k = K, K ′ point we look at the func-
tion ασ (	k) can have two values: ασ (K ) = sgn(σ )3

√
3t ′ or

ασ (K ′) = −sgn(σ )3
√

3t ′. At these two points the inversion
symmetry-breaking hybridization J introduces mixing be-
tween only two bands, while the third is effectively decoupled.
As a result, the two hybridized bands repel each other, while
the third band remains unchanged. Upon increasing J one
of the hybridized bands is eventually pushed across the gap to
the unaltered band causing the change in the sign of the band
gap and thus a TPT. The role of εd in this scenario is to set the
initial energy spacing between the in-gap (localized) band and
the conduction band. Hybridization alone is sufficient to drive
the TPT, while εd is not. It is worth stressing that, in case the
lattice electrons had an inverted gap at J = 0, switching on
the hybridization will bend the flat band at K and K ′ points in
opposite directions, which is a direct consequence of the hy-
bridization breaking the sub-lattice symmetry of a lattice with
band inversion. On the other hand, if the lattice electrons were
initially in a trivial state, i.e., due to an additional sublattice
splitting mass term, the band bending will induce curvature
with the same sign at either of the two k points. Thus, from
the curvature of the initially localized band alone, one can
deduce the topology of the underlying lattice. In addition, a
hybridization that induces curvature with a different sign at K
and K ′ points in the flat band has a greater effect on its overall
bandwidth, further differentiating these two cases.

To illustrate and quantify the interplay between J and εd

in the noninteracting model we constructed the topological
phase diagram, shown in Fig. 2(a). The values of εd are in-
dicated on the right-hand side of the figure and the colored
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FIG. 2. (a) Phase diagram of the 2
3 filled decorated KMM without

a local magnetic field for various t ′ values. Filled areas indicate
the stability regions of the topologically nontrivial phase with spin-
Chern number Cs = 1 for the corresponding NNN-hopping strength
denoted in the same color. Dashed lines show the gap width of
the corresponding uncorrelated and undecorated Kane-Mele model.
(b) Low-energy band structure as a function of U with t ′ = 0.10 and
J = 0.4 fixed for the noninteracting (solid blue line) and interacting
case (solid red line). (c) Low-energy band structure as a function of
U with t ′ = 0.18 and J = 0.8 fixed for the noninteracting (solid blue
line) and interacting case (solid red line).

dashed lines show the TPT lines as a function of J for vari-
ous t ′. Each dashed line corresponds to a certain value of t ′
displayed in this figure in the same color. The region below
the dashed curves is the stability region of the topologically
nontrivial phase and above is the trivial insulator. At exactly
J = 0 there is no TPT since the localized orbitals are dis-
connected from the lattice. They are topologically trivial and
changing their energy has no effect on the overall spin-Chern
number of the system, which is made nontrivial only by the
lattice electrons. Thus the x-axis scale in Fig. 2(a) starts from
a very small but nonzero J . Outside this pathological case, as J
increases the stability region of the Chern insulator monotoni-
cally decreases irrespective of the t ′. This monotonic behavior
reflects the cooperation of εd and J in closing the topological
gap.

Armed with a better understanding of the noninteracting
limit we will now proceed to U �= 0 cases, fixing the localized

orbital energy level at εd = −U/2. This choice of εd fixes
the midpoint between the two levels of the localized orbitals
to the center of the bare KMM. The resulting regions of
stability of the topologically nontrivial phases for various t ′
are indicated in Fig. 2(a) by shaded regions between the axes
and continuous lines with circles. These lines define critical
interaction strength Uc(J ) for which the gap is closed. Their
colors, similarly to the noninteracting case, correspond to the
colors of t ′ indicated in the figure. The U values are indicated
on the left-hand side of the figure. The scale on the left and
right y axis of Fig. 2(a) was chosen in such a way as to allow
comparison between the interacting model and a reference
noninteracting model where the localized orbital contributes
to the single energy level εd = U/2. Their relation will be
discussed in the next paragraph.

