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Optical drive of amplitude and phase modes in excitonic insulators
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Motivated by recent interest in exploring excitonic condensate as the ground state of some narrow-band-gap
semiconductors, such as transition metal dichalcogenides and layered chalcogenide material Ta2NiSe5, in this
paper, we theoretically study the dynamics of condensate in response to periodically driven laser fields with
different polarizations and intensities. In particular, we consider laser light beams with bicircular and circular
polarizations breaking the time-reversal symmetry, and linear polarization. We show that the amplitude of the
condensate oscillates in time during irradiating by light with a magnitude depending on the light intensity. The
dynamics survives even after the light is switched off. The phase mode, however, changes linearly with time for
a condensate originating from purely electronic correlations. We further show that in the presence of electron-
phonon coupling, the linear-in-time behavior is replaced by a harmonically oscillating behavior, a manifestation
of gapped phase modes due to relative band charge symmetry breaking. Furthermore, we show that the primarily
electronic and primarily lattice cases corresponding to strong and weak electron-phonon coupling, respectively,
reveal distinct dynamics of the condensate, an observation which can modify the optical response of an excitonic
insulator by stimulating amplitude and phase modes in the former case.
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I. INTRODUCTION

Excitons are bound states of electron and hole pairs ex-
cited across the band gap of semiconductors and appear as
sharp resonant peaks in optical absorption spectroscopy. In
semimetals and narrow-band gap semiconductors, a coher-
ent formation of such pairs could lead to a ground state of
condensed excitons dubbed as excitonic insulator. This state
has some similarities with the superconducting state, where
electrons form Cooper pairs and undergo a quantum phase
transition acquiring a macroscopic quantum coherence [1–4].
Both states involve the formation and condensation of bound
pairs of fermions which break the symmetry of the original
system, though, there are differences between excitons and
Cooper pairs, such as charge, size, binding energy, coher-
ence length, etc. [1,5]. These differences affect the stability
and properties of the excitonic insulator and superconductor
phases, leading to distinct experimental signatures.

Though being introduced decades ago [1–4], there has
been a surge of interest in excitonic insulators in recent
years, partly due to the vast progress in synthesizing low-
dimensional systems such as graphene and transition metal
dichalcogenides [6–14]. The two-dimensional electron gas
and two-dimensional monolayer transition metal dichalco-
genides are promising platforms for realizing excitonic
insulators and exciton Bose-Einstein condensates [15,16]. In
particular, the layered dichalcogenide Ta2NiSe5 has been re-
searched in numerous experiments as an intrinsic excitonic
insulator [17–21]. These systems offer possibilities for cre-
ating and manipulating excitons, as well as for exploring
phenomena such as quantum coherence, superfluidity, lasing,
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and quantum simulation [22–25]. The control of exciton con-
densation is important for developing excitonic devices and
applications, such as low-energy electronics, optoelectronics,
and quantum information processing. However, controlling
exciton condensation is not easy, and there are several chal-
lenges that need to be overcome [10,26–28]. One promising
route to control the exciton condensation is to use ultrafast
optical pulses, which can manipulate the exciton population,
coherence, and interactions on short timescales. Ultrafast op-
tical control of exciton condensation has been demonstrated
in various systems such as transition-metal dichalcogenides,
organic semiconductors, and polariton microcavities [29–35].
However, the underlying mechanisms and dynamics of ultra-
fast exciton condensation have not yet been fully understood
and require further investigation.

The formation of exciton condensation follows a symmetry
breaking from U(1) × U(1) down to U(1) [32,36–38] which
is represented by a complex order parameter (see Sec. II). In
the condensed phase, the low-energy excitations are the phase
mode (Goldstone mode) and the amplitude mode (Higgs
mode) of the excitonic order parameter. The influence of
collective modes on the optical response of the system has
been studied in literature [39–41]. Here, however, we aim
to answer the following questions: How do the phase and
amplitude modes respond to the time-periodic light impinging
on the samples? How do the intensity and various polariza-
tions of the light, as knobs, change the response? How does
the electron-phonon coupling influence the dynamics of the
collective modes? In this paper, we investigate the dynamics
of the collective modes of the excitonic insulator irradiated
by a periodic light with different polarizations in the high-
frequency regime, where the light frequency is much larger
than the band gap and the exciton binding energy. We use
the Floquet theory to analyze the energy band structure of
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the system periodically driven by the light and to characterize
the evolution of the phase mode and the amplitude mode of the
excitonic insulator. We consider a simple model of spinless
fermions with two orbitals sitting on the sites of a square
lattice, where the on-site Coulomb interaction leads to the
exciton formation. This model captures the essential physics
of excitonic insulators in low-dimensional materials, such as
transition-metal dichalcogenides and organic semiconductors
[42,43]. Our results show that the amplitude and phase of the
exciton order parameter can be controlled by different light
intensities and polarizations. We show, that below a critical
intensity (which depends on the type of polarization), the
amplitude of the exciton order parameter increases with light
intensity. This indicates that the light can tune the exciton
instability, and so a phase transition in the system. In the
absence of coupling to phonons, the phase of the exciton
order parameter changes linearly with time and could be tuned
by light intensity and polarization. The coupling to phonons
breaks the U(1) symmetry, making the phase mode massive.
In this case, below a critical light intensity, the phase mode
oscillates with time, and if the light intensity exceeds the crit-
ical value, the phase mode changes linearly with time, which
is different for different polarizations. We also simulate the
behavior of the phase mode of exciton with a classical model,
the Kuramoto model [44–50], which shows good agreement
with the quantum model.

This paper is organized as follows. In Sec. II, we present
a model for an excitonic insulator using the mean-field treat-
ment of the Coulomb interaction. In Sec. III, we investigate
the nonequilibrium properties of the system under periodic
light with different polarizations and employ a Kuramoto
model to understand the dynamics classically. The influence
of electron-phonon coupling on the dynamics is studied in
Sec. IV. Section V is devoted to the study of dynamics in
primarily electric and primarily lattice cases. We conclude in
Sec. VI and some details of Floquet theory and estimation of
errors are relegated to appendices.

