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Due to the linear scaling of the computational cost with system size, orbital-free density functional the-
ory (OF-DFT) offers a promising approach for large-scale materials simulations. However, the lack of high
transferability local pseudopotentials in OF-DFT has impeded its wide use for materials simulations. Recently,
the nonlocal pseudopotential energy density functional (NLPPF) method [Nat. Commun. 13, 1385 (2022)] has
been proposed to enable OF-DFT to directly use nonlocal pseudopotentials and successfully applied to simple
metallic systems formed by sp-block metallic elements. Here, we extend the NLPPF scheme for applications
to the semiconducting systems by employment of the revised Huang-Carter kinetic-energy density functional.
Applications of typical semiconductors including Si, Ge, and GaAs have systematically benchmarked the
scheme. The results demonstrate that the NLPPF scheme combined with the revised Huang-Carter kinetic-energy
density functional can significantly improve the accuracy of OF-DFT for simulating the semiconductors without
extensive requirements of computational budget, which opens up new opportunities for OF-DFT applications to
large-scale semiconducting systems.
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I. INTRODUCTION

The large-scale simulations from an atomistic viewpoint
play a significant role in understanding many physics aspects
over wide spatiotemporal scales. Particularly, Kohn-Sham
density functional theory (KS-DFT) [1,2] has been widely
employed to describe the fundamental properties of various
materials due to its good compromise between accuracy and
computational cost. However, the computational cost of KS-
DFT often scales cubically with the number of atoms in the
simulated cell [3]. Even with enormous computing power, the
KS-DFT is usually limited to a few thousand atoms, which is
tiny compared with real systems. Furthermore, regarding sim-
ulation time, KS-DFT is limited to a few picoseconds, much
shorter than experimental measurements [4]. Therefore, many
problems at the leading edge of materials science involving
large length and long time scale simulations are intrinsically
challenging to access using conventional KS-DFT.

As an alternative DFT approach, orbital-free density func-
tional theory (OF-DFT) uses the electron density as the sole
variable to calculate total energies [5–7] and has been sig-
nificantly advanced in the past decades [8–13]. In contrast
with KS-DFT, the intrinsic linear scaling of OF-DFT with low
prefactor [13–16] provides an ideal opportunity to understand
many real behaviors (e.g., crystal growth processes [17,18])
of complex materials of interest [14]. Currently, a large
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number of OF-DFT methods and codes (e.g., PROFESS [19],
GPAW [20], DFT-FE [21], DFTpy [22], CONUNDrum [23], and
ATLAS [16,24]) have been developed and successfully applied
to the systems containing millions of atoms [22,24–26]. From
this viewpoint, these methods and codes become fascinating
platforms that can be applied to large-scale systems with
moderate computational cost.

It is well known that the reliability of OF-DFT simu-
lations relies mainly on the qualities of the noninteracting
kinetic energy and the electron-ion (or electron-pseudocore)
interaction energy. The former is usually estimated by the
kinetic-energy density functionals (KEDFs) [27–40]. Cur-
rently, several KEDFs, including WT [28], WGC [31,32],
XWM [33], HC [35,41], LMGP [34,42], LDAK [36], and
revHC [37] have been proposed and successfully applied to
some metallic or semiconducting systems. At the same time,
the local pseudopotentials (LPPs) were typically adopted
for calculating electron-ion interaction energy in the OF-
DFT simulations [43–49]. Despite some LPPs [e.g., the
bulk-derived local pseudopotential(BLPS) [43,44], optimal
effective local pseudopotential [45] (OEPP), and globally
optimized local pseudopotential [46] (goLPS)] have been
available, these LPPs usually suffer from a lack of transfer-
ability and sufficient accuracy, since they fail to reproduce the
correct scattering behavior of the all-electron potentials.

Two frameworks of OF-DFT, including angular-
momentum-dependent OF-DFT [50,51] and the nonlocal
pseudopotential energy density functional (NLPPF) [52]
have been proposed to include the critically important effects
of nonlocal interactions. Particularly, the NLPPF scheme
developed based on XWM or WT KEDFs significantly
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improves the computational accuracy for s- and p-block
metals over LPPs. These KEDFs, however, have proven to
be not suitable for semiconducting systems. Here, we further
extend the NLPPF for applications of semiconducting systems
by employment of the revHC KEDF, which is suitable for
semiconductors. The accuracy and efficiency of the NLPPF
scheme have been benchmarked by comparisons against
the KS-DFT calculations. The results demonstrate that the
NLPPF within revHC KEDF can accurately reproduce the
bulk properties of KS-DFT for bulk Si and III-V compounds,
opening up new opportunities for applications of OF-DFT for
simulations of large-scale semiconductors.