At small NNN hopping strengths (t ′ = 0.05) the dashed
and solid lines match quite well. This means that one can
draw a parallel between the interacting model with εd =
−U/2 and a noninteracting model with εd = U/2. It
is possible since, at J = 0, U < 6

√
3t ′ and 2

3 filling
the spectrum of the system consist of a single band
originating from the localized orbitals sandwiched be-
tween the bands of the lattice electrons. The discon-
nected localized orbitals contribute only one band due
to the particular filling of the system, which makes the
localized orbitals fully occupied. Through the analogy with a
Hubbard atom, double occupancy results in a spectrum with a
single level shifted from its bare value by U . The smallness of
the gap (≈t ′) makes a topologically nontrivial phase unstable
already at relatively small values J , due to the limited energy
window for the band bending. Weak hybridization does not
allow for correlation effects to spill into the lattice and thus
the system can still be effectively separated into an itinerant
(lattice) and localized electrons.

At larger t ′ the wider KMM gap allows for stronger hy-
bridization J , which leads to the discrepancies between the
dashed and solid lines in the intermediate region (U �= 0 and
J �= 0). In the limiting two cases of J = 0 or U = 0 the two
lines have to match. At U = 0 the two models are simply
equivalent. At J = 0 the (trivial) gap is closed when the upper
Hubbard band crosses the KMM conduction band. Until then
it remains below the Fermi level and the mapping to the
effective model with a single flat band at U/2 is exact. But
lack of hybridization makes this case uninteresting due to the
lack of the TPT. Between the limiting cases (intermediate J),
an increased stability of the topologically nontrivial phase is
observed in the fully interacting model, when compared to the
effective noninteracting model, i.e., the shaded region extends
beyond the dashed lines with the same color. For t ′ < 0.15
the shape of the stability region changes only quantitatively
with t ′, keeping the same monotonic decrease with J . When
t ′ > 0.1 a qualitative change starts to appear. The topologi-
cal phase first starts to become robust against larger U as J
increases. Then the stability region develops a maximum at
intermediate J values, before dropping to the U = 0 limit. As
t ′ grows this maximum grows (moves to larger U ) and shifts
to larger J , indicating that stronger hybridization allows for
screening of stronger interactions. But the maximal allowed
J value for the nontrivial phase is bounded by the U = 0
limit, which is set by the J = 0 lattice electrons gap width.
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Hence the observed behavior that the larger the t ′ the bigger
the area between the solid and the corresponding dashed lines
becomes.

To illustrate this point further, in the two bottom panels
of Figs. 2(b) and 2(c) we compare the low energy spectrum
of the effective Hamiltonian [Eq. (7)] and the corresponding
noninteracting model. The former determines the topology
of the interacting system [16] and the latter plays the role
of a reference case in which correlations are treated on a
mean-field level. Figures 2(b) and 2(c) show three regimes of
U for t ′ = 0.1, J = 0.4 and t ′ = 0.18, J = 0.8, respectively.
These are weakly interacting (left column), critical U for the
effective noninteracting model (middle column), and critical
U for the fully interacting model (right column), respectively.
The bottom bands (deep below the Fermi level) are not
displayed in any of these cases as they are irrelevant from
the point of view of the TPT. At weak interaction strengths
U = 0.5, 0.8, the displayed bands of the two Hamiltonians
behave qualitatively the same. The conduction bands of Hnon

and −G−1(0, 	k) follow each other closely around the K
point and deviate slightly just on the K → K ′ path, where
hybridization effects come into play for a given spin channel.
The biggest difference between the spectra is in the location
of the valence band. Crucially, the direct gap at the K point
in the spectrum of the noninteracting model is smaller than
in the spectrum of −G−1(0, 	k). In addition, comparing the
left and the middle columns one can also see that the valence
band is less prone to move towards the conduction band upon
increasing U once the correlation effects are accounted for.
This points towards the reduction of the bare U value by the
hybridization term through the delocalization of the charge in
the interacting orbitals.

