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Spin Hall conductivity in the Kane-Mele-Hubbard model at finite temperature
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The Kane-Mele model is known to show a quantized spin Hall conductivity at zero temperature. Including
Hubbard interactions at each site leads to a quantum phase transition to an XY antiferromagnet at sufficiently
high interaction strength. Here, we use the two-particle self-consistent approach (TPSC), which we extend
to include spin-orbit coupling, to investigate the Kane-Mele-Hubbard model at finite temperature and half
filling. TPSC is a weak to intermediate coupling approach capable of calculating a frequency- and momentum-
dependent self-energy from spin and charge fluctuations. We present results for the spin Hall conductivity and
correlation lengths for antiferromagnetic spin fluctuations for different values of temperature, spin-orbit cou-
pling, and Hubbard interaction. The vertex corrections, which here are analogs of Maki-Thompson contributions,
show a strong momentum dependence and give a large contribution in the vicinity of the phase transition at
all temperatures. Their inclusion is necessary to observe the quantization of the spin Hall conductivity for the
interacting system in the zero-temperature limit. At finite temperature, increasing the Hubbard interaction leads
to a decrease of the spin Hall conductivity. This decrease can be explained by band-gap renormalization from
scattering of electrons on antiferromagnetic spin fluctuations.
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I. INTRODUCTION

The spin Hall effect is a physical phenomenon in which
particles experience forces perpendicular to their flow di-
rection, but of opposite directions depending on the spin
orientation. The spin Hall effect was first proposed in
1971 [1]. Since its proposal, the spin Hall effect has been
realized in a variety of systems, including the semiconduc-
tors GaAs and InGaAs where the phenomenon is driven
by spin-orbit coupling [2,3], in laser light traversing di-
electric junctions [4], and in cold-atom systems in optical
lattices [5,6].

Likewise, the quantum spin Hall effect (QSH) is a spin-
selective version of the quantum Hall effect and describes a
time-reversal invariant electronic state with a bulk electronic
band gap which hosts a quantized spin Hall conductivity.
The state was originally proposed by Kane and Mele [7,8]
for a single layer of graphene, where the intrinsic spin-orbit
coupling (SOC) opens a band gap and causes a band inver-
sion making the bands topological [8]. The Kane-Mele model
introduced in Ref. [7] resembles graphene and consists of a
honeycomb lattice with nearest-neighbor hopping and SOC.
The spin Hall conductivity in this case is quantized at zero
temperature since it corresponds to a Brillouin zone integral
over the Berry curvature of the occupied bands. However,
in graphene the size of the intrinsic SOC was found to be
of the order of a few μeV, so that the QSH would only
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be observable at unrealistically low temperatures [9–12]. An
observable QSH was first successfully predicted and mea-
sured in HgTe quantum wells [13,14]. The observation in
other systems followed [15–26], notably, for example, in re-
cent measurements in the graphene analog germanene [26]
and in bilayer graphene [22]. A large spin Hall effect has
been observed as well in AB-stacked MoTe2/WSe2 moiré
bilayers [27]. Materials that can generate large spin-polarized
currents at room temperature are sought after for spintronic
applications [28–31]. One possible application is a memory
device in which the torque generated by a spin current is
used to switch the magnetization of an adjacent ferromagnetic
layer [28,29].

A common model to describe the QSH effect is the above-
mentioned Kane-Mele model [7]. In many of the material
realizations, however, electronic correlations may influence
the behavior of the systems. In this article we focus there-
fore on the spin Hall effect with interactions and at finite
temperatures. We consider the Kane-Mele-Hubbard (KMH)
model which is a generalization of the original Kane-Mele
model where an onsite Hubbard interaction U is added. So
far, the KMH model has been investigated in Refs. [32–45]
and reviewed in Refs. [46–48]. At T = 0 the SOC-U phase
diagram consists of a QSH insulating phase at small U values
and an XY antiferromagnet at larger U values. An intermedi-
ate spin-liquid phase initially suggested in Refs. [35,36,39,41]
could not be found by large scale QMC simulations [49].
Previous numerical studies found the metallic edge states
to be gapped out by large enough interactions [50,51] or
to spontaneously break time-reversal symmetry and acquire
magnetic order [40]. For a discussion on the related issue of
boundary zeros see Ref. [52]. In addition, previous numerical
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studies of the QSH in the Bernevig-Hughes-Zhang-Hubbard
model at finite temperatures using dynamical mean-field the-
ory (DMFT) found that interactions decrease the spin Hall
conductivity [53].