The reminder of this paper is organized as follows:
Section II gives detailed information of the NLPPF scheme
for the electron-ion interaction energy calculation for semi-
conductors. The computational details are provided in Sec. III.
The results and discussions of NLPPF for simulations of bulk
properties are illustrated in Sec. IV, followed by the conclu-
sions in Sec. V.

II. METHODS

For the sake of clarity, we first briefly sketched the NLPPF
scheme, in which the total energy of the considered system
as functional of the electron-density function ρ(r) can be
formulated as

E [ρ] = Ts[ρ] + EH[ρ] + EXC[ρ] + EII ({Ra})

+ Eloc[ρ] + Enl[ρ]︸ ︷︷ ︸
EEI [ρ]

, (1)

where Ts[ρ], EH [ρ], EXC[ρ], EII ({Ra}), and EEI [ρ] are terms
of noninteracting kinetic energy, the Hartree energy, the
exchange-correlation energy, the ion-ion repulsion energy,
and the electron-ion interaction energy, respectively. The
electron-ion interaction energy can be further separated into
two parts: local part Eloc[ρ] = ∫

ρ(r)Vloc(r)d3r and nonlocal
part Enl[ρ]. Note that the local part of the pseudopotential
can be evaluated easily. While the exact nonlocal electron-ion
interaction energy depends on the density matrix as [52]

Enl[ρ] =
∫∫

Vnl(r, r′)γs(r′, r)drdr′, (2)

where Vnl(r, r′) = 〈r|V̂nl|r′〉 and γs(r′, r) = ∑
i fiψi(r′)ψ∗

i (r)
represent real-space representation of the nonlocal part pseu-
dopotential and noninteracting density matrix. Note that fi and
ψi(r) denote the occupation number and Kohn-Sham orbital,
respectively.

In the NLPPF scheme, the nonlocal electron-ion interac-
tion energy is treated as a functional of electron density:

Enl[ρ] =
∫∫

Vnl(r, r′)γs[ρ](r′, r)drdr′. (3)

The Kleinman-Bylander form [53] of norm-conserving
nonlocal pseudopotentials (NLPPs) [54] was used to eval-
uate the nonlocal electron-ion interaction energy [52].
Specifically, the nonlocal part of the pseudopotential is de-
fined as Vnl(r, r′) = ∑

a,lm Ea,lm
KB χa

lm(|Ra − r|)χa∗
lm (|Ra − r′|),

where Ea,lm
KB = [

∫
φa∗

lm(r)δV a
lm(r)φa

lm(r)dr]−1 and χa
lm(r) =

δV a
lm(r)φa

lm(r). Here, φa
lm(r) and δV a

lm(r) are the atomic

pseudo wave function and the short-range pseudopotential
within the cutoff radius associated with the lmth angular mo-
mentum of the ath atom.

In our scheme, the density matrix of γs[ρ](r′, r) can be
approximated explicitly as a functional of electron density,
deriving from the modified Gaussian [55] density-matrix
functional γ MG

s (r̄, s):

γ MG
s (r̄, s) = ρ(r̄)e

−s2

β(r̄)

[
1 + A

(
s2

β(r̄)

)2
]
. (4)

This expression is derived through a second-order Tay-
lor expansion of the exact density matrix at s = 0, given
by γ (r̄, s) = ρ(r̄)[1 − s2/β(r̄) + O(s4)]. Here, r̄ = r+r′

2 , and
s = |r − r′|. The parameter β(r) = (3/2)[ρ(r)/τs(r)] is re-
ferred to as the “local temperature” [56,57], where τs(r)
represents the kinetic-energy density (KED) [56]. Practically,
the KED can be derived from the KEDF.