II. MODEL AND METHOD

We consider a two-dimensional square lattice with two
orbitals per site, labeled by α = 0, 1. Our choice of a square
lattice is due to its possible relevance to Ta2NiSe5. The results
presented throughout are, however, rather general and can be
applied to other lattices. For instance, the exciton dynamics
has been studied in 1D topological chains by one of the
authors [40]. For our purposes, in this paper it’s enough to
consider spinless electrons described by the following Hamil-
tonian:

Ĥ = Ĥ0 + Ĥint, (1)

where Ĥ0 is the kinetic term given by

Ĥ0 =
∑

〈i, j〉, α

Jα ĉ†
i,α ĉ j,α +

∑
i,α

(Dα − μ)ĉ†
i,α ĉi,α. (2)

Here, ĉ†
i,α (ĉi,α ) creates (annihilates) an electron at site i

and in orbital α. Jα is the hopping integral between α orbitals
sitting on the neighboring site. We ignore the interorbital hop-
pings, as they have been shown to be small [36] for Ta2NiSe5.

Dα is the energy level of orbital α, and μ is the chemical
potential. In momentum space,

Ĥ0 =
∑
k,α

(εk,α − μ) ĉ†
k,α

ĉk,α, (3)

where εk,α = ∑3
l=0 Jαeik·el + Dα is the bare electron energy

dispersion with el = a(cos φl , sin φl ), φl = lπ/2 and a is a
lattice constant. For the sake of simplicity, we set J0 = −J1 =
J and D0 = −D1 = −D. This implies that the bands have
opposite dispersions and are inverted near the � point of
the Brillouin zone. However, our results are not sensitive to
these specific choices of parameters. We also fix the chemical
potential μ such that the system is half filled.

The interaction term Ĥint in Eq. (1) is described by

Ĥint = V
∑

i

n̂i,0n̂i,1, (4)

where V is a local interorbital Coulomb interaction and ni,α =
ĉ†

i,α ĉi,α is the electron number operator. We treat the interac-
tion term using the mean-field theory, the details are relegated
to Appendix A. By introducing φ = 〈ĉ†

i,0ĉi,1〉 as the exciton
order parameter and considering the electron density in these
orbitals, n0 = 〈ĉ†

i,0ĉi,0〉 and n1 = 〈ĉ†
i,1ĉi,1〉, we can rewrite the

interaction Eq. (4) as

ĤMF
int =V

∑
k

(n1ĉ†
k,0ĉk,0 + n0ĉ†

k,1ĉk,1 − φĉ†
k,1ĉk,0

− φ∗ĉ†
k,0ĉk,1). (5)

Using the pseudospin Ŝγ

k = 1
2�

†
k σγ �k , where �̂k =

(ĉ†
k,0ĉ†

k,1)T and σγ is the Pauli matrix for γ = 1 − 3 and the
identity matrix for γ = 0, the mean-field Hamiltonian can be
written in Anderson pseudospin representation [51] as HMF =∑

k,γ Ŝγ

k Bγ

k . In this representation, the exciton order param-

eter is rewritten as φ = 1
N

∑
k〈Ŝx

k + iŜy
k〉 and 〈n̂0〉 + 〈n̂1〉 =

2
N

∑
k〈Ŝ0

k 〉 and 〈n̂0〉 − 〈n̂1〉 = 2
N

∑
k〈Ŝz

k〉. In addition, the com-
ponents of pseudomagnetic field are computed as follows:

B0
k = V (n1 + n0), (6)

Bx
k = −2V Re[φ], (7)

By
k = −2V Im[φ], (8)

Bz
k = εk,0 − εk,1 + V (n1 − n0). (9)

Solving the mean-field equations, we map out the equilib-
rium ground state phase diagram as shown in Fig. 1(b) [52].

III. NONEQUILIBRIUM DYNAMICS OF THE SYSTEM

The nonequilibrium dynamics of a system may reveal
interesting physics otherwise being absent in equilibrium,
providing a pathway to study the collective behavior of the
system. Here, we present a theoretical method to study the ex-
citon dynamics of a periodically driven system. We apply laser
light with different polarizations to manipulate the symmetry
of the system and investigate its effect on the evolution of
the exciton order parameter. For a periodically driven system,
the Floquet theory is a powerful framework for analyzing the
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FIG. 1. (a) Two-dimensional square lattice with two orbitals per
site. J1(0) are intraorbital hopping parameters between neighboring
sites. (b) The equilibrium phase diagram of the model shown as
density plot of the exciton order parameter φ in the plane of on-site
energy D/J and Coulomb interaction V/J .

material properties by changing the Bloch-band dispersion
and the geometry of the system [53–58]. In the following, we
use the model presented in the previous section and simulate
a half-filled excitonic system with parameters D/J = 0.9 and
V/J = 4 as an equilibrium phase of the system. By solving
the self-consistent equation, we find that the exciton order
parameter φ = 0.23 is real and opens a gap near the � point of
the Brillouin zone. We use the hopping parameter J as our unit
of energy. To express the parameter of our model in terms of
eV, we set J = 0.1 eV. We use the Floquet theory to examine
how the band structure is altered by the external perturbation
and explore how the exciton order parameter evolves in the
nonequilibrium state.

A. The Floquet band structure

In this subsection, the Floquet band structure of the two-
dimensional square lattice is calculated using the Floquet
Hamiltonian (see Appendix B). Coupling to the electric field
of an incident light, the mean-field Hamiltonian reads

ĤMF(t ) = 1

N

∑
k

�̂
†
k ĤMF

(
k + e

h̄
A(t )

)
�̂k, (10)

where the electric field of light is incorporated into this model
via Peierls substitution with the vector potential A(t ). e and
h̄ are the electron charge and the reduced Planck’s constant,
respectively. The function describing A(t ) depends on the
polarization of the light, generally defined as

A(t ) = A1eim1
t + A2eim2
t+iθ , (11)

which consists of two circularly polarized lights (CLs) with
amplitudes A1 and A2 and different harmonics m1 and m2. The

 is the frequency and the parameter θ indicates the phase dif-
ference between circular components. With this choice of the
vector potential, the time-dependent Hamiltonian ĤMF(k +
e
h̄ A(t )) can be written as

ĤMF
(

k + e

h̄
A(t )

)
=

∑
α

(
3∑

l=0

Jl
α (t )eik·el + Dα + V nᾱ

)

× ĉ†
k,α

ĉk,α − V φ∗ĉ†
k,0ĉk,1 + H.c.,

(12)

where Jl
α (t ) = Jαei e

h̄ aA1 cos(m1
t−φl )e−i e
h̄ aA2 cos(m2
t+θ−φl ).

