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We describe the chiral Kondo chain model based on the symplectic Kondo effect and demonstrate that it
has a quantum critical ground state populated by non-Abelian anyons. We show that the fusion channel of
two arbitrary anyons can be detected by locally coupling the two anyons to an extra single channel of chiral
current and measuring the corresponding conductance at a finite frequency. Based on such measurements, we
propose that the chiral Kondo chain model with symplectic symmetry can be used for the implementation of
measurement-only topological quantum computations, and it possesses several distinct features favorable for
such applications. The sources and effects of errors in the proposed system are analyzed and possible material

realizations are discussed.
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I. INTRODUCTION

The design of quantum devices and harvesting their
properties for quantum technological utilization is a prime
application of present day condensed matter research. In
this context, the topological quantum computation [1-4] is
particularly appealing, because it allows for intrinsically ro-
bust storage and processing of information by braiding of
anyons. The latter occur are low energy quasiparticles occur-
ring in strongly interacting many-body systems which display
generic exchange statistics and an irrational Hilbert space
dimension (known as “quantum dimension”).

Existing proposals for platforms to realize topologi-
cal quantum computation include fractional quantum Hall
states using non-Abelian anyonic excitations [2] and one-
dimensional wire networks using Majorana zero modes [5,6].
Besides, solitary anyons bound to the impurity site are
predicted to exist in the ground states of various quantum crit-
ical Kondo models and numerous experimental observations
of quantum criticality [7-12] indirectly support this claim.
Topological quantum computation, however, require multiple
anyons. It was suggested by Sela er al. [13—15] that multi-
ple anyons may exist in a chiral multichannel Kondo chain
where multiple impurities are placed on the chiral edge of a
topologically nontrivial bulk. In the absence of backscattering,
the chiral electrons do not generate the Ruderman—Kittel—
Kasuya—Yosida (RKKY) interaction between the impurities,
and the critical ground states propelled by the Kondo screen-
ing develop without hindrance. The resulting Hilbert space of
the ground states is spanned by fusion of entangled anyons
located at the impurity sites [16]. The braiding of anyons can
be performed without their physical permutation by means of
measurement-only topological quantum computation [17].
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The existing schemes for the construction of quantum
gates, such as the ones described in Refs. [13—15], are based
on the multichannel Kondo models. The corresponding quan-
tum critical state is unstable with respect to channel anisotropy
and hence requires fine tuning of the energy levels and the
exchange interactions of different channels. Although the
experimental realizations of two- and three-channel Kondo
criticality [7-12] demonstrate that this problem can be ame-
liorated, it is still desirable to consider alternate realizations
of Kondo quantum critical point (QCP).

In this paper, we describe a chiral Kondo chain model
with symplectic symmetry possessing non-Abelian anyons in
its ground state. We also describe a measurement-only pro-
tocol for universal quantum computations. This model may
be easier to implement, although it also requires fine tuning
since, contrary to our original beliefs [18,19], there are per-
turbations which drive the model to a Fermi liquid. As for
the implementation, we envisage that the role of quantum
impurities will be played by mesoscopic devices consisting
of a mesoscopic superconducting Coulomb box in proximity
to several quantum dots.

The paper is organized as follows. In Sec. II, we review
the symplectic Kondo effect, which is central to our con-
struction of the chiral Kondo chain model. In Sec. III, we
define the chiral Kondo chain model with symplectic sym-
metry and show its integrability. In Sec. IV, we describe the
low energy properties of the chiral Kondo chain model and
show that it possesses localized non-Abelian anyons in its
ground state in the sense of local operators. In Sec. V, we
discuss how the information encoded by the anyons can be
extracted by measuring the correlation functions. In Sec. VI,
we describe the implementation of the chiral Kondo chain
with symplectic symmetry as a platform for universal quan-
tum computations. In Sec. VII, we provide a summary of our
results. Several basic ingredients of anyonic quantum com-
putation are reviewed in the appendices to make the paper
self-contained.
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FIG. 1. A sketch of the proposed Kondo device for k = 2. The
red rectangle is a superconducting island with charging energy Ec.
The green dots are quantum dots with discrete single-particle spec-
trum of energy levels in proximity to the island. Electrons from the
dots can tunnel to the chiral edges (in yellow) containing chiral
electrons, and the chiral edges are supported by the appropriate
topological insulators (in blue).

II. REVIEW OF THE SYMPLECTIC KONDO EFFECT

We repeat some details described in our previous publica-
tions [18,19] for the symplectic Kondo effect. The symplectic
impurity spin is implemented by means of a superconducting
island coupled to k quantum dots:

Haor = Ec(2Ne + ng — N, )?

k
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where n; = Y% 3" d! d;, is the total charge in the reso-
nant zero energy states provided by the quantum dots and
N¢ = —19, counts the number of Cooper pairs on the island.
Ec is the charging energy of the island, N, is the gate charge
for the island, and A is the pairing amplitude. The labels
i=1,...,k refer to the resonant zero energy states coupled
to the superconducting island. The configuration of such a
system with k =2 is shown in Fig. 1. It is physically re-
alizable when Cooper pairs are converted into two electrons
only locally at the k resonant levels, which is satisfied when
the distance between the quantum dots exceeds the supercon-
ducting coherence length. We will focus on the particle-hole
invariant point N, = 1, where the Coulomb interaction on
the quantum dot is irrelevant, and the impurity ground state
manifold is spanned by generators of the sp(2k) algebra.
In the limit 0 < E¢c — A K E¢, A, the ground state of the
quantum dot is in the odd parity sector, 2k-fold degenerate,
and labeled by the channel and the spin indices of the singly
occupied level |i, o). For t < Ec — A, the coupling to the
leads

k
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is taken into account perturbatively by means of two virtual
processes corresponding to transitions into one of the two
lowest excited states with one additional and one missing
charge. The addition of these two virtual processes leads to

the following superexchange interaction:

2|a) (b|(ta’CZ')(Cb’tb’)[aah’aa’b - (O'y)ab(ay)a’b/]
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where a = (i, o) is a multi-index including channel and spin
indices. c,(x) are fermionic annihilation operators, TA are
generators of the Lie algebra g = sp(2k) in the fundamen-
tal representation, and the impurity spin $* also transforms
in the fundamental representation of g = sp(2k). The result-
ing anisotropic superexchange interaction g4zJ*(0)S? with
JAX) =Y, , ¢ ()T cp(x) can be reduced to the diagonal
form by a unitary transformation, and we obtain the symplec-
tic Kondo model:

H = ivp / dx Z cldecq + Z gaJA(0)84, 4)

Aeg

The terms of higher order in #> may contain powers of S, but
they are irrelevant since they also contain higher powers of
the fermionic operators. The exact solution exists for ; = ¢,
where g4 = g = 4t?/(Ec — A) and the model defined by (4)
possesses exact Sp(2k) symmetry.

The fact that the current J* belongs to the Sp;(2k) the-
ory can be checked by writing down the bulk Hamiltonian
in terms of 4k species of Majorana fermions. The latter
model is equivalent to the level-1 chiral O(4k) Wess-Zumino-
Novikov-Witten (WZNW) model. Then we use the conformal
embedding [20,21]:

01(4k) = Spr(2) ® Sp1(2k), &)

to represent the Hamiltonian of free fermions as the sum
of two WZNW Hamiltonians. It follows that Eq. (4) can be
written as a sum of two commuting parts:

H = {HwzawlSpe(2)]1}
+ {HwaawlSp1 2] + X4 84T (0)S*}. (6)

The central charge of the Sp;(2k) WZNW model is deter-
mined as

_ kQk+1)
T k42

We can check this by looking at a few simple examples:
for k =1, Sp(2) = SU(2) and the central charge is 1, so
we have Sp;(2) = SU;(2); for k =2, Sp(4) = O(5) and the
central charge is 5/2 (five Majorana fermions), so we have
Spi(4) = 0:(5).

As we have mentioned above, the Kondo model defined
in Eq. (4) can be exactly solved only for g4 = g where there
is perfect symplectic symmetry [19], and then its low energy
properties can be derived accordingly. We will review these
results in Sec. III, and here we want to mention that the most
important observation will be that the model possesses non-
Abelian anyons in its ground state, which can be utilized to
realize topological quantum computations.