Previously, the WT and XWM KEDFs have been utilized
in constructing NLPPFs for simulations involving s- and p-
block metals [52]. In this work, the revHC functional, well-
suited for semiconductors [37], is adopted as the KEDF, and
its KED is employed in constructing the NLPPF. The revHC
KEDF can be expressed as

T revHC
s [ρ] = T TF

s [ρ] + T vW
s [ρ] + T NL

s [ρ], (5)

where T TF
s [ρ] = CTF

∫
ρ

5
3 (r)dr and T vW

s [ρ] = 1
8

∫ |∇ρ(r)|2
ρ(r) dr

represent the of Thomas-Fermi (TF) [5,6] and von Weizsäcker
(vW) [7] KEDF, respectively. CTF = (3/10)(3π2)

2
3 is the

Thomas-Fermi constant.
The nonlocal term T NL

s [ρ] of the revHC KEDF can be
written as

T NL
s [ρ] =

∫∫
ρ2(r)ω[ξ (r)|r − r′|]ρ 2

3
(
r′)drdr′, (6)

where ξ (r) is the single-point density-dependent approxi-
mated effective Fermi wave vector in revHC KEDF [37],

ξ (r) = kF(r)

[
1 + as2(r)

1 + bs2(r)

]
. (7)

Here, kF (r) = [3π2ρ(r)]
1
3 and s(r) = |∇ρ(r)|/[2(3π2)

1
3

ρ
4
3 (r)] are the Fermi vector and the dimensionless reduced

density gradient, respectively. The parameters of a and b are
set as the same with original revHC KEDF [37]. The detailed
derivations of revHC KEDF can be found in Refs. [35,37]. For
the TF and vW term, the KED can be expressed as τTF

s (r) =
CTFρ

5
3 (r) and τ vW

s (r) = (1/8)[|∇ρ(r)|2/ρ(r)], respectively.
Regarding the nonlocal term T NL

s [ρ] with double integral,
there are two natural ways to define the KED with different
local coordinates:

τNL(α)
s (r) = ρ2(r)

∫
ω[ξ (r)|r − r′|]ρ 2

3
(
r′)dr′, (8)

τNL(β )
s (r) = ρ

2
3 (r)

∫
ω[ξ (r′)|r − r′|]ρ2

(
r′)dr′. (9)

Hence, the KED can also be expressed as a linear combina-
tion of these two definitions, i.e., τNL

s (r) = λτNL(α)
s (r) + (1 −

λ)τNL(β )
s (r). In line with previous work [52,58], we adopt the

simple average definition with λ = 1/2.
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TABLE I. Parameters for the electron configurations, cutoff
radius rc used in FHI98PP [73] for generation of TM-NLPP [72],
and the parameters of A and q employed in NLPPF [52] for OF-DFT
calculations. Note that only s and p channels were included within
the NLPPF framework, due to the negligible occupation number of
d channel for sp-block elements.

Element Configuration rc(s, p, d ) A q

Si 3s23p2 2.20, 2.20, 2.02 −1.8 −1.0
Ge 4s24p2 1.98, 2.18, 2.46 0.9 −0.1
Ga 4s24p1 2.30, 2.30, 2.80 0.3 −1.0
As 4s24p3 2.30, 1.90, 2.30 −2.0 −1.0
C 2s22p2 1.50, 1.50, - −2.0 −1.0

To simplify the density matrix, we approximate ρ(r̄) as

ρq(r′, r) =
[
ρq(r′) + ρq(r)

2

] 1
q

and β(r̄) as

β(r′, r) = β(r′) + β(r)

2
.

Here, β(r′, r) denotes the q-mean “nonlocal density,” and
β(r′, r) is the two-point average temperature. The density
matrix can then be reformulated as

γ̃ MG
s [ρ](r′, r) = ρq(r′, r)e

− |r′−r|2
2β(r′ ,r)

[
1 + A

( |r′ − r|2
2β(r′, r)

)2
]
.

(10)

The parameters A and q within the NLPPF are determined by
fitting against solid properties estimated by KS-DFT and OF-
DFT. Despite being derived from data fitting, these parameters
are element-dependent and exhibit good transferability, since
the density matrix is constrained to short-range, localized
regions that near the atomic nuclei. By combining Eqs. (3)
and (10), the NLPPF can be formally expressed as

Enl[ρ] =
∑
a,lm

Ea,lm
KB

∫
�a

∫
�a

χa
lm(|Ra − r|)γ̃ MG

s [ρ](r, r′)

× χa
lm(|Ra − r′|)drdr′. (11)

Here, the integral domain �a corresponds to the ionic core
region of the ath atom. Due to the short-range characteristics
of χa

lm(|Ra − r|), the computational cost of NLPPF scales
linearly with the number of atoms. The details of functional
derivatives and implementation of revHC KEDF and NLPPF
in ATLAS [16,24] were provided in the Supplemental Mate-
rial [71].