Fourier transformed to frequency domain [see Eq. (B3)],
the Floquet Hamiltonian is obtained as

ĤF =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

· · · Ĥ0 − 
 Ĥ1

Ĥ−1 Ĥ0 Ĥ1

Ĥ−1 Ĥ0 + 
 · · ·
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (13)

where Ĥn are the Fourier components of the mean-field
Hamiltonian and is given by

Ĥn(k) =
∑

α

(
3∑

l=0

Jnl
α eik·el + (Dα + V nᾱ )δn,0

)
ĉ†

k,α
ĉk,α

− (V φ∗δn,0)ĉ†
k,0ĉk,1 + H.c., (14)

Equation (14) shows that the effect of the light is to renor-
malize the hopping integral as

Jnl
α = (1 − 2α)Jein/m1(φl −π/2)

∑
m

im( m2
m1

+1)e−imθ eimφl (1− m2
m1

)

×J (−n+mm2 )
m1

( e

h̄
aA1

)
Jm

( e

h̄
aA2

)
, (15)

where Jn is the nth Bessel function. As an approximation
for numerical calculation of the Floquet spectrum, we focus
on the high-frequency limit 
 > t0,V . In this limit, Flo-
quet sectors in Eq. (13) split in energy and one can restrict
the spectrum to the zeroth-Floquet sector. Thus, the Floquet
Hamiltonian will be replaced by a two-dimensional effective
Hamiltonian which is equivalent to its time average [59].

In the following, by adjusting the incident light parameter,
we will investigate the Floquet Hamiltonian and the evolution
of energy band structure for different polarizations: bicircular,
circular, and linear.

1. Bicircular light

Bicircular light (BCL) polarization is a superposition of
two circularly polarized lights (CLs) with opposite chirality
and different frequencies. According to Eq. (11), the vector
potential of the BCL possesses a rose pattern so the integer
numbers m1 and m2 control the number of its leaves with
(m1 + m2)/gcd(m1, m2)-fold rotational symmetry. The phase
difference θ between these two CLs can rotate the shape
of this rose pattern or, equivalently, change the direction of
electric polarization. Due to the spatial pattern of the elec-
tric field of BCL, not only does it break the time-reversal
symmetry but also the inversion symmetry of the system
[44,60]. Using Eq. (11) and choosing (m1,−m2) = (1, 2),
where Ax(t ) = A1 cos(
t ) + A2 cos(2
t − θ ) and Ay(t ) =
A1 sin(
t ) − A2 sin(2
t − θ ), we explore the effect of three-
fold BCL on the electronic band structure. Our results show
that the threefold BCL leads to band renormalization and
rotational symmetry breaking, which depend only on the light
intensity (A1 and A2) and are independent of the polarization
angle θ due to the local excitation.
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FIG. 2. Quasienergy spectrum of the effective Hamiltonian in the zeroth-Floquet sector for different light polarizations and intensities in
the high-frequency regime (
 = 0.3 eV). The system is initially prepared in a regime with D/J = 0.9 and V/J = 4, where the exciton order
parameter is φ = 0.23. We set the hopping magnitude J = 0.1 eV and the lattice constant a = 3.5 Å. The figure shows the quasienergy variation
for (a)–(d) threefold BCL with (m1, m2) = (1, −2), θ = π/3, and A1 = A2 = A; (e)–(h) CL with (m1, m2 ) = (1, 0), A1 = A, and A2 = 0; and
(i)–(l) linearly polarized light along the x direction with (m1, m2) = (1,−1), θ = 0, and A1 = A2 = A/2. The light intensity ranges from
A = 1.0 µV s m−1 to A = 4.0 µV s m−1 with a step of unity from left to right columns. The symmetry breaking and the gap renormalization
are more pronounced at high intensities.

2. Circular light

For circular light polarization, we choose one of the cir-
cular components of the vector potential in Eq. (11), i.e.,
(m1, m2) = (1, 0), θ = 0, and A1 = A, A2 = 0. In this case,
the time-reversal symmetry is broken in the system, while the
rotational symmetry is preserved.

3. Linear light

The linearly polarized light (LL), which is characterized by
(m1, m2) = (1,−1), θ = 0, and A1 = A2 = A/2, breaks the
original discrete rotational symmetry. We show that by tuning
the parameter of incident light for a LL along the x direc-
tion, the energy dispersion in the x and y directions becomes
asymmetrically renormalized. This effect becomes more pro-
nounced as the intensity of the incident light increases.

Figure 2 shows the quasienergy spectrum of the zeroth-
Floquet sector in the first Brillouin zone for different light
polarizations. The effect of the light can be seen as a change
in the bandwidth as well as the symmetry of the distribution

of the condensate in momentum space, intensified as red
gloaming in the valence band. The changes of zeroth-Floquet
spectra for BCL and CL polarization with light intensity
are shown in Figs. 2(a)–2(d) and Figs. 2(e)–2(h), respec-
tively. By increasing the intensity, the momentum distribution
moves toward the center of the Brillouin zone and retains
the original symmetry of the system. However, since BCL
polarization breaks the lattice symmetry, the distribution be-
comes asymmetric. The spectrum remains symmetric for CL
polarization. The light intensity strongly renormalizes the
bandwidth, flattening it and making the band gap larger than in
equilibrium. These variations result from the renormalization
of hopping integrals J0l

0 and J0l
1 in Eq. (15), which contain

the Bessel functions. According to Eq. (15), for large val-
ues of A, the hopping values decrease, which leads to the
flattening of the energy bands and a phase transition in the
system. Figures 2(i)–2(l) depict the spectra for LL polariza-
tion. Again, at high intensities the momentum distribution is
elongated along the kx axis due to the x-linear polarization of
the light.
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FIG. 3. The effect of light intensity A and interaction strength V/J on the exciton order parameter φ for different light polarizations:
(a) BCL with (m1, m2) = (1,−2), θ = π/3, and A1 = A2 = A; (b) CL with (m1, m2) = (1, 0), A1 = A, and A2 = 0; and (c) linearly polarized
light along the x direction with (m1, m2) = (1, −1), θ = 0, and A1 = A2 = A/2. The dashed gray line indicates the BCS-BEC crossover in the
excitonic phase. The on-site energy is D/J = 0.9.