In real situations there are always perturbations. Consider,
for example, perturbations which break the degeneracy of
the energy levels provided by the quantum dots. The most

(N
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likely perturbation comes from the impact of a local chemical
potential:

SH =iy dibdis, ®)

where i = 1, ..., k label the quantum dots. This perturbation,
however, has zero overlap with the generators of the sp(2k)
algebra, since the latter satisfy

ST = —675%7, ©)

where the Pauli matrix o” acts on the spin indices, while the
former does not satisfy Eq. (9). Therefore, the perturbation in
Eq. (8) does not couple to the impurity spins directly, hence
cannot contribute to relevant perturbations in the leading order
in u;, as was already discussed in Ref. [19]. Consequently, the
presence of the symplectic symmetry will greatly weaken the
influence of the level disorder, the latter being the bane of all
anyon scenarios [22].

We may also imagine that in real situations the tunneling
in Eq. (2) will be edge dependent. This will give rise to
anisotropy of the Kondo couplings g — g4. Such anisotropy
can also be generated by higher order terms in the Shrieffer-
Wolff transformation. Since the impurity is still described by
the sp(2k) generators, they can either modify couplings ga
or generate irrelevant interaction terms with higher scaling
dimensions. It is well known, however, that renormalization
group flows, especially for for models with level k = 1 Kac-
Moody currents tend to converge, restoring the symmetry
at low energies [23,24]. In integrable models such as the
anisotropic Kondo ones this effect can be traced beyond
the perturbation theory. We have studied the case of strong
anisotropy in the k£ = 2 model following the approach pio-
neered by Emery and Kivelson [25]. Contrary to the common
wisdom discussed above, we have found a single direction
along which the model scales away from the symplectic
quantum critical point and arrives at a new critical point cor-
responding to a Fermi liquid. More details are given at the end
of Sec. IV and in Appendix A[22].

III. THE CHIRAL KONDO CHAIN MODEL
AND ITS INTEGRABILITY

At the center of our project is the chiral Kondo chain model
based on the symplectic Kondo model of Eq. (4):

N;
H :ivF/dXZC:;axCa + Zng]A(xj)SA(xj)’ (10)
14 j=1

j= Aeg

where g = sp(2k) and the single impurity spin is generalized
to multiple impurity spins. The configuration of such a chain
system with k = 2 is shown in Fig. 2. For simplicity, we will
henceforth set the Fermi velocity vy = 1. This type of models
can be directly realized in topological electronic systems with
gapped bulk where the boundary electronic modes are chiral,
as discussed in Sec. II. In this section, we show that the
chiral Kondo chain model defined in Eq. (10) is integrable
for an arbitrary number of impurity spins, which provides us
a handle to analyze its low energy properties.

The case of a single impurity spin (Ny = 1) and k = 1 was
solved previously [26-29]. For chiral models, it is straight-

Quantum dots

Chiral edges
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FIG. 2. A sketch of the proposed chiral Kondo chain for k = 2.
The red rectangles are superconducting islands. The green dots are
quantum dots. Electrons from the dots can tunnel to the chiral edges
(in yellow) containing chiral electrons, which are supported by the
topological insulators (in blue).

forward to generalize the solution to the case with an arbitrary
number of impurity spins and channels due to the link between
the Kondo and chiral Gross-Neveau (GN) models, established
in the pioneering paper by Andrei [26]. In this paper, the
model defined by Eq. (10) is treated as a limit of the chiral GN
model, whose solution for an arbitrary number of right- and
left-moving fermions Ng, N; was obtained in Ref. [30]. The
difference between the Kondo chain model and the Lorentz
invariant GN model is that in the former case the left-moving
particles have zero velocity. Although in Ref. [26] this method
was used for the Kondo problem with SU(2) symmetry, it is
completely general and holds for other Lie group symmetries.
In particular, the solution for the symplectic symmetry can be
extracted from the results obtained for the chiral Sp(2k) GN
model [31].

Basically, the integrability of the model in Eq. (10) lies in
the fact that the N-body scattering problem for an arbitrary
number of particles N can be represented as a succession
of two-body scattering problems. This is possible provided
that eigenvalues are invariant under permutations of the
momenta of the particles, which is fulfilled when the two-
body S matrices satisfy the Yang-Baxter equations shown
in Fig. 3. For models with linear dispersions, the particle
velocity acquires discrete set of values (in the given case it

FIG. 3. The Yang-Baxter equations for two-body scatterings and
the integrability for the chiral Kondo chain model. The line inter-
sections stand for the scattering matrices. The lower panel illustrates
the relation between the products of the monodromy matrices of the
multi-impurity problem. In this panel, we differentiate the electrons
and impurity spins by solid and dashed lines. The solid lines carry
zero rapidity and the dashed ones carry rapidity 1/g;, where g; is the
coupling for jth impurity.
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will be v = 1 for the electrons and v = 0 for the impurity).
However, the integrability requires that the two-particle scat-
tering matrices (known as S matrices) S(v, v) and S(v, 0)
as functions of particle rapidities must lie on a continuous

J

[iAGA + k 4+ 1)8apdap + (i 4+ k + 1)8,50p5 —

curve S(1) where the latter function satisfies the Yang-Baxter
equations.

For particles in the fundamental representation of the
Sp(2k) symmetry, the solution is [32-34]:

1)\6016/8541 2k+1— ;‘35 2k+1— ,3]

| —

ijj](x) =

where ¢, =1 for e =1,...,k, and ¢, = —1 for « =k +
1, ..., 2k, and we have adopted the notation that = 1, ...,k
correspond to multi-index (i, —), and @« =k + 1, ..., 2k cor-
respond to multi-index (i, +) to make contact with the
literature on integrable models. It indeed contains the solu-
tion of the Schrodinger equation for the model defined in
Eq. (10) as a particular case. Identifying S(v,v') = S(A =
(v —v')/g;), we obtain

[sed]a. v =[s2 ] = 0 = 8,585,
ap _|¢aB |y — N — _
[Saﬁ](l, 0) = [Saﬁ](k = 1/8}) = Supdap
—i8i[8p08a — €x€pda.2k+1-p05 2k+1-p]

+0(22). (12)

Equipped with the solution for the two-body scattering ma-
trix, we can solve the many-body Schrodinger equation for
particles on a ring of length L = Nagy with periodic boundary

conditions:
eI = S (v, v1)S (), v2) -+ SV, V)Y, (13)

J

, Y

A+ DGEr+k+ 1)

(

where j = 1, ..., Ng, WV is a suitably chosen component of the
electron wave function, Ny = N, is the number of electrons,
Ni, = N; is the number of impurity spins, and v = 1,0 for
electrons and impurity spins respectively. The corresponding
energy is E = Z]jvil k;. Using the general classification of
Eq. (13) for all simple Lie algebras given by Reshetikhin and
Wiegmann [31,33,35], we arrive at the following Bethe ansatz
equations for g = sp(2k) with k = 2:

Ns
e (N [T ea (" +1/85)
j=1
M1 MZ
= [[ e@®-x")]]e208 —22)
b=1,b#a c=1

M,
(G2 ) [Jea2 20 1)
b=1,b#a c=1

and with k > 3

N N M, M
0O TTeat + 1g)) = [T 20 =2 TTecs (0~ 22),
Jj=1 b=1,b#a c=1
M; Mt
1= er (A — 1) l_[e 1A =2 [T e (B =280y,
b=1,b#a c=1 c=1
M-y My My
1= 1_[ 62()\,((11(71) _A;;k—l)) l_[ e ()Lflkfl) (k 2) l—[ (k 1 _ (k))’
b=1,b+#a = c=1
My M-
1= 64()»,(11() _ )»E,k)) 1_[ 672()»51]() _ )‘E-k_l))* (15)
b=1,b#a c=1

where the involved notations are explained as follows. The
index i =1, ..., k enumerates the simple roots of the Lie
algebra g = sp(2k), including the long roots i = 1, ...,k — 1
and the short root i = k, as shown on the Dynkin diagram in
Fig. 4.

FIG. 4. The Dynkin diagram for sp(2k). The filled dots represent
the long roots, the open dot represents the short root. For k = 2, we
only have one filled dot and one open dot connected by a double line.