Here, we show that nonlocal correlation effects in the
KMH model are strong and that the momentum-dependent
vertex corrections resulting from them give a significant con-
tribution to the spin Hall conductivity in the vicinity of the
phase transition at all temperatures. To our knowledge, ver-
tex corrections to the spin Hall conductivity have not been
included in finite-temperature calculations before. We observe
that the sensitivity to temperature of the spin-Hall conductiv-
ity is enhanced by the gap renormalization due to interactions.
We also find the inclusion of vertex corrections to be neces-
sary to observe the quantization of the spin Hall conductivity
for the interacting system in the zero-temperature limit.

The above results are obtained using the two-particle self-
consistent method (TPSC) [54–56], which we extended to
include SOC, to study the KMH model numerically [57].
TPSC is a weak to intermediate coupling approach to the Hub-
bard model. It gives a good description of long-wavelength
spin fluctuations and provides a momentum- and frequency-
dependent self-energy from spin and charge fluctuations.
There are a number of extensions of TPSC including combi-
nations with DMFT [58–60], TPSC+ [61,62], disorder [63],
TPSC+GG [61,64], multisite case [65–68], multiorbital
case [69–71], nonequilibrium [60,64], and nearest-neighbor
interaction [72–74]. The TPSC approach was used previously
to study the antiferromagnetic phase transition on the honey-
comb lattice and was shown to be in good agreement with
QMC calculations [65]. Hence, we expect that this method is
appropriate to the study of the Kane-Mele-Hubbard model.

The article is organized as follows. In Sec. II, we intro-
duce the model and discuss previous findings. In Sec. III,
we discuss the inclusion of SOC into the TPSC approach.
Numerical details about the calculation are given in Sec. IV.
Results for the antiferromagnetic spin correlation lengths, spin
Hall conductivity (SHC) with and without vertex corrections,
and the band-gap renormalization are given in Sec. V. Ap-
pendix discusses the range of applicability of TPSC in the
KMH model.

II. MODEL

The Kane-Mele-Hubbard model on the honeycomb lattice
with two sites per unit cell is given by

H = −t
∑
〈i, j〉

c†
i c j + iλ

∑
〈〈i, j〉〉

νi jc
†
i σzc j + U

∑
i

ni↑ni↓. (1)

Here, the indices i and j run over all lattice sites, and
the brackets 〈i, j〉 and 〈〈i, j〉〉 denote pairs of nearest and
next-nearest neighbors respectively. The operator niσ is the
number operator for electrons of spin σ on site i, while
c†

i (ci) is a row (column) vector of creation (annihilation)
operators: c†

i = (c†
i↑, c†

i↓). The next-nearest-neighbor hopping
parameter λ corresponds to the strength of spin-orbit coupling
and νi j = ±1 has a sign that depends on whether going from i
to j is clockwise or counterclockwise. Finally, U is the onsite
Hubbard interaction strength. The model and the Brillouin

FIG. 1. (a) The Kane-Mele-Hubbard model with nearest-
neighbor hopping t , second-nearest-neighbor spin-orbit coupling λ,
and onsite Hubbard interaction U . The basis vectors are a1 = (1, 0)a
and a2 = (1/2,

√
3/2)a with lattice constant a. (b) Hexagonal Bril-

louin zone of the model.

zone are depicted in Fig. 1. We consider the model at half
filling. The SOC breaks spin-rotation symmetry, but time-
reversal (TR) symmetry is preserved and the spin z component
Sz is conserved.

In the noninteracting case the SOC gaps out the Dirac
cones at k = K, K ′ [see Fig. 1(b)] with a band gap of � =
6
√

3λ and at zero temperature the spin Hall conductivity is
quantized to a value of σ SH = −2 e2

h , following the Chern
theorem which can be independently applied to spin-up and
spin-down subspaces.