It is also instructive to see how the intensity of optical fields
may change the phase diagram of the equilibrium system.
To do this, we calculate the excitonic order parameter for
our photoexcited system by diagonalizing the zeroth Floquet
sector Hamiltonian and solving the self-consistent equations.
Figures 3(a)–3(c) show how the order parameter changes with
the light intensity A and the Coulomb interaction V/J for dif-
ferent light polarizations: BCL, CL, and LL. The dashed gray
line marks the BCS-BEC crossover in the excitonic phase. In
the BCS condensate, the pairs are mainly condensed around
the minimum of the gap occurring at finite momenta, while the
BEC condensate pairs concentrate around k = 0. We see that
the light intensity and polarization can induce the crossover
from BCS to BEC regimes at lower interactions, where the
condensate moves from finite to zero momenta. However, if
the intensity is too high, the condensate will disappear.

B. Nonequilibrium dynamics of the exciton order parameter

To study the nonequilibrium dynamics of the exciton con-
densate, we use the time-dependent mean-field Hamiltonian
Eq. (10) in the pseudospin representation. The time evolution
of mean-field parameters is given by the Heisenberg equa-
tion of motion:

d〈Sk (t )〉
dt

= Bk (t ) × 〈Sk (t )〉. (16)

The above equation is a set of equations that we solve
using the fourth-order Runge-Kutta method, and the exciton
order parameter φ(t ) is calculated at each time step. Care
has to be taken to treat the accumulation of errors properly
when solving the equations of motion numerically, as we
explain in Appendix C. In our calculations, we consider the
zero-temperature limit and the equilibrium state of the system
as an initial input.

As shown in Fig. 4, the exciton order parameter, φ(t ), be-
comes complex when the system is driven out of equilibrium

by lights with different polarizations as

φ(t ) = φex(t )eiθex(t ), (17)

where φex(t ) and θex(t ) are the amplitude and phase of the
exciton order parameter, respectively. We will explore how
φex(t ) and θex(t ) depend on different light polarizations in two
regions of light intensity: switch ON and switch OFF.

1. Dynamics of amplitude mode

The time evolution of the amplitude mode, φex(t ), is shown
in Figs. 4(a)–4(c). Each panel shows the evolution for a given
polarization and different plots correspond to different val-
ues of light intensities A = 1, 2, 3 µV s m−1 (corresponding to
light intensities of about 0.4, 1.2, 2.7 mJ/cm2, respectively).
The first observation is that in the switch-ON region, the
amplitude of the exciton is influenced by both polarization
and intensity of the incident light. φex(t ) oscillates coher-
ently with a frequency that matches the minimum gap Eg =
2V φ/J � 2. When driven by the BCL polarization, the am-
plitude of the oscillations first increases with light intensity
and then decreases for more intensive fields. The amplitude
of oscillations, however, is enhanced with the intensity of
light for CL and LL polarizations. The different responses
between polarizations could be traced back to the dynamics
of the exciton order parameter in momentum space. Note
that φex(t ) = N−1 ∑

k〈Sx
k(t ) + iSy

k(t )〉. The stimulus optical
drive with a given polarization and intensity would generate
a pseudospin dynamics in momentum space and, hence, the
collective behavior obtained by integrating over pseudospins
depends on the distribution of the dynamics induced by the
light.

The second observation is that when the light is turned off,
the oscillations of φex(t ) survive with a lower amplitude which
depends on the light intensity before turning it off. Physically,
the mode should be damped over time, but in the absence
of any dissipation in our model the coherent oscillations
could survive at least for weakly dissipative system. Also, we
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FIG. 4. The evolution of the exciton order parameter for different light polarizations in the high-frequency limit 
 = 0.3 eV. The system
is initially in the BCS regime with V/J = 4, D/J = 0.9, and exciton mean-field parameter φ = 0.23 as an equilibrium phase. (a)–(c) The
collective amplitude mode of the excitonic phase under BCL, CL and LL, respectively. (d)–(f) The collective phase mode of the excitonic
phase under BCL, CL and LL, respectively. Note that the phase mode is plotted modulo 2π , which causes the apparent zigzag shape of the
curves. The actual phase mode varies linearly in time with different rates for different light polarization and intensity. The dashed gray line
marks the light cutoff time, which is chosen at t = 1.0 ps here.

observe that the amplitude is diminished more severely for
high intensive optical fields before turning it off.

2. Dynamics of phase mode

The evolution of the phase of order parameter, θex(t ),
is shown in Figs. 4(d)–4(f). The phase mode changes lin-
early with time with a slope which depends on the incident
light polarization and intensity. Note that the plots depict
θex(t ) mod 2π , i.e., the linear-in-time behavior is folded to
[−π, π ] interval. In particular, for BCL the slope is steeper
than CL and LL polarization and increases with the light
intensity. This behavior of the phase of the exciton order
parameter also shows that the phase mode is affected by the
symmetry of the electronic bands, which is controlled by the
incident light. In other words, the distribution of the exciton
order parameter in momentum space over the Brillouin zone is
determined by the light properties. This leads to an increase in
the slope of the time evolution of the phase of exciton diagram
at high intensities. In the switch-OFF region, the phase of the
order parameter continues to change linearly but with a lower

slope than in the ON region. It is also worth mentioning that
our results from the evolution of the phase of exciton order
parameter are consistent with the theoretical predictions of
Golež et al. [39], where the authors studied the nonlinear
spectroscopy of collective modes in excitonic insulators and
found that, without electron-phonon coupling, the equation of
motion of the phase mode of the exciton order parameter is
given by θ̈ex(t ) = 0, resulting in a linear-in-time behavior for
θex(t ).