Comparison between the two spectra around the K ′ point,
at first glance, would also suggest an effective increase of J ,
since the gap at this point in the BZ of Hnon is smaller than that
of the −G−1(0, 	k). However, the increase in J around K ′ point
is consistent with the reduced effect of U . The gap between
the two hybridized levels [�non,σ (	k)] of the Hamiltonian in
Eq. (10) is given by

�non,σ (	k) = 2

√√√√J2 +
(

ασ (	k) + εd

2

)2

. (11)

Since ασ=↑(k = K ′) = −3
√

3t ′ and εd = U/2 the second
term in the square root increases as U decreases. As a result
the fully interacting model, with screened interactions, has
a larger gap in the spin-up channel at K ′ point. Contrasting
the U values displayed in the two rightmost columns in the
two bottom panels, which shows the gap closing of Hnon

and −G−1(0, 	k), confirms that for larger t ′ this effect is even
stronger extending the stability of the topological phase from
U = 0.9 at t ′ = 0.1 to U = 2.9 at t ′ = 0.18.

The robustness of the conduction band due to the hy-
bridization effect is not synonymous with the rise of the
Kondo physics [41,54,55]. The latter would lead to the forma-
tion of a narrow band pinned to the Fermi level [41]. In this
model, the Kondo screening is, in most cases, suppressed due
to near double occupancy of the interacting orbitals. For the
values of t ′ examined in this work, the interaction strengths

FIG. 3. Momentum resolved spectral function A↑(ω, k) along the
high-symmetry points for U = 0.5 and t ′ = 0.15. We tune the value
of J across the gap closing starting from the topological phase at
J = 0 up to J = 1.5, where the system becomes trivial. On the y2
axis (right-hand side), we indicate the Fermi level μ and the values
of � = −√

J2 + t2 and 2�.

for which the topological phase is stable are below the
underlying KMM bandwidth and the system is outside the
so-called Kondo regime [56], in which the interacting orbitals
are half filled. As a result, the conduction band has a reason-
ably large dispersion and is not pinned to or crossed by the
Fermi level. The nontrivial topology at 2/3 filling differenti-
ates this from a standard Kane-Mele-Kondo-lattice model [41]
in which the hybridization term does not introduce inversion
symmetry breaking. As a consequence the TPT takes place
for electron densities in the interacting orbitals closer to half
filling, bringing the Kondo physics to the forefront.

We now proceed to the analysis of the spectral features of
the full G(ω, 	k) across the topological phase transition in two
cases: (i) J driven (U � 1) and (ii) U driven (J � 1). These
two have to be separated since the trivial states one could
reach can be differentiated through analyzing the distribution
of spin-Chern number between each filled band.

In Fig. 3 four k-resolved spectral functions for the spin-
up channel along the high symmetry points of the BZ are
displayed. These spectra are for a system with t ′ = 0.15, weak
interactions at the localized orbitals (U = 0.5), and different
hybridization strengths J across the TPT. The corresponding
spin-down channel results can be obtained through the time-
reversal symmetry operator since in the absence of M it is the
symmetry of the system. The top panel shows the spectrum
without the hybridization (J = 0). As anticipated it consists
of two dispersive bands separated by a gap of 6

√
3t ′ at K

075147-5



SKOLIMOWSKI, BRZEZICKI, AND AUTIERI PHYSICAL REVIEW B 109, 075147 (2024)

and K ′ points and a single flat band of the localized orbitals
between them. The lack of a hybridization term allows for
the interpretation of the dispersive bands as originating from
the KMM. The middle band comes from the doubly occupied
localized orbitals, underlined by the lack of dispersion. As
mentioned above, it follows the behavior of a doubly occupied
Hubbard model in the atomic limit. The double occupancy is
the result of 2

3 filling; hence the flat band is U/2 away from the
KMM gap center. In the case of 1

3 filling the localized orbitals
would have been empty and thus also contribute a single band
to the full spectrum. Its energy is lowered by U with respect
to the one displayed in the top panel of Fig. 3.