The parameters A are called rapidities and M; is the
number of rapidities corresponding to the ith root. Each 1
interacts with the set of rapidities ¢ of the same root i/ = i
and of adjacent roots i/ =i+ 1, as shown on the Dynkin
diagram in Fig. 4. The function e, (x) is defined as

in/2
() = X2 (16)

x —in/2
and encodes the information of the scattering matrix. The
subscript n for adjacent roots is determined according to the
lines of the Dynkin diagram in Fig. 4: n = —1 if the roots are
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connected by a single line and n = —2 if they are connected
by a double line. The subscript for the same root is positive
and determined by its length: n = 2 for the long roots and
n =4 for the short root. The driving term on the left-hand
side of the first equation in (14) and (15) includes two factors,
where the first factor has subscript 2. If the subscript of the
second factor g = 2, we have the usual Fermi liquid ground
state. Here we have ¢ = 1 instead, which corresponds to the
quantum critical ground state. The position of the driving
term among the Bethe ansatz equations (labelled by m) is
determined by the condition [ = 2(m — 1) 4 ¢, where [ is the
occupation number of the orbital degree of freedom. Since
we have a single orbital for each species of fermions, we set
I =1, leading to m = 1, thus the driving term is placed on the
left-hand side of the first Bethe ansatz equation.

Notably, the above formulas are written for the general case
where impurities have different isotropic couplings. The exact
solution tolerates this disparity provided the symplectic sym-
metry is not violated. The net result of this is that instead of a
single Kondo temperature we will have a certain distribution
which will not affect the low energy behavior [36].

IV. LOW ENERGY PROPERTIES OF THE CHIRAL
KONDO CHAIN MODEL

From the viewpoint of thermodynamics, the difference be-
tween the case with a single impurity and the case with a
multi-impurity chain is minimal: the effect of impurities is
additive, and the corresponding part of the free energy for
the chain is just multiplied by the factor N, = N;. The exact
solution provides us with an additional handle to manipulate
the system: we do not need to restrict ourselves to the quantum
critical point, as was done in literature [13,14]. However, the
main result is in agreement with these papers. Specifically, the
ground state entropy is S(T = 0) = N; Ind;, where

T
dp =2 , 17
k COS<k+2> a7

is the anyonic quantum dimension [37]. This indicates that in
the low energy limit the symplectic chiral Kondo chain can be
described as a set of anyons. These anyons are localized on the
impurity sites in the sense that various local operators related
to impurities such as impurity spins [see, for instance, Eq. (29)
below] are expressed in terms of these anyons. Below we will
first summarize the main results for a single impurity obtained
from the exact solution. Then we will discuss the connection
to the conformal field theory (CFT) approach and identify the
operator content at the QCP for further developments.

A. Thermodynamics from exact solution

We summarize the main results for a single impurity ob-
tained from the exact solution [19]. The generalization to the
chiral Kondo chain is simply an additive effect. In the absence
of external magnetic fields, the free energy is

T<T; T? 1 T’
e _mel” | —[—Tln(dk) _ Tl

12EF N, 12 Tk

7\
— ... —const. X T<—> ln(TK/T):|, (18)
Tk

TR

where Ti ~ Ep exp(—775;) is the Kondo temperature, ¢; =
c/[2 cos(zfﬁ)] with ¢ the central charge for Sp;(2k) theory
in Eq. (7). The impurity free energy in the square bracket con-
tains a zero temperature entropy consistent with the anyonic
quantum dimension in Eq. (17). This ground state degeneracy
is the same as that for the k-channel SU(2) Kondo effect [13].
However, different from the k-channel SU(2) Kondo effect,
the leading finite temperature corrections are Fermi liquid
like. A similar behavior is also true for the zero temperature
impurity magnetization in the presence of a small local Zee-
man field H; < Tx, which takes the form

M; = oy H;/Tx + a3(H;/Tx ) + - - -

1 k odd

+ B(H: T x {11{ (Te/Hp).,  keven® (19

where o) 3 and B are dimensionless constants and i =
1, ...,k label the quantum dots. The fact that the leading
order corrections for low energy thermodynamics are Fermi
liquid like has important implications on the operator content
at the QCP, which we will discuss below.

B. CFT analysis

The CFT analysis of the Sp;(2k) theory for a general
k is contained in Ref. [21], and the special case of k =2
(Sp(4) ~ SO(5)) is discussed in Refs. [38,39] via the Abelian
bosonization technique. Here we will summarize the main
points and make connection to the results obtained from exact
solutions.

The Sp(2k) WZNW theory has k primary fields ®, with
scaling dimensions [40]

2k +2 —
o= MFF2=a) (20)
4(k+2)
transforming according to the representations A, of the Lie
algebra sp(2k) with dimensionalities
dimA; =2k, dimA,=C5 —C& 2% a>2, (21)
where C5, = (2k)!/[a!(2k — a)!] is the binomial coefficient.
The fusion rules for Sp;(2k) primaries can be expressed
as [41,42]

a®d =la—d|, la—d|+2, ...,

min{a +d',2k —a —d'}, (22)
wherea =0, 1, ..., k, including the vacuum. For k = 1, there
is only one primary with 4 = 1/4, which is obviously the
SU(2) matrix field with entries exp[iﬂq&], exp[ime],
where (¢, 0) is a set of conjugate variables. For k = 2, there
are two primaries, one with #; = 5/16 being a product of five
Ising model conformal blocks, and the other with iy = 1/2
being a Majorana fermion.

To figure out the properties of the QCP, we follow the
approach of Refs. [43,44], where the vacuum is redefined by
absorbing the impurity such that the description of the system
is simplified. The WZNW Hamiltonian of the Sp;(2k) theory
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can be expressed in the Sugawara form [45,46]:

Houk = kz% Z ZJf,,J,f,

n>0 Aeg
L/2
JA

n

- dx JA(x)e2irrxn/L’ (23)
21 —L/2
where the current operator satisfies the following Kac-Moody
algebra:
[/ 7]

A TS =i, + NS aBSuimo- (24)

Then the Kondo term can be absorbed into the Hamiltonian
through the redefinition of the currents [43,44]:

T4 =T 4 (k/2 4 1)gs%, (25)

such that we can “complete the square” in the expression of
the Hamiltonian [43]. The QCP is obtained by requiring that
the Kac-Moody algebra of Eq. (24) remains unchanged, and
this is achieved at g(k/2 + 1) = 1. This absorption leads to the
redefinition of the vacuum through the fusion with the impu-
rity spin, the spin being a 2k x 2k matrix corresponding to the
primary field ®;. This is known as the “fusion ansatz,” which
we briefly review in Appendix B. As a result of such fusion
the impurity spin operators experience ‘‘transmutation”—at
the critical point they are expressed in terms of the bulk fields
located at the impurity sites. Our goal now is to establish this
correspondence for the symplectic symmetry.

The distinct feature of the Sp;(2k) theory is the high
scaling dimensions of the irrelevant operators perturbing the
QCEP [18]. This is consistent with the exact solution results in
Eq. (18) and (19), where the nonanalytic terms appear in high
orders of the expansion in T /Tx and H;/Tx. This is unlike the
SU(2) Kondo effect and, as we will show later, constitutes an
advantage of the symplectic Kondo effect as a platform for
quantum information applications.

To elaborate on this point, we consider the case k =2
where the CFT consists of five Majorana fermions (Sp;(4)
= 0;(5)) and the two primaries are a product of five Ising
model conformal blocks and a Majorana fermion. The ground
state entropy suggests the existence of a Majorana zero mode.
From five Majorana fermions yi, ..., xs and one Majorana
zero mode &, we can construct the perturbation [38]

§H ~ &x1(0)- -~ x5(0), (26)

which generates the nonanalytic correction to the specific heat
in Eq. (18):

8Cy ~ (T°/T¢) In(Tx /T). 27)

From Eq. (19), we can see that the magnetic field H; is cou-
pled to the operator with scaling dimension A = 3/2 [18,38],
which generates the nonanalytic correction to the magnetiza-
tion

SM; ~ (H;/Tx)* In(Tx /H;). (28)

The correction in Eq. (28) suggests that for k = 2 the nonana-
lytic contribution to the impurity spin comes from the operator
containing three Majorana fermions, that is from a descendant
of the primary field ®,. We generalize this conjecture for gen-
eral k (cf. Ref. [13] for the case SU(2);) and suggest that the

transmuted impurity spin is given by the sum of the Sp;(2k)
current which generates the Fermi liquid like corrections and
the descendant of the primary field ®, which generates the
nonanalytic corrections:

Simp,j =J(x)) + T 1Do(xj) + -+, (29)

where the dots stand for less relevant terms, and we introduce
the impurity site label j for the generalization to the multi-
impurity case. The second term is a product of an operator
I' acting on the anyonic Hilbert space and a descendant of
the primary field ®, with scaling dimension /,. The primary
field @, is chiral and has a noninteger scaling dimension. As
a result, the pair correlation function of J_;®, at the same
site behaves as T 222, However, the correlation function of
the physical spin must be even in time, which fixes the time
dependence of the correlation function of I':

(FJ(T)FJ(O)> ~ eiﬂhg sgnt

= (Shp (DSE (0) ~ 5AB<# + W%hz) (30)
where E is a constant coefficient. On the other hand, the
anyonic property of the operator I' is determined by its fu-
sion rules, and the latter ones point to its correspondence to
the primary field ®; in the fusion ansatz. To get an insight,
we consider two relevant cases k = 2 and k = 3, using the
Sp1(2k) fusion rules in Eq. (22). For k = 2, we have &, with
a = 0, 1, 2 and the fusion rules for them are

Oxa=a,1x1=04+2,1x2=1,2x2=0. (@3I)

Therefore we have the following identification with the sys-
tem of Ising anyon [2]:

0—1, 1— o,

2=, (32)

and T" plays the role of o, the Ising anyon. This is also
in agreement with the anyonic quantum dimension d» = v/2
from the ground state entropy. For k = 3, we have &, with
a =0, 1,2, 3 and the fusion rules for them are

Oxa=a,3xa=0B8—-a), 1 x1=2x2=0+2,
1 x2=1+3. (33)

Here the set of rules 3 x a = (3 — a) plays the special role of
the automorphism of the fusion algebra, which maps 3 to 0
and 1 to 2, and we have the following identification with the
system of Fibonacci anyon [47,48]:

0,3—>1, 1,21 (34)

Consequently, I" plays the role of 7, the Fibonacci anyon [49],
whose properties are briefly reviewed in Appendix C. Again,
this is in agreement with the anyonic quantum dimension d; =
(1++/5) /2 from the ground state entropy.

Equation (29) helps to shed light on the problem of stabil-
ity of the QCP with respect to the anisotropy of the Kondo
exchange interaction. Indeed, if we add a perturbation

OH = Z(SgAB . JA(XJ‘)SB(XJ'), (35)
J

then, after “completing the square” and replacing S*(x;) by
Eq. (29) at criticality, we find that the leading term of Eq. (35)
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is irrelevant for the single impurity and marginal for the chain.
Hence the coupling to the anyons does not emerge in the
leading order in §g. In fact, as it follows from the analysis of
the case k = 2 presented in Appendix A, for a certain type (not
all types) of Kondo exchange anisotropy, the effect emerges
in the second order, making the corresponding perturbation
relevant [22].

V. EXTRACTION OF INFORMATION FROM
THE CORRELATION FUNCTIONS

The anyons residing at the impurity sites, which are
supported by the chiral Kondo chain model with sym-
plectic symmetry, can be utilized for measurement-only
quantum computations [17]. The essential ingredients of the
measurement-only quantum computation protocol are briefly
reviewed in Appendix D, where we can see that the building
blocks of the protocol are the projective measurements of
the fusion channel of anyons. Such projective measurements
can be carried out by measuring the correlation functions of
the chiral Kondo chain model. The general theory for such
correlation functions is described in Ref. [14] and in this
section we specialize it to the symplectic case that we have
been considering.

Information of the total fusion channel of all anyons be-
tween two spatial points can be extracted from the correlation
function of the Sp;(2k) primary fields, the latter can be
obtained under the multifusion ansatz [14] and is briefly re-
viewed in Appendix B. On the other hand, for the purpose of
quantum computations, what is needed is the fusion channel
of two arbitrary anyons, which can be extracted from the pair
correlation function of the impurity spins. We have conjec-
tured that the impurity spin immersed in the chiral fermions
gets decorated by an operator I"; acting on the anyonic Hilbert
space, such that their correlation encodes the information of
the fusion channel of the two anyons associated with the two
impurity sites. In case of the Sp;(2k) theory, the conjecture
takes the form in Eq. (29), so fort; > ¢;, we have

(Simp.i 1) Simp, 1)),

! Fi(ay))
(tij — xij +10)? (fij —xi + iO)H%

~ 4% . (36)

where t;; =t; —t;, x;j = x; — X, a;; denotes the fusion chan-
nel of the two anyons, and F(a;;) encodes the dependence on
a;j. Here the subscript 7, j label the impurity sites. The task
remains is to find the expression for Fi(a;;), or at least, to
show the dependence of F;(a;;) on a;;.

We here look at two relevant cases k =2 and 3 for il-
lustrations. For k = 2, @, has scaling dimension 1/2 and
corresponds to the Majorana fermion. Consequently, I'; cor-
responds to the Majorana zero mode &;, with the commutation
relations of the Clifford algebra:

(£, 6 =08, &8 =1/2. (37)

On the other hand, we have identified I with the Ising anyon
in Sec. IV B, from the fusion rules of ®;. The two conclu-
sions are in indeed consistent, where the Majorana zero mode
is identified with the Ising anyon, and the bianyonic fusion

channels can be constructed as

&t v & —i;
=" =T
1 (0), ¥ — £510). (38)

= 16 = ffii = 1/2:

We can see that 2i§;&; = P;; is the parity operator, and the
fusion channels |a;;) = |0}, |a;;) = ff] |0) are its eigenstates
with eigenvalues —1 and +1, respectively. Hence a measure-
ment of the impurity spin correlation function of Eq. (36)
is indeed a projective measurement of the bianyonic fusion
channel, with 7,(1) ~ i and F,(y) ~ —i. The essence is that
F>(1) and F, () differ by a sign.

Alternatively, we infer the behaviors of Fj(a;;) in another
way that can be generalized to k > 2. Since I' share the
same fusion rule with &, it is natural to assume that their
correlation functions share the same dependence on the fusion
channel. The correlation functions of ®; with two impurity
spins in between is obtained in Appendix B as

AT 3
(@11 ~ 7 50 S 39

Cij

where z = 7 — ix is the complex coordinate, and c;; takes the
value O or 2, which comes from the fusionrule 1 x 1 =0 + 2.
The modular S-matrix element SZ' for the Sp;(2k) theory is
given by

o« 2 [n(a+1)(a/+l)} (40)

S = sin
“ 2+k 2+k

Consequently, we can extract from Eq. (39) the fusion
channel-dependent part, and assign it to Fx(a;;):

(41)

where the Fj(a;;) is normalized such that 7 (1) =1 (¢;; =
0 — 1, the vacuum). For k = 2, we have the fusion channels
¢ij=0—a;=1and ¢;; =2 — a;; =, as can be seen
from Eq. (32), then Eq. (41) gives us

FM=1, FAHY)=-1L (42)

This is essentially the same as that obtained from the Majo-
rana zero mode algebras, where F,(1) and /() differ by a
sign.

For k = 3, ®; has scaling dimension 3/5 and we do not
know a priori its zero mode I'. However, we have identified I'
with the Fibonacci anyon 7 in Sec. IV B, from the fusion rules
of ®;. We are not able to calculate the correlation function
of the Fibonacci anyons in case of coincident positions, so
we resort to Eq. (41). By identifying ¢;; = 0 — a;; =1 and
¢ij =2 — a;j = v from Eq. (34), we obtain

FM) =1, Fi1)=L(=3+5). (43)

Different from the case of k = 2, now F3(1) and F5(t) differ
by sign and modulus, which should be easier to detect experi-
mentally.

A possible measurement of the correlation function of the
impurity spins can be done by locally coupling the two im-
purity spins to an extra single channel of chiral current with
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Simp(®:)  Simp(2;)
FIG. 5. Measurement of the impurity spin (denoted as the star

in the figure) correlation function through an extra single channel of
chiral current with switches.

J(ext)

switches, as shown in Fig. 5, and measuring the corresponding
conductance at finite frequency. Different from the channels
responsible for creating the degenerate ground states, this
extra single channel is controlled by the switches such that
each time it couples only to those two impurity spins, whose
correlation function is to be measured. Later in Sec. VIC, we
will argue that this extra current does not effect the original
anyonic structure of the system.