C. Classical description using Kuramoto model

To understand the overall behavior of the exciton order
parameter explained above, it is instructive to use a classical
model based on the Kuramoto model. This model describes
the dynamics of N-coupled classical oscillators [44–50].
To see this, we represent an exciton at each point of the
Brillouin zone by a dipole with direction and amplitude given
by the vector (Sx

k , Sy
k ). We assume that the components of

spinor are ψk,0 = eiθk,0 cos γk and ψk,1 = eiθk,1 sin γk , satisfy-
ing |ψk,0|2 + |ψk,1|2 = 1. Then, we define the exciton order
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parameter as

φ(t ) = 1

N

∑
k

sin(2γk )

2
eiθk , (18)

where sin(2γk )/2 and θk = θk,1 − θk,0 are the amplitude and
polarization angle of the exciton at each momentum, respec-
tively. Using the Hamiltonian Eq. (10) in the time-dependent
Schrödinger equation, we obtain the dynamics of an exciton
order parameter as

i
d

dt
〈ψk,0ψk,1〉 = −θ̇keiθk

sin(2γk )

2
− ieiθk γ̇k cos(2γk ). (19)

The above equation leads to the two coupled differential
equations for amplitude and angle of polarization given by

θ̇k = Bz
k (t ) + cot(2γk )

(
Bx

k (t ) cos θk + By
k (t ) sin θk

)
, (20)

γ̇k = 1
2

(
Bx

k (t ) sin θk − By
k (t ) cos θk

)
, (21)

where

Bx
k (t ) = −V

N

∑
p

sin(2γp) cos θp, (22)

By
k (t ) = −V

N

∑
p

sin(2γp) sin θp. (23)

Equations (20) and (21) can be rewritten as

θ̇k = (
εk+ e

h̄ A(t ),0 − εk+ e
h̄ A(t ),1 + V (n1 − n0)

)
+ V

N
cot(2γk )

∑
p

sin(2γp) cos(θp − θk ), (24)

γ̇k = −V

2N

∑
p

sin(2γp) sin(θp − θk ). (25)

Now let us compare these equations with the Kuramoto
model. The latter model is given by [45–50]

η̇i = ωi +
N∑

j=1

Mi j sin(ηi − η j ) + εi(t ) + F sin(σ t − ηi ),

(26)

which describes the synchronization of phases in a system
consisting of N-coupled oscillators each with phase ηi and
individual frequency ωi. εi(t ) is a noise term that oscillates
very fast in time. F and σ are the strength and frequency
of the external force, respectively. The external force can
have phase and/or time dependence and may influence the
frequency and phase of the oscillators. The parameter Mi j

determines the degree of synchronization between the phases
of different oscillators [50,61]. Comparison of Eqs. (24) and
(26) reveals that θk plays the role of ηi and V cot(2γk ) sin(2γp)
corresponds to coupling between the phases of excitons of
different modes, which is analogous to Mi j in the Kuramoto
model. Also, similar to ωi, ωk ≡ (εk+ e

h̄ A(t ),0 − εk+ e
h̄ A(t ),1 +

V (n1 − n0)) indicates the individual frequency of each mode
that couples to light with vector potential A(t ). We expand this
term and, according to Eq. (14), it is approximated by

ωk �
3∑

l=0

(
J0l

0 − J0l
1

)
eik·el + V (n1 − n0), (27)

where we only keep the first term of the Fourier expansion
because higher terms oscillate very fast in the limit of high
frequency and act as a noise term εi in Eq. (26). In addition,
there is no external force, F sin(σ t − ηi ) in Eq. (26), that
aligns the exciton dipoles with themselves.

Next, we use Eq. (24) to describe the evolution of the ex-
citon order parameter in momentum space in a system driven
by light. Equations (17) and (18) show that these microscopic
evolutions in momentum space result in the amplitude and the
phase of exciton as

φex = 1

2N

√√√√(∑
k

sin(2γk ) cos θk

)2

+
(∑

k

sin(2γk ) sin θk

)2

,

(28)

θex = arctan

( ∑
k sin(2γk ) sin θk∑
k sin(2γk ) cos θk

)
. (29)

In the following, we will focus on how the BCL affects
the behavior of the phase and amplitude of the exciton order
parameter. This analysis can also be applied to two other
polarizations. When the light is on, the BCL excites electrons
from the valence to the conduction band and may increase the
exciton density so long as the energy gap remains close to
the equilibrium value. The direction and strength of excitation
distribution in momentum space depends on the light’s polar-
ization and intensity, respectively. From Figs. 2(a) and 2(b),
at low intensity (A = 1 µV s m−1 and A = 2 µV s m−1) the ro-
tational symmetry breaking is weak, which leads to a small
change in the amplitude of the exciton order parameter. In this
condition, the coupling term V cot(2γk ) sin(2γp) dominates
the correlation between the phases of excitons in different
modes. Therefore, the phase of excitons at each mode tends
to be aligned and change slightly over the Brillouin zone.
This also leads to an enhanced amplitude of the exciton order
parameter compared to the equilibrium state, as shown in
Eq. (28). At high intensities, there is a threshold intensity
(which is A � 2.2 µV s m−1 for BCL), yielding a drop in
the amplitude of the exciton order parameter when the light
intensity is increased. On the other hand, as shown in Fig. 4,
for A = 3 µV s m−1 the symmetry breaking is stronger and
the coupling term V cot(2γk ) sin(2γp) varies more than that
at A = 2 µV s m−1. Thus, the last term of Eq. (24) becomes
weaker for A = 3 µV s m−1. Therefore, at A = 3 µV s m−1 the
phase of excitons can change more easily in momentum space,
which results in a larger phase difference between excitons
and a lower amplitude intensity according to Eq. (28). In short,
the light polarization and intensity affect the excitonic phase
correlation and hence the rate of change of the phase and the
oscillation magnitude of the order parameter.

Furthermore, in the switch-OFF region (A = 0), Eq. (24)
implies that each exciton in the Brillouin zone has an in-
dividual frequency ωk = Bz

k . The amplitude of the exciton
order parameter φex(t ) also changes according to light in-
tensity before turning off. This is due to memory effects in
the system, i.e., the current state of the system depends on
the previous state. Therefore, the amplitude φex(t ) decreases
less for low light intensity than for high intensity because of
correlations between exciton phases. Moreover, from the last
term of Eq. (24), the evolution of collective modes in switch
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ON and OFF regions varies with Coulomb interaction strength
V and shows different behaviors in BCS and BEC regimes of
the exciton phase diagram.