After the introduction of a nonzero J the spectrum of
G(ω, 	k) becomes more complex with features that can be di-
vided into two sets. The first one consists of bands with orders
of magnitude larger spectral weights; we will refer to them
as main bands. These are the states directly connected to the
eigenstates of the effective Hamiltonian from Eq. (7). In the
other set are excitations with much smaller spectral weights.
We will refer to them as secondary bands. They are mostly flat
and either isolated or have anticrossings with the main bands.
In the latter case, narrow bands are formed as a result. These
excitations appear only when U and J are nonzero and their
spectral weight is directly related to the hybridization strength.
The flatness of these states is a clear indication of their origin
from intracluster dynamics.

The evolution with J of the low energy part of the main
bands reproduces the analysis made previously for the eigen-
states of the He f f (	k). Upon increasing J , from zero, the
initially flat conduction band becomes dispersive, due to
mixing between mobile noninteracting lattice electrons and
localized interacting electrons. Its curvature increases with J
and has the opposite sign at the K and K ′ points, as a conse-
quence of the presence of an inverted gap in the underlying
KMM. Hence in Fig. 3 the band repulsion is between the
flat valence band and the conduction band at one k point
and between the flat valence band and the main band below
it at the time-reversal symmetric partner of that k point. In
the opposite spin channel, the band bending is in exactly the
opposite direction due to the time-reversal symmetry. The
band, which does not participate in the anticrossing, does not
feel the change in the hybridization strength, and remains at its
J = 0 position. At the critical strength of J = Jc the repulsed
and the unaffected bands cross and the TPT takes place (cf.
third panel from the top in Fig. 3).

The nonzero interaction strength plays also an important
role in the shape of the stability region of a topological phase.
At J = 0 it controls how far away from the center of the
inverted gap of the lattice the localized orbital level is occur-
ring.

The lack of particle-hole symmetry in the topological
phase has an interesting consequence. The off-center (within
the KMM gap) placement of the interacting orbitals means
that as the hybridization strength increases and the band bend-
ing takes place the gap at K/K ′ points is closed for different
J values. For the set of parameters presented in Fig. 3, it is
first closed at K point and later at K ′ point. After the first
gap closing the system already becomes a trivial insulator and
the second gap closing does not change the topology of the

system anymore. But a closer inspection of the “generalized
spin-Chern number” for each of the bands separately of the
effective Hamiltonian in Eq. (7) reveals how the topological
invariant jumps between them after each gap reopening. At
small J the middle band is trivial and the two outer bands carry
an opposite topological invariant. After the first gap reopening
the topological invariants of the two highest energy bands
swap. Since the system is 2

3 filled the total spin-Chern number
of the occupied bands becomes zero. The second gap reopen-
ing, below the chemical potential, leads to the trivialization
of each band separately. In the case of 1

3 filling the spectra

would be particle hole and 	k → −	k transformed, since the
localized orbital would be empty. As a result, the gap for spin-
up electrons will be first closed at K ′ and later for the K point,
but the overall behavior of the spin-Chern number would be
qualitatively the same. As mentioned earlier, the increase in J
strength results also in the appearance of flat band excitations,
secondary bands, with relatively small spectral weight. They
are located roughly at multiples of � = −√

J2 + t2, which is
the characteristic energy scale of the charge fluctuation within
the unit cell cluster of the lattice in Fig. 1. This further con-
firms their origin from local dynamics within the unit cell. Due
to electron filling (2/3 or 1/3) not being at the particle-hole
symmetry point of this system these flat bands are not visible
in the same way in the particle spectrum (ω > μ) as they are in
the hole part (ω < μ) of the spectrum. This is best illustrated
by the excitation at ω = �. This flat band crosses the broad
dispersive band in the hole region of the energy spectrum
around its upper edge. It has no counterpart in the electron
part of the energy spectrum. This cannot be said about a pair
of flat bands formed at higher energies, which are crossing the
outer band edges of both main bands with large dispersion.