To couple to the impurity spins, the extra current must be-
long to the sp(2k) Kac-Moody algebra. This can be achieved
by various means, for instance, one can use spin polarized
current. The following discussion does not depend on the
specific arrangement, we just assume that the extra current
transforms as some generator of the sp(2k) algebra and hence
by symmetry can be coupled to at least one projection of the
impurity spins, say A. Then the Hamiltonian at criticality for
the whole system including the extra current is

Hoa=H+7 / dx J 0 (0)J 0 (x) + ASH, j,

SHij = IV - Spi + I (x)) - S (44)

imp,i imp, j°
where H is the Hamiltonian for the original system, and A is

the coupling constant. The corresponding current operator is
determined by

dN(eXt)
I(ext) — T = —i[N(eXt), Hiotls
Xo
NEO / dx J(ext)(x)_ (45)

Using the chiral anomaly
[/ (), TV )] = Zis’(x —x), (46)
i

the current operator can be expressed as

imp, j

(47)

A
19 (xg) = T (xo)+ E[Mx — x)Sippi+ 8 — x)Sh -

Then the conductance is related by the Kubo formula to the
correlation function of this particular spin component placed
at impurity site i and j. The part of the finite frequency
conductance that depends on the fusion channel of the anyons
is

5Gij(w) )260%]-‘,((%-) cos(wx;;), (48)

where x;; = x; — x;. Hence by measuring the conductance at
finite frequency, one can effectively measure the bianyonic
fusion channel. This idea lies at the foundation of our pro-
posal for the topological quantum computation discussed in

detail in Sec. VI. Here we have only showed that G;;(w) will
take different values for different fusion channels, without
pinning down the exact values. This is enough from a prag-
matic viewpoint—the association of experimentally measured
G;j(w) with the specific fusion channel will be individually
determined through the calibration process in actual imple-
mentations. Also, as will be discussed in Sec. VIC, the
perturbation introduced by §#,; in Eq. (44) is irrelevant, so the
measurement, although being nontopological, does not affect
the type of anyons supported by the chiral Kondo chain.

VI. TOPOLOGICAL QUANTUM COMPUTING PROTOCOL

Currently, there are four main different approaches to the
quantum computing protocols: the quantum circuit model
[50], the measurement-based quantum computation [51,52],
the adiabatic quantum computation [53,54], and the topolog-
ical quantum computation [1-4]. Compared with the other
approaches, the topological quantum computation has the ad-
vantage of building the fault-tolerance already on the level of
hardware, utilizing the anyonic ground state manifold with
topological degeneracy [55]. Conventionally, the topological
quantum computation is performed by adiabatic braiding of
anyons, which is prone to uncontrollable error channels such
as accidental braiding with unwanted anyons and thermal ex-
citation of unaccounted anyons. However, these flaws can be
mitigated by combining the topological quantum computation
with measurement-only quantum computation [17], where the
adiabatic braiding of anyons is replaced by repeated projective
measurements of the bianyonic fusion channels of anyons.
Such a protocol is particularly suitable for the quantum com-
puter based on the chiral Kondo chain model considered here,
since the local operators are expressed in terms of anyons at
the impurity sites.

In the previous sections, we have shown that the chiral
Kondo chain model with Sp(2k) symmetry possesses non-
Abelian anyons in its ground state. For k =2, we have
Ising anyons, and for k =3, we have Fibonacci anyons.
In the following discussion, we will focus on the case
k =3 with Fibonacci anyons which support universal quan-
tum computations [2]. As the first step, we will propose
the microarchitecture of the quantum computer based on
the three-channel chiral Kondo chain, and then consider the
choice of materials for its realization. Finally we will discuss
the sources and effects of errors on the proposed quantum
computer.

A. Microarchitecture of the quantum computer

Let us summarize our results. The Fibonacci anyons
created by coupling the superconducting islands to three
(pseudo)spin degenerate chiral channels are localized on
the superconducting islands. At criticality, these Fibonacci
anyons are decoupled from the rest of the system. We suggest
to use these immobile anyons for topological quantum com-
putation through the measurement-only quantum computing
protocol [17]. The essential idea is that the physical transport
of an anyon can be replaced by the quantum teleportation
of the information encoded in the ground state, and such
quantum teleportation can be realized by repeated projective

075145-8



TOPOLOGICAL QUANTUM COMPUTATION ON A CHIRAL ...

PHYSICAL REVIEW B 109, 075145 (2024)

« Quantum dot v,

ey

FIG. 6. The illustration of the microarchitecture of the quantum computer. The grey and blue slabs are superconducting islands intended for
computational and auxiliary units, respectively. The orange, green, and red turning-fork slabs are topological insulators. The superconducting
islands and the topological insulators are connected by quantum dots, shown as colored wedges. The purple line with arrows depicts the
chiral current flowing at the edge of the topological insulator. The black circuit with arrows represents the extra channel of chiral current (the
topological insulator supporting it is not shown for better visualization), whose tunneling to the superconducting islands through quantum
dots are controlled by switches. The mechanism of measurement using the black circuit is discussed in Sec. V. The blue circuit represents the
measurement devices. To measure the fusion channel of two anyons localized on the superconducting islands, we just close the corresponding
switches in the black circuit, say A and B, and read the voltage and current from the measurement devices. The microarchitecture is designed
in this turning-fork shape such that it can be scaled up in a two-dimensional fashion, although it is essentially equivalent to a one-dimensional
array shown in Fig. 7. The number of grey and blue slabs shown here is just for an illustration of the scalability. One can extend the structure
by having more turning-forks and more grey and blue slabs, arranged in the same fashion as shown here.

measurements of the bianyonic fusion channel among two
given anyons and an extra auxiliary anyon. To promote the
quantum teleportation between two anyons into the braiding
of them, we require a further extra auxiliary anyon. The
corresponding details are reviewed in Appendix D. Con-
sequently, the realization of the braiding requires a total
number of four anyons, two of which are auxiliary. If the
measurements of the bianyonic fusion channel can be done
nondemolitionally, as we argue below, the equivalent adia-
batic braiding can be performed in a perfect way, without
accidental braiding of unwanted anyons and without thermal
excitation of unaccounted anyons. In our proposal, the local
operators are expressed in terms of the anyons at the impu-
rity sites, and measurements through the local operators do
not involve any mobile or excited anyon. The measurements
of the bianyonic fusion channel are done through local se-
lective coupling to an extra single channel of chiral current
(see Sec. V), which is nontopological. However, as will be
discussed in Sec. VIC, such a measurement is an irrelevant
perturbation, which cannot alter the type of anyons the host
system supports. Consequently, such a measurement is indeed
nondemolitional.

The suggested microarchitecture of the quantum computer
is schematically shown in Fig. 6. The grey slabs are the
superconducting islands that host anyons intended as the
computational units, while the blue slabs are the supercon-
ducting islands that host anyons intended as the auxiliary
units. The Fibonacci anyons are created by coupling to the
(pseudo)spin-degenerate chiral modes. There are three chiral
modes, and the topological material responsible for each of
them are shown in orange, green and red in the figure. The
measurements of the bianyonic fusion channels are controlled
by the switches coupling to yet another chiral mode, shown
as the solid black line in the figure, and the measurement
apparatus is shown in blue in the figure. On top of the
microarchitecture shown in Fig. 6, the measurement of the
fusion channel of two arbitrary anyons can be performed by
closing the corresponding switches and decoding the signal.
This is possible due to the fact that the signal has features
that depend on the fusion channel, as indicated by Egs. (36)
and (48). As a result, we need a calibration process performed
on every two-unit combination of the microarchitecture com-
ponents, such that the decoding algorithm for interpreting
the signal can be determined. Afterwards, the braiding of
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two consecutive computational anyons can be performed by
the nondeterministic sequence of repeated measurements re-
viewed in Appendix D. The braidings of the Fibonacci anyons
can then be used to efficiently approximate arbitrary unitary
quantum gates [2,56,57], as reviewed in Appendix C. The
design of the implementation of such approximations up to ar-
bitrarily given precision is called quantum compiling [58], and
there is a well-established protocol for Fibonacci anyons [59].
In conclusion, the quantum computation can be performed on
the quantum computer as designed in Fig. 6 by programming
the switches. Since the switches are simply classical bits, they
can be controlled by a classical computer. This consists of a
two-layer design of the quantum computer, where the quan-
tum algorithms are executed by manipulating the classical
bits, although in a nondeterministic way depending on the
quantum output throughout the process.

B. Choice of materials

It appears that the main challenge here will be to find a
proper material that provides the two-fold degenerate chiral
modes. We are aware of two classes of suitable materials, as
discussed below.