IV. THE EFFECTS OF ELECTRON-PHONON COUPLING

Phonons can modify the dynamics of excitations in ex-
citonic insulators [32,33,37,39–41,52,62], and hence their
indispensable role has to be taken into account. In this sec-
tion, we investigate the effect of electron-phonon coupling
on the exciton condensation by considering an optical branch
of phonon modes that modifies the interorbital hybridization.
The Hamiltonian of the electron-phonon coupling is given by

Ĥe−ph =gx

∑
j

(b̂†
j,x + b̂ j,x )(ĉ†

j,0ĉ j,1 + ĉ†
j,1ĉ j,0)

+ gy

∑
j

(b̂†
j,y + b̂ j,y)(ĉ†

j,0ĉ j,1 + ĉ†
j,1ĉ j,0), (30)

and the phonons are described by

Ĥph = ωphx

∑
j

b̂†
j,xb̂ j,x + ωphy

∑
j

b̂†
j,yb̂ j,y. (31)

Here, ωphδ
is the phonon frequency which comes from the

vibration of the atoms in the δ direction (δ = x, y). b̂†
j,δ is

the phonon creation operator at site j and gδ is the electron-
phonon coupling strength in the δ direction. The displacement
and momentum operators read as X̂ jδ = b̂†

j,δ + b̂ j,δ and P̂jδ =
i(b̂†

j,δ − b̂ j,δ ), respectively. For simplicity, we assume that
the frequency and the strength of the electron-phonon cou-
pling in two directions x and y are the same, ωphδ

= ωph

and gδ = g, and define the effective electron-phonon coupling
as λ ≡ 2g2/ωph. This coupling cooperates with the Coulomb
interaction and leads to an exciton phase transition in the
system [37,39,41,52,62]. Note that in Eq. (30) we ignored
the coupling of phonons with carrier density in the bands
as it merely changes the Hartree energy but not the exciton
formation.

In the absence of electron-phonon coupling, the system
described by Hamiltonian Eq. (1) is manifestly U(1) × U(1)
symmetric. It is straightforward to see that the Hamiltonian
is invariant under separate global phase rotations of electron
operators in valence and conduction bands, ĉi,α → eiϕα ĉi,α ,
hence leading to separate charge conservations in the bands.
By changing the phase variables to total ϕt = ϕ0 + ϕ1 and
relative ϕr = ϕ0 − ϕ1, the global symmetry casts into U(1)t ×
U(1)r . Upon exciton condensation, i.e., the development of
φ �= 0 in the system, the global symmetry breaks down to
a single U(1)t symmetry of total charge conservation. Con-
sequently, the phase fluctuations of φ remain gapless akin
to the Goldeston modes. Coupling to phonons, according to
Eq. (30), breaks the relative U(1)r symmetry down to discrete
Z2 symmetry at the level of Hamiltonian explicitly, which
results in a gapped phase mode in the exciton condensation
[37,39,41,63–65].

We study the dynamics of the system in the pres-
ence of the phonon and in the pseudo-spin representation
for different light polarizations by considering Hamil-
tonian Eq. (30) together with Hamiltonian (1), H̃ =

Ĥ + Ĥe−ph, and treat both Ĥint and Ĥe−ph using time-
dependent mean-field theory [41,52]. In the presence
of the electron-phonon coupling, the x component of
pseudo-magnetic field becomes Bx

k = 2(g(Xx(t ) + Xy(t )) −
V )Re[φ(t )], and dPδ (t )/dt = −ωphXδ (t ) − 4gRe[φ(t )] and
dXδ (t )/dt = ωphPδ (t ).

The dynamics of the amplitude and the phase of exci-
ton order parameter in the presence of phonons for different
light polarizations is shown in Fig. 5. We set the parameters
as V/J = 4, D/J = 0.9, λ/J = 0.2, and ωph/J = 0.1 such
that the system is prepared in the BCS regime of the exci-
ton phase where the equilibrium mean-field parameters are
Xx = Xy = −0.75 and φ = 0.27 with the energy gap Eg =
2(2g(Xx + Xy) − V ) Re[φ(0)]/J = 2.34. Again, we use the
Kuramoto model to describe the evolution of the collective
modes. Equation (20) becomes

θ̇k = (
εk+ e

h̄ A(t ),0 − εk+ e
h̄ A(t ),1 + V (n1 − n0)

)
+ V

N
cot(2γk )

∑
p

sin(2γp) cos(θp − θk )

+ 2g(Xx(t ) + Xy(t )) cot(2γk ) cos(θk ), (32)

and Eq. (21) evolves as

γ̇k = −V

2N

∑
p

sin(2γp) sin(θp − θk )

− g
(
Xx(t ) + Xy(t )

)
sin(θk ). (33)

By comparing the Kuramoto model Eq. (26) with Eq. (32),
we see that the phonons in the system act as an external
force with strength 2g(Xx(t ) + Xy(t )) cot(2γk ), which can af-
fect the synchronization of the phases of excitons at different
momenta in various ways, depending on its strength and
frequency. As we shall discuss below, this would affect the
dynamics of the phase of the exciton. Equation (32) shows that
the synchronization of the phases of excitons in momentum
space is affected by the electron-phonon coupling. Let us
take BCL polarization as a specific case. Figures 5(a) and
5(d) show the dynamics of the amplitude and phase of the
exciton condensation for different light intensities. It is seen
that the electron-phonon coupling as an external force induces
strong anharmonicity in the amplitude oscillations φex(t ) as
compared to Fig. 4.