We turn now to the analysis of correlation-driven behav-
iors. Figure 4 illustrates the evolution of the spectral function
across the TPT as the interaction strength U is increased,
while a nonzero (weak) hybridization is fixed at J = 0.6.
From the point of view of the effective noninteracting model,
one would expect the gap between the conduction and valence
bands to be closed through a shift of the latter across the gap,
which is in contrast to the previous case, where it was caused
by the valence band gaining dispersion.

The comparison between the three spectral functions dis-
played in Fig. 4 confirms that this different mechanism driving
the gap closure is at play. Due to this fact, the gap is closed
only at either the K or K ′ point depending on the spin species,
but the time-reversal symmetry does not allow for spin depen-
dence in the critical U . The bandwidth of the valence band is
not experiencing enhancement with increasing U ; thus the gap
below the Fermi level, at the TR symmetric k point, is never
closed.

The comparison between the spectra in two top panels
of Fig. 4 shows that initially the valence band undergoes
a reduction in the bandwidth accompanied by only a very
small decrease of the gap at the K point. Eventually, upon
increasing U the topological gap closes and a trivial one
opens. The reopened gap, shown for U = 3.5 in two bottom
panels of Fig. 4, is narrow and indirect. Further increase of
U only flattens the conduction band. This evolution with U
is not expected from the effective noninteracting model; cf.
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FIG. 4. Momentum resolved spectral function A↑(ω, k) along the
high-symmetry points for J = 0.6 and t ′ = 0.15. We tune the value
of U across the gap closing starting from the topological phase at
U = 1.0 up to J = 3.5, where the system is a narrow gap trivial
insulator. Bottom panel shows a zoom-in on the low energy part of
spectra, highlighting the formation of a narrow gap around the K
point. On the y2 axis (right-hand side), we indicate the Fermi level μ

and the values of � = −√
J2 + t2.

the blue curve in the rightmost plot in the bottom row. There
the conduction band undergoes an increase in the bandwidth
after the TPT, as it contains parts of the flat band at � point
and the valence band of the KMM at K point. The observed
behavior in the interacting model can only be explained as an
onset of the Kondo regime. For the top panel weak interactions
(U < 6

√
3t ′) are limiting the hybridization effect to renor-

malization of the gap. At U = 2 the interacting orbital levels
move deep into the KMM bands and their occupancy drifts
away from double occupancy and towards the half filling.
That is when the simple single-particle picture starts to slowly
break down [56]. The rise of Kondo physics leads to the
creation of a many-body resonant state pinned to the chemical
potential [54]. This state, in the case of a lattice of localized in-
teracting orbitals, becomes split by the hybridization gap [57].
Thus after the TPT the spectrum of the system has a narrow
gap and an almost flat valence band. The width of the gap at
the chemical potential is set by the Kondo coherence scale.

On top of the changes around the Fermi level flat bands
form at higher energies, as in the previously discussed case.
These secondary bands are also clustering around multiples
of �, reflecting their intercluster dynamics origin. The inter-
action strength, surpassing the hybridization, enhances their
anticrossing with the dispersive main bands and reveals the
internal structure of the high-energy flat bands. The inter-