Firstly, there are topological insulators doped with mag-
netic ions. The theory suggests Bi,Tes, Bi,Ses, and Sb,Tes
doped with Cr [60,61]. The low energy bands of these ma-
terials consist of a bonding and an antibonding state of p,
orbitals. Doping with Cr generates ferromagnetism and once
the magnetic moments of the Cr ions order, chiral edge states
may appear in these topological insulators. It turns out there
is a window of parameters when the edge states of the same
chirality are not spin polarized. The low energy Hamiltonian
of a thin film of such material is given by [61]

H = (I + o)[t'vky + my(k)T* + t°0k,]
+ I = o)[—1vk + m_(k)T" + TiVk,],
my (k) = mo &= gLM — B(k; +k;).

where 7¢ are Pauli matrices acting on the p* orbitals
exp(ir /4) |t) £ exp(—im /4) |b) with ¢, b standing for the top
and the bottom of the layer, o acts in the spin space, and M
and g, are the Weiss field and Landé factor. At 0 < 4(g. M —
mg)B < 1, there are two edge modes with identical chirality
and opposite spin projections.

The second class includes the chiral charge-density-wave
(CDW) state of kagome metals AV3Sbs (A=K, Rb, Cs). Some
of these materials undergo a phase transition to a 3Q CDW
phase at remarkably high temperatures Tcpw ~ 80-100 K
with complex bond order hosting loop currents and plaquette
fluxes [62,63]. The evidence for such a phase comes from
the experiments detecting time reversal symmetry breaking
without creation of magnetic moments [64-66] ascribed to
loop currents [67,68]. Such state will have spin degenerate
chiral edge modes. In the natural state, however, the chemical
potential lies slightly above the van Hove singularity and as
a consequence the CDW state is not insulating. Hence gating
will be necessary to enforce the requirements of our model.

C. Analysis of errors

In general, there are two types of errors that should be dealt
with carefully in quantum computations: the random error due
to coupling to the environment and the unitary error due to
imprecision in applying quantum gates. Topological quantum
computations using non-Abelian anyons provide hardware-
level protection against both types of errors, since the quantum
information is stored nonlocally among the anyons such that
local perturbations cannot alter it [2]. However, there are
still two extra error channels that hinder the actual fault
tolerance. One is the wandering of anyons and the other
is thermally excited anyonic pairs. They can cause braid-
ing with unwanted anyons and appearance of unaccounted
anyons. These difficulties are avoided in the quantum comput-
ing platform based on the chiral Kondo chain. As discussed
previously, the quantum component of the two-layer design
is inherently error-free, since the measurements through local
operators do not involve any mobile or excited anyon. On
the other hand, the classical component itself can be made
fault-tolerant following the well-established protocols for the
classical computers. As a result, the remaining error channel
lies in the measurement process, where the computing system
is coupled to a measurement circuit (the black circuit with
switches shown in Fig. 6). For each step of the measurement
process, we selectively close two switches and read the signal
to interpret the resulting fusion channel of the two selected
anyons. In such a step, the computing system is coupled to
the measurement circuit locally, as shown in Eq. (44). The
scaling dimension of the local perturbation §#;; in Eq. (44)
is larger than 1, thus being irrelevant. This can be understood
alternatively via Zamolodchikov’s c-theorem [69]. According
to Eq. (7), if we add another chiral edge to a single super-
conducting island, we will increase the central charge. Here,
the chiral edge is added locally to two of the superconducting
islands, so the locally enhanced central charge will eventually
flow back to the unperturbed value on the global scale. As a
result, the effect of the measurement circuit on the computing
system is only perturbative, which cannot alter the type of
anyons the host system supports, although the associated per-
turbation itself is nontopological. This leaves us with only the
readout error associated with the measurement apparatus (the
blue circuit shown in Fig. 6), which can be easily handled by
performing projective measurements on the same two anyons
repeatedly.

In addition, we have to consider the source of errors associ-
ated with the stability of the QCP specific to the Kondo chain
system. Firstly, as discussed in Sec. IVB and Appendix A,
there is a certain type of Kondo exchange anisotropy that
drives the system away from the QCP, which still requires
a weaker fine tuning. Secondly, we consider the perturba-
tions lifting the degeneracy between the quantum dots energy
levels. This was already discussed in Sec. II, but is worth
repeating. As we have argued, we should be concerned only
with perturbations which couple to the anyons and hence may
lift the ground state degeneracy. The most likely perturbation
shown in Eq. (8), which is diagonal in the dot indices, does
not even couple to the symplectic spins [22]. Moreover, the
symplectic symmetry greatly weakens the influence of those
perturbations which do couple to the symplectic spins acting
as effective magnetic fields. For the SU(2) symmetry such
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FIG. 7. The microarchitecture shown in Fig. 6 is equivalent to
a one-dimensional array of superconducting islands, shown here
as colored dots. The coupling between them and the topological
insulators (not shown here for better visualization) creates anyons
residing on them. Between every two grey islands (the computational
units) there are two blue islands (the auxiliary units). The black line
represents the extra channel of chiral current, whose coupling to the
superconducting islands is controlled by switches.

perturbations would present a serious challenge, but for the
symplectic symmetry where anyons are weakly coupled to the
bulk, they do not. Indeed, according to Eq. (29) the “mag-
netic” field H; couples to the anyon zero mode at impurity
site j as

OH =HijJ_1q>2(Xj). (49)

This perturbation is strongly irrelevant and as long as one
manages to keep it much smaller than the Kondo temperature,
its influence will be small [22]. The above discussion suggests
that the chiral Kondo chain model with symplectic symmetry
may indeed present a considerable advantage over previous
proposals with unitary symmetry.

Finally, we note that our proposal relies on the assumption
that the local operators have a considerable weight in terms
of the anyons at the impurity sites, see Eq. (29). This re-
quires the temperature to be far below the Kondo temperature
Tx ~ Ep exp(—%), which may be a major challenge.
Besides, the Coulomb interactions between the quantum dots
can change the story, so efforts should be taken to mitigate
their influences as well.

VII. SUMMARY AND OUTLOOK

In this paper, we have briefly reviewed the symplectic
Kondo effect and extended it to a chiral Kondo chain model.
We have showed that under the condition of perfect symplec-
tic symmetry the chiral Kondo chain model is integrable for
an arbitrary number of impurities, and possesses non-Abelian
anyons in its ground state. At criticality, the local operators
can be expressed in terms of the non-Abelian anyons at the
impurity sites, such that measurements through the local oper-
ators encode the fusion channel of these non-Abelian anyons.
We have further analyzed various perturbations around inte-
grability and concluded that except a certain type of Kondo
exchange anisotropy analyzed in Appendix A, they do not
change the low energy behaviors. The symplectic symmetry
is responsible for several distinct features of the model, favor-
able for quantum information applications. It relieves the strict
requirement of the SU(2) Kondo effect for the fine tuning
of the energy levels and exchange interactions of different
channels. Both the anyon contribution to the impurity spin in
Eq. (29) and the coupling between the anyon and the bulk have
higher scaling dimensions than those for the unitary symme-
try, which drastically reduces the influence of perturbations

at criticality. We believe that these features make the chiral
Kondo chain with symplectic symmetry a favorable candi-
date for implementation of the measurement-only topological
quantum computing protocol. The essential ingredient of this
protocol is the projective measurement of the bianyonic fu-
sion channel. We have shown that such measurements can be
executed by locally coupling an extra single channel of chiral
current to the two anyons and measuring the corresponding
conductance at finite frequency. Besides, we have shown that
the measurements act as irrelevant perturbations to the host
system, which cannot alter the type of anyons the host system
supports. We have proposed a two-layer microarchitecture of
the quantum computer based on the chiral Kondo chain model
with symplectic symmetry, where the quantum algorithms
can be executed by manipulating the classical switches in
a nondeterministic way. We have also discussed the sources
and effects of errors on the proposed quantum computer,
and argued that the design is intrinsically fault-tolerant, and
the remaining error channels can be handled efficiently. The
main challenge to our proposal is to find a proper material
that provides the required twofold degenerate chiral modes,
and a moderate Kondo temperature. We have considered two
potential candidate materials, with discussion of difficulties
associated with their implementations respectively. We look
forward to collaborations with experimentalists to push for-
ward the realization of our proposal.
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APPENDIX A: EMERY-KIVELSON STYLE ANALYSIS
OF THE ANISOTROPIC k = 2 CASE

We address the problem of stability of the Sp(2k) QCP for
the case of k = 2 using the Emery-Kivelson approach [25].
Namely, we will consider the case of large anisotropy with
large coupling constants for the Kac-Moody currents belong-
ing to the Cartan subalgebra and perform bosonization and
refermionization. At certain special value of the Cartan cou-
plings, the Hamiltonian becomes quadratic in the fermionic
operators, thus allowing a complete analysis.