As shown in Fig. 5(d), the phase of exciton oscillates for
A = 1 µV s m−1 but varies linearly (mode 2π ) with time when
the light intensity increases to A = 2 µV s m−1. The BCL po-
larization causes stronger rotational symmetry breaking as the
light intensity increases. The last term of Eq. (32) changes
rapidly and most likely does not contribute to the time evo-
lution of the exciton phase, so the phase of order parameter
changes linearly with time at high intensities similar to the
case without electron-phonon coupling. At lower intensity
A = 1 µV s m−1, the phase evolution follows an oscillatory
behavior, associated with the U(1) symmetry breaking in
Eq. (30) as discussed before. Upon symmetry breaking, the
phase mode acquires a mass and its dynamics is governed by
a harmonic oscillator equation θ̈ex + ω2

θ θex = 0 derived from
low-energy effective theory in Ref. [39]. From Figs. 5(e) and
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FIG. 5. The evolution of the exciton order parameter in the presence of the electron-phonon coupling for different light polarizations and
intensities in the high-frequency limit 
 = 0.3 eV. The system is initially prepared in the BCS regime with V/J = 4, D/J = 0.9, ωph/J = 0.1
and the effective electron-phonon coupling constant λ/J = 0.2 as an equilibrium phase. The equilibrium mean-field parameters are Xx = Xy =
−0.75 and φ = 0.27. (a)–(c) The collective amplitude mode and (d)–(f) the collective phase mode of the excitonic phase under BCL, CL and
LL, respectively. The dashed gray line marks the light cutoff time, which is chosen at t = 1.0 ps here.

5(f), we see that the phase response also depends on the light
polarization. For instance, for the linear polarization the phase
oscillation is observed even for intensive fields.

V. EVOLUTION OF THE COLLECTIVE MODES
IN ELECTRONIC AND LATTICE-DRIVEN EXCITONIC

CONDENSATES

The weak and strong electron-phonon coupling consider-
ably modify the nonlinear optical response of the excitonic
system [39] in the pump-probe measurements by exciting
the phase and phonon modes, respectively. In the primarily
electronic driven case, where the U(1) symmetry is weakly
broken due to weak electron-phonon interaction leading to a
small gap of the phase mode, the pump pulse stimulates the
low-energy phase modes which are reflected as a small peak
in the nonlinear optical conductivity. For the case of strong
U(1) symmetry breaking, occurring when the electron-phonon
interaction is strong, the low-energy spectra is accumulated by
the phononic excitations and the phase modes appear at much
higher energies.

Here, we examine the dynamics of the exciton order pa-
rameter in primarily electronic and primarily lattice cases, for
which the initial parameters were chosen in the BCS regime
such that the single particle gap (Eg/J = 0.3) of the system is
the same for both cases. Figure 6 shows the time evolution of
amplitude and phase modes. We set the parameters as V/J =
1.58, D/J = 0.9, λ/J = 0.08, ωph/J = 0.1 for the primarily
electronic and V/J = 0.6, D/J = 0.9, λ/J = 0.3, ωph/J =
0.1 for the primarily lattice case with A = 1 µV s m−1.

As shown in Figs. 6(a)–6(c), the amplitude of the exciton
order parameter does not evolve considerably for all types of
polarization. Instead, as shown in Figs. 6(d)–6(f), the phase
mode θex(t ) evolves almost harmonically, described by θ̈ex +
ω2

θ θex = 0 [39] as mentioned in the preceding section. By
Fourier transforming the data in Figs. 6(d)–6(f) (see the inset),
we extract the oscillation frequency and the gap of the phase
mode. It reads ω = 0.31 and ω = 0.16 for the primarily lattice
and electronic cases, respectively. These results also show that
the amplitude of the phase oscillations for BCL and CL is
larger than that of the LL. Thus, the phase mode signals in
the pump-probe measurements could be more pronounced for
former polarizations, providing a way to distinguish between
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FIG. 6. The dynamics of the exciton order parameter in two different cases are compared: primarily electronic and primarily lattice. We use
a high-frequency light field with 
 = 0.3 eV and A = 1.0 µV s m−1 and different polarizations. The model parameters are V/J = 1.58, D/J =
0.9, λ/J = 0.08 for the primarily electronic case, and V/J = 0.6, D/J = 0.9, λ/J = 0.3 for the primarily lattice case. The phonon frequency
is ωph/J = 0.1 in both cases. The equilibrium mean field parameters are φ = 0.081 and Xx = Xy = −0.2 for the primarily electronic case and
φ = 0.085 and Xx = Xy = −0.41 for the primarily lattice case, which fix the equilibrium gap Eg/J = 0.3 in both cases. (a)–(c) The collective
amplitude mode; (d)–(f) the collective phase mode of the excitonic phase under BCL, CL and LL, respectively. The inset of (d) displays
the Fourier spectrum of the exciton phase under a BCL, where the oscillation frequency is ω = 0.31 eV for the primarily lattice case and
ω = 0.16 eV for the primarily electronic case. These figures only show the evolution of the exciton order when the light field is switched ON,
without switching it OFF.

the microscopic origin of the exciton formation, either purely
electronic or electron-lattice interactions [41] in candidate
materials like Ta2NiSe5, whose nature of its low-temperature
phase has been controversial in recent literatures.

VI. CONCLUSIONS

This paper is mainly motivated by the discovery of pos-
sible excitonic insulator phase in layered dichalcogenide
Ta2NiSe5, attracted considerable attention both experimen-
tally and theoretically in recent years. Besides the structural
phase transition, the microscopic origin of the formation of
excitons of being mediated by purely electronic correlations
or by phonons is still controversial. Therefore, it’s highly de-
manding to explore the signature of the excitonic condensate
particularly in optical responses.

Here, we studied the dynamical properties of the con-
densate when the system is periodically driven in time. We
considered periodic drives with light polarizations such as

bicircular, circular, linear, and different intensities. In the ab-
sence of coupling to phonons, we found that the amplitude
mode of the condensate oscillates in time with a frequency
set by the insulating gap. Assuming the modes are weakly
dissipated, the modes keep oscillating almost harmonically
even after the light is switched off. The gapless phase mode
evolves linearly in time, acting as a rotor moving around
a circle with a constant angular velocity depending on the
polarization and intensity of the drive.