nal structure of the flat bands is an aftermath of the charge
fluctuations at the interacting orbitals caused by J , doping it
away from double occupancy, combined with their two-level
spectra due to a charge gap. The spectral weight of each
level is connected to the density of holes and electrons in the
interacting orbitals; thus the internal structure reveals itself in
the hole part of the spectrum. These effects were probably also
present in the U = 0.5 case, shown in Fig. 3, but the smallness
of U and the broadening factor used in calculating G(ω, 	k) did
not allow one to resolve them. From the comparison between
the results for U < J in Fig. 3 and U > J shown in Fig. 4, one
can see that the spectral weight in the high energy flat bands
remains small in the former while it increases in the latter.
These bands are the precursors of the charge excitation peaks
of the interacting orbitals characteristic in the spectrum of the
periodic Anderson model [56,57]. As U becomes the domi-
nating energy scale, the spacing between them approaches U
and their interpretation becomes clear.

A TPT in an opposite direction, from a band insulator to
a topological insulator, can be also observed in systems upon
adding a sufficiently strong Semenoff-type sublattice splitting
mass term [58,59]. In this geometry, the lack of an inverted
gap makes the action of increasing J or U similar. In either
case, the valence band is pushed towards the Fermi level,
leading to an eventual gap closing and reopening. There still
is some increase in the bandwidth of the valence band due
to increased hybridization, but because the band repulsion is
between the two fully occupied bands at any point of the BZ
this effect is much weaker. The absence of a large increase in
the bandwidth of the valence band caused by J means that a
hybridization-driven second TPT, back to a trivial insulator,
is not allowed. That would be the case if the J term would
allow for gap inversion between the two occupied bands with
different Chern numbers.

IV. LOCAL MAGNETIC FIELD

Lastly, we will analyze the impact of the local mag-
netic field acting on the electrons in the localized orbitals in
the scenarios described above. This orbital selective field is
introduced to mimic a possible ferromagnetic instability in the
system. It can be either an intrinsic instability due to the sys-
tem’s dynamics, as reported for a similar model of decorated
graphene [60], or driven by an external field generated by the
lack of inversion symmetry as in Janus systems [61].

In this section we will focus on the U -driven transition
since this case could show a similar transition to that reported
in Ref. [31], from trivial to nontrivial and back to the trivial
phase upon increasing interaction strength. In addition, the
stability of the nontrivial phase around the transition point for
the paramagnetic case relied on the emergence of the local
Kondo physics. The introduction of a spin-symmetry breaking
term, in theory, should strongly influence the stability of the
low-energy physics [62]. From that point of view, the J-driven
transition is less interesting since the interacting orbitals’ lev-
els are within the bare KMM gap and the system overall is less
susceptible to displaying many-body behavior.

Figure 5 shows the evolution of spectral functions for sim-
ilar parameters as used in Fig. 4, but in the presence of a
small local magnetic field M = 0.1. Since the time-reversal
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FIG. 5. Difference in the momentum resolved spectral function
A↑(ω, k) − A↓(ω, k) along the high-symmetry points for M = 0.1,
J = 0.6, and t ′ = 0.15. Blue color indicates spin-down majority
bands and red color indicates the spin-up majority bands. Inter-
action strength U is varied across the gap closing at K and K ′

points. (Top panel) Starting at U = 0.8 the system is topological with
in-equivalent band inversion points. (Middle panel) At U = 1.2 the
gap at K point is closed and the system enters a pseudogap phase.
(Bottom panel) At U = 3 bands in the spin-down channel cross at
the Fermi level μ (indicated on the right-hand side), which is inside
the (narrow) band of spin-up excitations.

symmetry no longer holds, Fig. 5 displays the difference in
the spectral weights between the two spin channels along high
symmetry points of the BZ, to show results for both spin
channels in a concise way.