The generators of the sp(4) algebra can be represented as
tensor products of Pauli matrices:

I®c"), ("®0c"), ("®0c"), (T"®I), (AD)

future conveniences we will
Then the generators become
(t*®1). We further

where a =x,y,z. For
interchange t° and 7°.
I®0c), ("®0%), (*®ac%),
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bosonize the fermions: The Klein factors are four-dimensional Dirac gamma ma-
Ko . . . trices. Their irreducible representation requires the following
Cic = m eXP[—lﬁ(% + oy + 0 Qs + la(psf)], restriction
. i
Lo==xl, [pk),e()]= ~7 sgn(x — y), (A2)
KipKp | K 4K = 1. (A3)
where we assign +, — to 4, | respectively, ¢ in the commuta-
tor stands for any of ¢, ¢, @5, and {kis, Kig'} = 28,705, are
Klein factors. Then we can construct all ten Kac-Moody currents:

|
IQoT = C?}Cu = 2iK+TK+¢ei‘/‘G“’S sin(vVdmgsr), 1Q@0c™ = Cz'JiCi? = 21K+¢K+¢e_im% sin(v 47w @s5),

tt@o’ = (i —cle )= it 11V sin(VaT ),

T ®ot= %(chcH — cflcﬂ) = i/cH/c_Te’i‘/H‘” sin(v4m @sr),

T Qot = Kﬂlc,leim(w“’*‘), T Qo™ = Kﬂlc,leimwf_‘p"),
"ot = —/cHK_ieim“wf’*“’”), I Qo = —K+TK_¢e’iM(¢f’+“’“’), Q0% ~ 8, T°®I~ 8,0y (A4)

We introduce one Majorana and two Dirac fermions:

£ = K sin(Vamgy), Y, = M Livan Y= K;Teim‘pf’ (AS)
V2mag V2mag V2mag
which corresponds to five Majorana fermions. Consequently, the currents in Eq. (A4) are expressed in terms of these five
Majoranas.

Below we separate all possible interactions into two terms. The term V| contains non-Cartan generators and all couplings
there are small; the term V| contains Cartan generators and, in accordance with the Emery-Kivelson approach, their couplings
are large. For the sake of brevity we omit coordinate in the expression for ¢ fields assuming that in the expressions below they
are positioned at the impurity site x = 0. Using the bosonization rules in Eq. (A4) we arrive at

1J; . i
V. = mS(O)[KHeIM‘”‘(I ®Ro)+ Kﬂe"m (I ® 0*)]
0
iJ A A )
" \/%%5(0)[&?6'%”(?_ ®0%) + ke VI (2t @ o)
" K;:t’;_i [/ I[NVt @ o)+ e VIRt @ o))
0
4 (J/ _ ]//)[eim(—Wf+(ﬂl)(T+ Qo)+ eim((ﬂf_%)(r— ® O.+)]},
J

V|| = THE[ast(I ® UZ) + axwf(fz Q). (A6)

Now we absorb the complex exponents into the o and T matrices:

U:teiu/4mpx — 5’i, ,L,:I:eIu/4mp,c — :L;:i:’ (A7)

which leads to a shift of J; and Eq. (A6) becomes
Vi =2iE0)k; (I @ 6%) + 2116 (0)k_1 (T* @ 6°) + 264 k4 [/ (F* @ %)+ J"(F ® 7)1,
(J” — JTUF)
NG

where J;, Jy, J', and J” are rescaled such that the resulting expressions are compact. We then define the new local fermions as

L1 :K+¢(1®5—x)7 P2 :KfT(%X®I)ﬂ

V= [0:s(I ® 6°) + 0vpp(° @ 1], (A8)

(A9)
m=k (I®G"), m=«k4(FQI),
so that they anticommute with each other and with the itinerant fermion &. Then V| and V| can be rewritten as
Vi = 2iLE0)p1 + 27 p1p2 + 20" mny — 21:£(0)p1 p2m1, (A10)
W =T i + o] (Al
I N s @f .
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The four-fermion interaction £(0)p; 02711 in Eq. (A10) can be reduced by replacing p;p, with its average, then the effective
action at the Emery-Kivelson point J; = mvr becomes quadratic in fermions:

Gl'w) i iy 0 0
-, ® 0 J 0

s=v"l —iJ 0 w 0 J v, W =), p1, 7, 02,m) G(w) = imv(er) sgno. (Al12)
0 =J' 0 o 0
0 0 —-J' 0 o

It can be seen that the simultaneous presence of J' and J” are crucial for the instability of the QCP, while with one of these
terms being absent the ground state is critical. For example, at J” = 0, the Majorana fermion 7, decouples, which gives us the
ground state entropy S(0) = In +/2. Then at small frequencies we have the following expression for the Green’s function of the
remaining fermions (€, p1, 01, p2):

irv|o| 0
1 0 —imvJ2|w| /I
—ir[va2 sgnw + o | —TvJrsgnow irerfJS|w|/J’2
—mvlsw|/J —ianfz/J/ sgnw +w/J'

—mvi|wl /T
imvJ 2/ sgnw — w/)J
—imvJJg/J sgnw
—imvlw|(J? + I3/
(A13)

mvJysgnw
iJTvaJSIwI/J’2
1 —imvJ2|w|/J"?
imvJsJs/J sgnw

The corrections to the free energy from the irrelevant operators are given by (A11). The asymptotic behaviors of the relevant
components of G at large 7 are

gmﬂ](r) ~ 1/1-9

G (T) ~ 8gn T,

G () ~ 1/7%,
Gonp(T) ~ 1/7°

then the first term of Eq. (A11) does not yield any singularities. For the second term of Eq. (A11), although G,,,,,,(t) ~ sgn 7, it
is compensated by a very fast decay of G,,,,(t) ~ 1/t2. As a result, for J” = 0 the deviations from the Emery-Kivelson point
does not generate any strong nonanalytic terms in the thermodynamics, thus the symplectic QCP exists for arbitrary ratios of
Jo, Jg, J'.

Let us now consider both J’, J” # 0, where the Green’s function couples all five fermions (&, p1, 11, P2, 172), and at small

(Al4)

frequencies it has the following expression:
1

g =
J/ZJ//Z _ i7TV(J,2Jf2 + J,,ZJY2)|0)|
imvJ2 0" sgnw v |l v s |o)|
— v || J"*w 0
—vJ" sl 0 Jw

—vJ' I gsgnw  JI7 —imvd T2l

—an’z.I”Jf sgn imvJ"JpJg|w]

The asymptotic behaviors of the Green’s functions for all local
fermions at large T become Fermi liquid like. The correspond-
ing energy scale is 1/(mw vaz/J”2 + 7vJ2/J'?), where P
and wvJ;? play the role of the Kondo temperatures for the
anisotropic couplings.

Our calculation for the Sp(4) symmetry presented above
demonstrates that, in the limit of strong anisotropy of cou-
plings of the Cartan generators, there is a single direction in
the generator parameter space along which the model scales
away from the symplectic QCP and to a Fermi liquid.

APPENDIX B: CORRELATION OF Sp;(2k)
PRIMARY FIELDS

The singular behavior of the correlation functions of
Sp1(2k) primary fields at short distance can be determined

imv'JJs|wl

J/ZJ// _ i]Tl)J”JS2|(1)|

—vJ'J"? ) sgnw
—J'J" 4 i o
—imv]'JiJs|o|

: 2 2
—imvJ" I sgnw +J" 0

—vJ 2" I sgn o
—imvJ"JpJs|wl
—J) 4+ imvd I 2 |w)
—imvJ'J"JpJ; sgn w
—im)J/sz2 sgnw +J %o
(A15)

—imvJ'J"JpJs sgn w

(

by a powerful method called the boundary conformal field
theory (boundary CFT) [70-72]. This method expresses the
effect of the impurity spins as conformally invariant bound-
ary conditions on the chiral fermions, and further trades the
boundary CFT for a bulk CFT with boundary states. There
is a bijection between the primary fields in the bulk CFT
and the conformally invariant boundary conditions, such that
boundary states can be constructed by fusing the bulk primary
fields (here the spin of the chiral fermions) with a reference
boundary state (here the impurity spin). This has been used
to tackle the problem of a single impurity spin, known as the
fusion ansatz [43,44,73,74], which we now review.