III. COMPUTATIONAL DETAILS

All the OF-DFT calculations were performed by ATLAS

3.0 [16,24]. The Troullier-Martins NLPPs [72] generated by
FHI98PP [73] and the detailed electron configuration param-
eters and cutoff radius for generating NLPPs for Si, Ge, As,
Ga, and C were presented in Table I. Note that the OF-DFT
calculations of Si, As, Ga, C, and GaAs were performed by
using the BLPSs [43,44], while the OEPP [45] was adopted

for Ge. The grid spacings of 0.08 and 0.10 Å have been used
for bulk Si and other systems to ensure an energy conver-
gence of better than 5 meV/atom, respectively. The energy
densities including KED and nonlocal electron-ion interaction
energy density were obtained by non-self-consistent calcula-
tions, where a finer grid spacing of 0.06 Å was employed. The
parameters A and q in NLPPF for all OF-DFT calculations
were also outlined in Table I. The OE-SCF solver [74] was
adopted for the computational efficiency test.

The KS-DFT calculations have been performed by VASP

6.1.0 [75,76], CASTEP 8.0 [77], and ARES 1.0 [78], where
the projector augmented-wave potentials (PAW) [79] and
NLPPs have been employed to calculate the electron-ion in-
teraction energy. The k-point meshes used in VASP, CASTEP,
and ARES have been generated using the Monkhorst-Pack
method [80] with a k spacing of 0.10, 0.016, and 0.14 Å−1,
respectively. The kinetic-energy cutoffs of 600 and 1000 eV
were adopted in VASP and CASTEP for KS-DFT simulations,
respectively. The same grid spacings were used for ARES

and OF-DFT calculations. In all KS-DFT and OF-DFT cal-
culations, the generalized gradient approximation with the
Perdew-Burke-Ernzerhof [81,82] form was employed for
electron exchange-correlation energy.

IV. RESULTS AND DISCUSSION

A. Bulk properties of semiconductors

Our previous results have shown that the NLPPF scheme
within WT [28] and XWM [33] KEDFs gives comparable
quantitatively accurate simulations for nearly-free-electron-
like main group metals (e.g., Li, Mg, and Cs) to KS-DFT.
Particularly, it significantly improves the computational accu-
racy and transferability over conventional LPP for crystalline
Be [52]. To assess the accuracy of the scheme for semicon-
ductors, we first apply it to investigate the bulk properties
of Si with several prototype phases [43] including the cubic
diamond (CD), hexagonal diamond (HD), complex body-
centered-cubic (CBCC), β-tin, body-centered-tetragonal 5
(BCT5) [83], simple-cubic (SC), hexagonal-close-packed
(HCP), body-centered-cubic (BCC), and face-centered-cubic
(FCC) structures [84]. Note that the bulk properties of bulk
modulus (B0), equilibrium volumes (V0), and relative en-
ergy with respect to the selected reference structure (ER) are
obtained by expanding and compressing the KS-DFT equilib-
rium unit cell structure up to 20% with 15 points and fitting the
energy curves versus volume against Murnaghan’s equation of
state [85].

The high-quality LPPs of both BLPSs [43,44] and
OEPPs [45] have been demonstrated by successful repro-
duction of the bulk properties for the most of groups III–V
p-block elements (e.g., Si, Ga, and As) [35,37]. Therefore,
we expect the NLPPF scheme to be equally accurate as the
LPPs for systems composed of these elements. The accuracy
of the NLPPF scheme is demonstrated through direct com-
parisons of bulk properties (e.g., ER, V0, and B0) to results
from KS-DFT with the PAW method, KS-DFT with the same
NLPP used in NLPPF, and OF-DFT with BLPSs, as shown in
Table II. As expected, the KS-DFT-NLPP and KS-DFT-PAW
give almost identical results. Although B0 of most structures
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TABLE II. Relative energy (ER in eV/atom), bulk modulus (B0 in GPa), and equilibrium volume (V0 in Å3/atom) of Si in various
phases obtained by KS-PAW, KS-NLPP, OF-NLPPF, and OF-BLPS. ER is relative to the CD phase. The mean percentage error (MPE)
of V0 (�V0/V KS