Blue color indicates the spin-down majority and red color
the spin-up majority excitations. The lack of time-reversal
symmetry is signaled by the different gap widths around the
Fermi level at K and K ′ points for the two spin species.
Compared with the results for similar U values without a
magnetic field before the TPT, top panels of Figs. 4 and 5,
the gap around K point is reduced for spin-up and increased
at K ′ for spin-down electrons due to the Zeeman term. The
magnetic field orientation is such that the valence band for
spin-up electrons is shifted upwards and for spin-down elec-
trons downwards. As a result, upon increasing U first the gap
at K point in the spin-up channel closes and later the gap
closer takes place at K ′ in the spin-down channel. Nonethe-
less, the system transitions only from a TI to a metallic state.
The trivial gap is never opened, as the gap in one spin channel
opens within the opposite spin channel band. Similar behav-
ior was reported in Ref. [31], where the reopening of a gap
around one k point was initially overshadowed by the metallic
behavior at its time-reversal symmetric partner in the BZ. In

this model system, it is caused by the bottom of the spin-down
conduction band at K ′ crossing the Fermi level at the same
time the spin-up channel undergoes a TPT, as shown in the
middle panel of Fig. 5. This is not coincidental, but a con-
sequence of the symmetries of the lattice and the sublattice
symmetry-breaking hybridization. To understand that it is best
to look at the spectrum of the effective noninteracting model,
which was showing qualitatively similar behaviors to the full
model for U < 6

√
3t ′. In the previous analysis, we showed

that, around K and K ′ points, there exists a level that is
decoupled from the other two and thus unaffected by U or
J . It is also not affected by M, which only acts directly at the
interacting orbital and indirectly at the lattice orbital coupled
to it. These decoupled levels before the TPT are the bottoms
of the conduction band at K and K ′ points for the spin-up and
spin-down channels, respectively. As shown in the two top
panels of Fig. 5 they are at the same energy. Because they do
not feel the magnetic field this analysis holds true irrespective
of the strength and sign of M. After a gap closing in each
of the spin channels these fixed points jump to the valence
band. The existence of these constraints on the energy levels
around the K/K ′ points means that, after the gap closing in the
spin-up channel, the total spectral function cannot have a true
gap, since the bottom of the spin-down conduction band at K ′
point has to have the same energy as the top of the spin-up
valence band at K point. In a special case of an almost flat
valence band, a pseudogap is possible. The gap closing at
K ′ is shown in the bottom panel of Fig. 5. At this stage, the
band touching at K ′ is fully within the spin-up metallic band.
From this panel, one can also see that the Kondo physics is
no longer present in the system. The gap at K point in the
spin-up channel is much larger than for the same parameters
and larger U in the paramagnetic case; cf. bottom panel in
Fig. 4. The discrepancy cannot be explained simply by the
Zeeman field shifting the interacting orbital level. For the
parameters displayed in Figs. 4 and 5, that would account
for increasing U by M/2, which is still smaller than U = 3.5
shown in the former figure. This means that the flat bands
seen in the presence of the magnetic field originate from local
moments forming within each spin channel and recovering the
effective single-particle picture.

To test this we analyze the influence of varying the chem-
ical potential on the spectral function. If the Kondo physics
would still be at play, the low energy excitations should adjust
to the position of the chemical potential. In case the flat
bands are simply from hybridizing the local moments with the
lattice, changing μ should eventually drive spin polarization
and the vanishing of some flat bands in the spectrum. As
shown in Fig. 6, for U = 4 and the same parameters as in
Fig. 5, adjusting the chemical potential in the narrow window
of δμ = 0.3 results in a drastic change of the band structure.
This supports the non-Kondo origin of low-energy flat bands.

The top panel shows the spectrum of the system in the case
of the chemical potential pinned to the band crossing point
at K ′ point, as a reference point. At low energies, the band
structure in both spin channels behaves differently due to the
trivialization of the gap in the spin-up channel (red color).
However, the high-energy features show the same qualita-
tive behavior, irrespective of spin direction, with only slight
splitting due to the presence of M. Introducing a relatively
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FIG. 6. Difference in the momentum resolved spectral function
A↑(ω, k) − A↓(ω, k) along the high-symmetry points for U = 4.0,
M = 0.1, J = 0.6, and t ′ = 0.15. The results for μ = 0.8 (top panel),
μ = 0.7 (middle panel), and μ = 1.1 (bottom panel) are shown. Blue
bands are the spin-down-majority, while the red bands are the spin-
up-majority excitations. The position of the Fermi level μ is shown
on the right-hand side.