‘We here denote the boundary condition using upper case A,
and the conformal tower of the primary field ®, using lower
case a. The boundary state |A) is then expanded in terms of the
so-called Ishibashi state |a) constructed from the conformal
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tower a [75], and the expansion coefficients ({(a|A) fulfill the
following Cardy conditions [76]:

ZSZnAB = (Ala))((alB), (B1)

where S} is the modular § matrix of the bulk CFT [77], and
nb is the multiplicity of the conformal tower b under the
boundary conditions A and B. Utilizing the Verlinde formula
for the modular S matrix [78], the Cardy conditions can be
solved by the following fusion ansatz:

a

S
{(alB) = ((a|A N OVES ZNli”AA’ (B2)

where the boundary state |B) is obtained by fusing the bound-
ary state |A) with the primary field ®., 0 denotes the vacuum,
and the coefficients N are those appearing in the fusion rule
for the bulk primary fields:

O, x D = Zijq>c. (B3)

Using the fusion ansatz in Eq. (B2), the correlation between
the primary fields can be evaluated [72]:

I (@B _ 1
(z1 — 220" ((0IB) (7

S /56
—2)* 82/8y°
(B4)

(cba(Zl)qDa(ZZ)) =

where h, is the scaling dimension of the primary field
®,, the impurity spin is placed at the origin, the complex
coordinate is defined as z = t — ix, and the correlation is eval-
uated at Imz; < 0 and Imz, > 0 around the impurity spin.
Equation (B4) can be easily evaluated as long as the modular
S matrix for the primary fields is known.

The above described fusion ansatz can be readily applied
to the case of a single impurity spin. For the case of multiple
impurity spins, a generalized multifusion ansatz is proposed
under the condition that each impurity spin affects the chiral
fermions independently [13,14]:

Mgy = E

where F refers to the free boundary condition on the left, M
refers to the boundary condition of M impurity spins on the
right, and M is obtained by fusing (M — 1) with the primary
field ®.. Iterating Eq. (BS5) and using the analogy with the
fusion category theory, an effective primary field ®., and
an effective boundary Bgs can be defined to represent the
collective effect of the M impurity spins:

a — : Ceff a
gy = Z :dlm [‘/C.?.C]nFBe{f’

Ceff

xc=Y  dim [V ee,

”FM 1 (B5)

CXCX...
M

eff
a _ a b
NEBy = z :Nbceff Dt (B6)
b

where dim[V "] is the dimension of the Hilbert space ob-
tained by (M — 1) fusions of c¢ into c.. Consequently, the

FIG. 8. The computational basis and the braiding operators using

three anyons. The states |0) and |1) constitute two levels of the qubit,
while the state |N) is a noncomputational auxiliary state.

correlation between the primary fields ®, can be evaluated
as

1 ({alBetr)
®,(21)D,(2)) =
WP PaE)) = S (0 1Ba)
1 Ceff/ 0
(Zl _ Z2)2h Sce“ /Sg ’ (B7)

where z; sits to the left of the M impurity spins, and z, sits
to the right of the M impurity spins. In case of the Sp;(2k)
theory, the modular S matrix is [79]

p 2 |:n(a+1)(a/+1)i|

Sa =\ gy 24k ®3)
As a result, the correlation function in Eq. (B7) encodes the
information of the total fusion channel of M anyons localized
at the impurity sites, through the correspondence between
the primaries and the anyons. Such a correspondence can
be checked by looking at the fusion rules for the Sp;(2k)
primaries shown in Eq. (22), and the results for the two rel-
evant cases k = 2 and k = 3 are shown in Egs. (32) and (34),
respectively.

APPENDIX C: FIBONACCI ANYONS

In addition to the vacuum 1, there is a single type of anyon
7. The fusion rules are

txl=1xt=1, txT=1+4T1. (C1)
The quantum dimension is
1 5
d. = + f (C2)

The non-Abelian nature of the Fibonacci anyons is contained
in its nontrivial fusion matrix:

d—l d—l/2
K= (d;rl/z —Td;l . (C3)
The nontrivial braiding matrices for the Fibonacci anyons are

Rit — ei4rr/5 R = e—i371/5 (C4)
9 T .

For implementation of two-level gates, we need three

anyons [2]. The three anyon basis can be chosen as shown in

the upper panel of Fig. 8, and the braiding operators are shown

in the lower panel of Fig. 8. The two braiding operators can
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be represented in terms of the three anyons basis as [2]

|0) e S0 0 10)
plap| )= 0 &7 0 |
IN) 0 0 &5 J\IN)
|0> _ /S _ ie—in/10 0 |0>
plo)| 1) | = —jdl —de 0 1)
IN) 0 0 oiss | \IN)

It is easy to see that the states |0) and |1) constitute the
computational basis, while the state |N) stands alone as an
noncomputational auxiliary state. According to the Solovay-
Kitaev theorem [56,57], any unitary quantum gate can be
approximated by the two braiding operators up to arbitrary
precision efficiently. For example, the Hadamard gate can be
approximated as [59]

Wy = 0?“402_201“02_2crf’z0;201_20;40r20{20f20;20fr2
1 (1.0040 +0.0056i  0.9959 — 0.0048i
/2 \0.9959 +0.0048;  —1.0040 + 0.0056: )’
where the extra phase is not a problem, since eventually a
projective measurement will be performed.

APPENDIX D: MEASUREMENT-ONLY TOPOLOGICAL
QUANTUM COMPUTATION

We review the basic ingredients of the measurement-
only topological quantum computation proposed in Ref. [17]
in terms of Fibonacci anyons, adopting the diagrammatic
notations used by Kitaev [17,55,80]. It includes the main
components listed below.

Orthogonal projective measurement of fusion channel ¢ €
{1, t} of a state |r):

I|y)
Prob(c) = (¥ [T %), VL)
rob(c) = (Y |TIc|y), |¥) — WL y)
[, I, = 845114,

whose diagrammatic representation is

1
I, = |7, 75¢) (1, 75¢| = T X
T T

Conventionally, the line for the vacuum ¢ = 1 is omitted for
better visualization. In our proposal, the set of orthogonal
projective measurements is realized by measuring the biany-
onic fusion channel through the correlation function of the
impurity spins, see Sec. V.

where only the anyon on which we want to perform the oper-
ation is shown.

Maximally entangled Bell state |1, 7; 1)

1 7 T

7,7;1) = —
R e Y
where the line for the vacuum is conventionally omitted.
Firstly, let us consider the quantum teleportation using
three anyons, which is diagrammatically represented as

T\/ T
13 o
dTH(123) |7, 75 1) |1, 7 (T,...)) = 1 T\/T ,
Vi, fr
T N T

Vi, T

where s is a pure phase. In this way, the information-encoded
in anyon 3 with others of ¢ is transported to anyon 1 with
others of ¥, using anyon 2 as an auxiliary anyon. However,
the measurement of anyons 2 and 3 may not be in the vacuum
channel, this is where the repeated measurements come in. We
denote the fusion outcome of anyons 1 and 2 as e;, and the one
of anyons 2 and 3 as f;. Imagine we start with ¢; = 1, and we
measure anyons 2 and 3 with outcome f;. If f; = 1, then we
are done; otherwise we measure anyons 1 and 2 with outcome
e;. This gives us a sequence of outcomes (ey, fi; ez, f2;...).
The average number of attempts until f, = 1is (n) < d? < 3,
and the probability of needing n > N attempts is

Prob (fi,..., fy #1) < (1—d;)" ~0.618",

which is exponentially suppressed. Such a nondeterministic
operation is dubbed as a forced measurement, and it is dia-
grammatically represented as
T T\/T
i
[(23+12) _ ev
d,

A

Next, let us consider promoting the quantum teleportation
into braiding. This can be done through the forced measure-
ment using two auxiliary anyons, which is diagrammatically
represented as

T T T

T T T T

, A\
[1(23-24) [ (2412) ] (124-23) _ el \\

T AN

T T T °T

Consequently, we can use a total number of four anyons to
realize a binary braiding.
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