0 = 1
N

∑ |V0 − V KS
0 |/V KS

0 ), mean absolute error (MAE) of ER (�ER = 1
N

∑ |ER − EKS
R |), mean percentage error of B0

(�B0/BKS
0 = 1

N

∑ |B0 − BKS
0 |/BKS

0 ) are listed in last column. The experimental values of V0 and B0 for CD-Si are 20.01 Å3/atom [86] and
99 GPa [84,87,88] at low temperature (77.4 K), respectively.

Si Method CD HD CBCC β-tin BCT5 SC HCP BCC FCC MPE/MAE

V0 KS-PAW 20.446 20.427 18.473 15.351 17.614 16.202 14.351 14.638 14.471
KS-NLPP 20.438 20.431 18.499 15.398 17.648 16.252 14.436 14.714 14.540
OF-BLPS 20.353 20.387 19.235 15.827 17.370 16.120 13.189 12.944 13.283 4.2%

OF-NLPPF 20.355 20.376 19.319 16.348 17.689 16.552 14.457 14.413 14.516 1.9%

ER KS-PAW 0.000 0.011 0.158 0.291 0.288 0.353 0.511 0.524 0.536
KS-NLPP 0.000 0.011 0.159 0.292 0.287 0.351 0.510 0.522 0.534
OF-BLPS 0.000 0.007 0.057 0.033 −0.193 −0.182 0.101 0.266 0.073 0.279

OF-NLPPF 0.000 0.005 0.061 0.094 −0.159 −0.152 0.334 0.491 0.306 0.188

B0 KS-PAW 88.2 88.3 94.8 107.6 94.6 99.9 87.3 92.0 83.4
KS-NLPP 86.8 87.2 93.2 106.0 94.2 98.9 87.1 92.7 82.6
OF-BLPS 94.7 95.1 101.2 97.8 110.2 106.2 97.9 98.1 101.1 10.4%

OF-NLPPF 97.4 98.2 104.2 106.5 115.4 114.7 110.8 99.5 111.7 15.4%

obtained by OF-DFT-NLPPF are slightly worse than those
obtained by OF-DFT-BLPS, the significant improvements for
the V0 and ER of most structures are observed using OF-DFT-
NLPPF versus OF-DFT-BLPS, as demonstrated by the fact
that the mean percentage error of V0 and mean absolute error
of ER of OF-DFT with NLPPF are 1.9% and 188 meV/atom,
respectively, which are smaller than those of 4.2% and 279
meV/atom obtained by OF-DFT with BLPS. Overall, the
OF-DFT with NLPPF exhibits reasonable reproductions of
bulk properties of crystalline Si obtained by KS-DFT, which
are in reasonable agreement with the available experimental
values.

Moreover, the bulk properties of crystalline phases of
Ge [84,89,90,93] predicted by KS-DFT, using NLPP and PAW
formalisms, and by OF-DFT, using the OEPP and NLPPF, are
given in Table III. We again observe a marked improvement of
bulk properties in the most crystalline phases of Ge, compared

with OF-DFT with OEPP. Specifically, the bulk properties
(ER, V0, and B0) obtained by KS-DFT are better reproduced
by OF-DFT with NLPPF than by OF-DFT with OEPP for
most phases of Ge. All of these results reveal that OF-DFT
with NLPPF, in general, gives more accurate results than the
OF-DFT with LPPs. Particularly, the mean percentage errors
of V0, ER, and B0 obtained by OF-DFT with NLPPF are
significantly less than those obtained by OF-DFT with BLPS
for Ge.

To demonstrate the transferability of NLPPF, we apply it
to predict the energy differences for the fifty random struc-
tures of Si generated by CALYPSO software [94,95]. Notably,
OF-DFT with NLPPF results are closer to KS-DFT results
(Fig. 1), in which the average error of energies calculated by
NLPPF relative to the KS-DFT energies (268 meV/atom) is
smaller than that (429 meV/atom) obtained by the OF-DFT
with LPP.