small shift in the chemical potential, in any direction, leads
to the breakdown of this resemblance at high energies due
to changes in the orbital spin composition of the system. As
shown in the two bottom panels of Fig. 6, reducing μ from
μ = 0.8 → μ = 0.7 (middle panel) as well as increasing it
from μ = 0.8 → μ = 1.1 (bottom panel) results in a forma-
tion of the continuous spin-polarized band with dispersion
from the decoupled KMM. The lack of localized levels cross-
ing these bands is signaling the blocking of the intracluster
charge fluctuation, which was formed through mixing with
one of the two local moment levels in the interacting orbital,
as a result of its (partial) spin polarization. The spin-up band is
located in the hole part of the spectrum, while the spin-down
band is in the electron part of the spectrum, reflecting the
direction of M.

At μ = 0.7 the relative depletion of the spin-down elec-
trons, compared to μ = 0.8, leads to the disappearance of the
low energy excitations below the Fermi level in that spin chan-
nel. The system enters the spin-polarized interacting orbital
limit as the spectra in the spin-up and spin-down channels
become connected by a reflection symmetry with regard to
the gap center of the bare KMM. Above the KMM gap in
the spin-down spectrum, only one continuous band survives,
which are the upper bands of the KMM. Below the gap
avoided crossings are clearly visible, which form due to the
hybridization of the local moment level with the lattice. For

μ = 1.1 the chemical potential is moved into the upper band
of the underlying KMM introducing more lattice electrons
into the system; thus the two spin-resolved spectra become
very distinct. In the spin-up channel it has only three bands
while, in the spin-down channel, the band structure is more
complex. The reduction of the number of bands to only three
and the absence of any flat bands means that the local charge
fluctuations are frozen and the system can be directly mapped
onto an effective noninteracting model with the localized or-
bitals level at εd = U/2. The spin-down sector, on the other
hand, has multiple avoided crossings in the occupied part of
the spectrum but the electron part of the spectrum remains
similar to the spin-polarized case. This indicates that the
intercluster dynamics is not yet trivialized.

V. CONCLUSIONS

We have studied the interplay between topology and elec-
tronic correlations in the decorated Kane-Mele model, where
we have two inequivalent band inversions at K and K ′ points.
We demonstrate that in the presence of the time-reversal sym-
metry the interplay between the possible band inversion at two
k points, the electronic correlation, and the sublattice sym-
metry breaking hybridization extends the topological region
of the phase diagram beyond U values predicted by a simple
mean-field treatment. Despite the transition being at 2/3 (1/3)
filling the Kondo physics arises in the system only at large U ,
making the topologically trivial phase a narrow gap insulator.

By introducing an artificial magnetic field, mimicking fer-
romagnetic ordering at localized orbitals, we showed that a
TPT at different U values for each spin channel is not allowed
in this model due to reminiscence of time-reversal symmetry
around K and K ′ points forcing the position of one of the
original KMM bands for the two spin species to be at the same
energy. In addition, such a magnetic field would immediately
destroy the Kondo physics, making the system susceptible to
small variation in chemical potential. Our results reveal that
a nontrivial topology can survive in a system after decorat-
ing with correlated orbitals. Ferromagnetic ordering of these
orbitals could block the opening of a trivial gap.

We expect that the inclusion of hybridization to the other
sublattice could allow for observation of separate TPT at the
two nonequivalent band inversion points. Exploration of this
topic combined with similar studies using methods that more
accurately account for embedding local charge fluctuation in
the lattice [63–65] could help to better understand the proper-
ties of this model and explore its relevance to the ferrovalley
compounds.
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