Coupling the electronic bands to phonons gaps out the
phase mode due to symmetry breaking. We found that, while
for intensive optical fields it may still be evolved linearly
in time for bicircular polarization, in most cases the time
evolution of the phase mode follows a harmonic oscillator.
In fact, the electron-phonon coupling provides a trapping
potential for the phase mode leading to a harmonic oscilla-
tor behavior. Furthermore, we establish that the weak versus
strong electron-phonon coupling has considerable effects on
the time evolution of the condensate. For the former case,
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where the electronic correlations are dominant, the dynamics
of the amplitude and phase modes are more susceptible to the
polarization of the drive. We speculate that this time evolution
can have profound effects on the optical response and induce
features in the reflectivity measurements of the excitonic in-
sulators, and may serve as a possible probe to get insight into
the ground state of material candidates.
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APPENDIX A: MEAN-FIELD THEORY

To investigate the exciton condensation arising from
Coulomb and electron-phonon interactions, we apply a
mean-field approximation to the interaction parts of the
Hamiltonians Eqs. (4) and (30). In this approximation, the
Coulomb term is decomposed as

n̂i,0n̂i,1 → 〈n̂i,0〉n̂i,1 + n̂i,0〈n̂i,1〉 − φ∗ĉ†
i,0ĉi,1 − φĉ†

i,1ĉi,0,

(A1)

where the first two terms are the Hartree terms and the last two
terms are the Fock terms. Also, the electron-phonon coupling
is decomposed as

(b̂†
j,δ + b̂ j,δ )(ĉ†

j,0ĉ j,1 + ĉ†
j,1ĉ j,0)

→ Xδ (ĉ†
j,0ĉ j,1 + ĉ†

j,1ĉ j,0) + 2 Re(φ)(b̂†
j,δ + b̂ j,δ ), (A2)

where δ = x, y. These equations result in the following mean-
field Hamiltonians:

ĤMF
e = 1

2

∑
k

(
B0

k + Bz
k Bx

k − iBy
k

Bx
k − iBy

k B0
k − Bz

k

)
(A3)

and

HMF
phδ

=
∑

i,δ={x,y}
ωphδ

b̂†
j,δ b̂ j,δ +

∑
i,δ={x,y}

2gδ Re(φ)(b̂†
j,δ + b̂ j,δ ).

(A4)

Using Eq. (A4), we determine the equilibrium expectation
value of Piδ = 0 and Xiδ = −4gδ

ωphδ

Re(φ). By diagonalizing the

electron part of the mean-field Hamiltonian Eq. (A3), we
calculate the expectation value of the physical quantity by
solving the following self-consistent equations:

φ = 1

N

∑
k

Bx
k + iBy

k

2Bk
( f (E+

k , T ) − f (E−
k , T )), (A5)

�n = 1

N

∑
k

Bz
k

Bk
( f (E+

k , T ) − f (E−
k , T )), (A6)

n0 + n1 = 1

N

∑
k

( f (E+
k , T ) + f (E−

k , T )), (A7)

where Bk =
√

(Bx
k )2 + (By

k )2 + (Bz
k )2 and E±

k = (B0
k ± Bk )/2.

f (E±
k , T ) indicates the electron Fermi distribution function at

temperature T . No further approximation is used. To solve
the self-consistent equations, we start from initial values and
iterate them until convergency is reached.

APPENDIX B: FLOQUET THEORY

Floquet theory is a suitable approach for solving a time-
periodic Hamiltonian Ĥ (t ) = Ĥ (t + T ), where T is a period
of the drive and is related to the drive frequency as 
 =
2π
T [66]. According to the Floquet formalism, the solution

of the time-dependent Schrödinger equation ih̄ d
dt |�α (t )〉 =

Ĥ (t )|�α (t )〉 with a time-periodic Hamiltonian is a complete
set of orthogonal solutions which can be written as the product
of a plane wave and a periodic function of the form |�α (t )〉 =
exp(−iεαt/h̄)|�α (t )〉 [66–69]. The periodic function |�α (t )〉
is a Floquet state with a period of the Hamiltonian and satisfies
the Floquet-Schrödinger equation as follows:

HF (t )|�α (t )〉 = εα|�α (t )〉, (B1)

where the Floquet Hamiltonian is defined by

HF (t ) ≡ Ĥ (t ) − ih̄
d

dt
. (B2)

From the above equations, |�α (t )〉 can also be considered
as an eigenstate of the time-dependent Floquet Hamilto-
nian with a time-independent eigenvalue εα . Here εα is
a quasienergy of the system and, compared to the first
Brillouin zone in Bloch theory for a particle moving un-
der a periodic potential in a real space, all solutions of the
Floquet-Schrödinger equation are indexed by these quasiener-
gies belonging to the first Floquet zone εα ∈ [−
/2,
/2]
[56,66,69].

Solving Eq. (B1) is often rather challenging, but due to
the periodicity of Floquet state and Floquet Hamiltonian, we
can expand them in a Fourier series. Doing so, Eq. (B1) is
formulated as an infinite dimensional eigenvalue problem

+∞∑
m=−∞

(Ĥn−m − nh̄
δmn)
∣∣�n

α

〉 = εα

∣∣�n
α

〉
, (B3)

where Ĥ (t ) = ∑∞
n=−∞ e−in
t Ĥn and |�α (t )〉 =∑∞

n=−∞ e−in
t |�n
α〉 are the Fourier transform of the

Hamiltonian and Floquet states, respectively. For numerical
calculations, the effective Hamiltonian (Heff )nm =
Hn−m − nh̄
δmn is truncated by some approximations and
perturbation theory [53,56,59,70–73].

APPENDIX C: COMMENT ON ERRORS IN RK METHOD

The time-dependent variables φ(t ), nα (t ) (α = 0, 1), and
Xδ (t ) (δ = x, y) were calculated by numerically solving the
Heisenberg equations of motion [Eq. (16), main text] using
the fourth-order Runge-Kutta method. Here we explain more
about the error analysis that was done for the fourth-order RK
method. We purposely applied the step doubling technique as
the most straightforward technique for the adaptive step size
control [74] to get good accuracy in the solution. The local
truncation error, i.e., the error induced for each successive
stage of the iterated algorithm, was calculated twice: a full
step, with a step size of δt = 0.0001 ps, then, independently,
two half steps. The deviation of the local truncation error for
different light polarizations (LL, CL, BCL) is less than 1%.
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