TABLE III. ER (eV/atom), B0 (GPa), V0 (Å3/atom) of Ge in various phases including CD, β-tin, SC, HCP, BCC, FCC, and two
experimental structures with space group of Imma [89] and Cmma [90] space group obtained by KS-PAW, KS-NLPP, OF-NLPPF, and
OF-OEPP. ER is relative to the CD phase. The mean percentage and absolute errors are also listed as Table II. The experimental values of
B0 and V0 for CD-Ge are 77 GPa [84,87,91] and 22.626 Å3/atom [92] at low temperature (77.4 K) and room temperature (298 K), respectively.

Ge Method CD β-tin Imma SC Cmma HCP FCC BCC MPE / MAE

V0 KS-PAW 24.179 19.441 19.419 20.036 19.350 19.434 19.651 19.344
KS-NLPP 24.308 19.636 19.616 20.240 19.540 19.570 19.779 19.496
OF-OEPP 23.339 19.060 18.885 19.194 18.032 17.656 17.638 18.343 5.4%

OF-NLPPF 24.234 20.137 19.829 20.055 19.142 18.815 18.769 20.345 2.5%

ER KS-PAW 0.000 0.217 0.226 0.233 0.297 0.311 0.312 0.319
KS-NLPP 0.000 0.204 0.211 0.223 0.278 0.290 0.289 0.298
OF-OEPP 0.000 0.011 −0.040 −0.151 0.125 0.225 0.194 0.359 0.159

OF-NLPPF 0.000 0.042 −0.001 −0.134 0.224 0.366 0.330 0.450 0.131

B0 KS-PAW 58.8 69.5 67.7 68.4 66.3 64.3 63.9 65.5
KS-NLPP 56.5 68.0 67.4 67.4 65.6 64.1 64.3 65.5
OF-OEPP 69.7 82.9 86.8 86.2 82.9 83.5 86.1 67.2 23.1%

OF-NLPPF 62.2 72.7 73.3 73.5 63.4 58.3 62.1 49.8 8.3%
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FIG. 1. The ER obtained by OF-DFT with NLPPF and BLPS are
compared with KS-DFT of Si for 50 random structures generated by
CALYPSO.

To further benchmark the transferability of the NLPPF
scheme, we also calculate the bulk properties of selected Ga
and As solids, as well as the binary compound of GaAs. The
detailed bulk properties are presented in Tables S1–S3 of the
Supplemental Material [71]. The curves of relative energy
versus volume equation of state (EOS) for the stable phases of
Ga, As, and GaAs (i.e., α-Ga [96], α-As [97], and zincblende
GaAs [98]) are calculated and shown in Fig. 2. The OF-DFT
calculations using NLPPF yield results in excellent agreement
with the KS-DFT results, particularly for GaAs, where the
EOS curves calculated by OF-DFT-NLPPF almost coincide
with that obtained by KS-DFT, showing no obvious volume
difference at any given volumes. In contrast, the EOS curves
calculated from OF-DFT with BLPS exhibit significant differ-
ences and consistently underestimate the equilibrium volumes
compared with KS-DFT results. These findings indicate that
if the NLPPF is well suited for describing the elements, it can
also perform effectively for compounds composed of these
elements.

B. Analysis of the applicability of NLPPF method

Despite OF-DFT with NLPPF giving accurate predictions
of the EOS for Ge, it fails to reproduce the properties of
carbon with CD structure (Fig. 3). To uncover the physical
origin of the deviation, we estimate the errors of the KED and

FIG. 3. Relative energy versus volume curves are calculated
using KS-DFT (black squares) and OF-DFT with NLPPF (red dia-
monds) for (a) CD C and (b) CD Ge.

nonlocal electron-ion interaction energy density, denoted by
ε(r) = ∫

Vnl(r, r′)γs(r′, r)dr′, obtained by OF-DFT employ-
ing revHC KEDF with respect to the KS-DFT along the [111]
directions in the diamond structures of C and Ge (Fig. 4).
The KED (τs) calculated by the revHC-KEDF can accurately
reproduce the results of KS-DFT for Ge, whereas the large
discrepancies of KED calculated by OF-DFT with revHC-
KEDF and KS-DFT exist for C. Therefore, we believe that the
bulk properties discrepancies obtained by the framework of
OF-DFT within the NLPPF are derived from the errors in the
kinetic-energy densities for C. The finding is fairly consistent
with our previous work [52].

It is well known that our proposed NLPPF scheme cru-
cially relies on the approximations of MG form of the density
matrix [55] functional and the KED [55,99], as manifested
by Eqs. (10) and (5). To investigate the role of these ap-
proximations, we first evaluate the of εNLPPF with respect to
the εKS obtained by KS-DFT using the KS-KEDs according
to Eq. (10). Our calculations reveal that the difference be-
tween εNLPPF(τs) and the exact εKS is small for the whole
considered region for both C and Ge. These results indicate
that the MG form of the density functional proposed in our
NLPPF scheme is an appropriate approximation. Once the
revHC KED is employed to calculate the ε for C according
to Eq. (5), it leads to significant deviations of εNLPPF(τ revHC

s )
with respect to the exact εKS, particularly in the near-core
region. In contrast, a minor deviation of εNLPPF(τ revHC

s ) from
exact εKS exists for Ge. The results are consistent with our
previous finding that the accuracy of NLPPF should depend
sensitively on the KED. Since the KED usually can be derived
from the KEDF, it can be expected that our proposed NLPPF

FIG. 2. Relative energy versus volume curves are calculated using KS-DFT (black squares) and OF-DFT with BLPS (blue circles) and
NLPPF (red diamonds) for α-Ga (a), α-As (b), and GaAs (c).
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FIG. 4. KED (τs) and nonlocal electron-ion interaction energy density (ε) were calculated by KS-DFT and OF-DFT for CD C and CD Ge
along the [111] direction. The positive-definite KED of KS-DFT (τs = ∑

i fi
|∇φi |2

2 ) was used. Note that i and fi denote the index of KS orbitals
and the occupation number, respectively. The gray points stand for atom position.

is primarily governed by KEDF in OF-DFT. Therefore, it
is anticipated that the OF-DFT with NLPPF can be widely
applied to the general semiconducting systems once an accu-
rate KEDF is available.

C. Computational cost

To assess the computational efficiency of NLPPF, we
performed the single-point energy calculations of CD Si su-

FIG. 5. Wall times of single-point OF-DFT and KS-DFT calcu-
lations. The simulations of CD Si supercells containing 64 to 2744
atoms. The OF-DFT calculations are carried out with the NLPPF and
BLPS, revHC functional, and OE-SCF solver [74]. The KS-DFT uses
the PAW method.

percells containing 64 to 2744 atoms using OF-DFT with
NLPPF and BLPS, respectively. The total wall time required
for these calculations using OF-DFT with NLPPF and BLPS
is presented in Fig. 5. To make a clean comparison, the total
wall time required for KS-DFT calculations with PAW [79]
is also presented. Note that all calculations were performed
on a node with 2 Intel(R) Xeon(R) Gold 6240R CPUs and
192 GB of RAM. Just as shown in Fig. 5, the total wall
time for OF-DFT with NLPPF is around 3.5 times larger
than that using OF-DFT with BLPS calculations and the
computational cost of OF-DFT with both NLPPF and BLPS
clearly scales linearly with the number of atoms in the simu-
lation cell, in sharp contrast to the cubic scaling of KS-DFT.
This dramatic reduction of the total wall times of OF-DFT
within NLPPF scheme leads us to expect that it holds great
promise for simulations of the large-scale semiconducting
systems.

V. CONCLUSIONS

Inherited from NLPPF scheme, an extended NLPPF ap-
proach has been proposed by a combination with the revHC
KEDF for simulations of semiconductors. We have demon-
strated that our proposed NLPPF scheme can successfully
reproduce the bulk properties for various semiconducting
systems (e.g., Si, Ge, and GaAs), indicating the great
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improvement in the computational accuracy and transfer-
ability over LPPs. Notably, the new scheme retains linear
computational scaling, opening up new avenues for simula-
tions of large-scale semiconductors. It is worthwhile pointing
out that the accuracy of NLPPF scheme is largely determined
by the quality of KED. Therefore, the challenges remain in ac-
curately simulating systems with localized valence electrons,
such as those characterized by 2p and 3d orbitals, where no
accurate KEDF is available.
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