At large U values, an XY antiferromagnetic phase is to
be expected since the SOC is proportional to Sz making the
xy plane the easy plane for the spins. This can be seen in
the strong coupling limit of Eq. (1) where the Hamiltonian
becomes [37]

H∞ = 4t2

U

∑
〈i, j〉

Si · S j + 4λ2

U

∑
〈〈i, j〉〉

(
Sz

i Sz
j − Sx

i Sx
j − Sy

i Sy
j

)
.

(2)

III. METHOD

In the following, we present the multiband TPSC self-
consistency equations including SOC, simplified through
conservation of Sz. The idea of TPSC is to use RPA-like
expressions for spin and charge susceptibilities with renor-
malized two-particle vertices, whose values are determined
self-consistently using sum rules. The self-consistency equa-
tions containing SOC are obtained by enforcing time-reversal
symmetry. So, the system cannot become magnetic in TPSC.
For details regarding the method see Ref. [57].

We define the following susceptibilities

χab
αβ (τ, Ri − R j ) = 〈

Tτ Oα
ia(τ )Oβ

jb(0)
〉 − 〈

Oα
ia

〉 〈
Oβ

jb

〉
, (3)

where the operators Oα can either be Sx, Sy, Sz, or the number
operator n corresponding to the labels x, y, z, or c (charge),
Ri is the lattice vector to the unit cell with the index i, a
and b are site indices labeling the sites in the unit cell, and
τ is the imaginary time. By Fourier transforming Eq. (3)
one can go to frequency and momentum space q = (iqm, q),
where qm = 2πmT is a bosonic Matsubara frequency, with
m an integer and T the temperature. Since Sz is conserved,
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the longitudinal and the transversal channels decouple. From
the Bethe-Salpeter equation in the particle-hole channel with
a constant irreducible two-particle vertex �, one obtains the
following expression for the susceptibilities in the longitudi-
nal particle-hole channel

χ l (q) = (
1 + 1

2�lχ l (1)(q)
)−1

χ l (1)(q), (4)

where we defined

χ l (q) =
(

χcc(q) χcz(q)

χzc(q) χzz(q)

)
, (5)

�l =
(

�cc 0

0 −�zz

)
. (6)

The superscript l indicates the longitudinal channel and (1)
here indicates the corresponding noninteracting expression.
The two sites in the unit cell are symmetry related so that
the vertices are diagonal matrices with identical entries in site
space. In the transversal channel one simply has

χxx(q) = (
1 − 1

2�xxχ
(1)
xx (q)

)−1
χ (1)

xx (q), (7)

and the same for the y-spin direction. The spin rotation sym-
metry around the z axis causes the coupling between Sx and Sy

to vanish and hence χxy = χxy = 0, χxx = χyy, and �xx = �yy.
By analogy with Ref. [56], a Hartree-Fock decoupling and
consistency with 1

2 Tr�G = ∑
a U 〈na↑na↓〉 leads to the fol-

lowing ansatz equation [57]

�a
xx = U

〈na↑na↓〉
〈na↑〉 〈na↓〉 , (8)

that is valid for half filling and the hole-doped case, to relate
vertex elements and double occupancies. Together with the
sum rules

T

N

∑
q

χaa
cc (q) = 〈na〉 + 2 〈na↑na↓〉 − 〈na〉2 , (9)

T

N

∑
q

χaa
αα (q) = 〈na〉 − 2 〈na↑na↓〉 , (10)

where α = x, y, z. It is possible to determine all vertex ele-
ments self-consistently, first in the transversal channel then in
the longitudinal one. The self-energy is calculated via

�(2)ab
σ (k) = Uδab 〈na−σ 〉 + U

8

T

N

∑
q

G(1)ab
σ (k + q)V ab

lσ (q)

+ U

8

T

N

∑
q

G(1)ab
−σ (k + q)V ab

tσ (q), (11)

where the notation k ≡ (iωn, k) is used to represent both the
fermionic Matsubara frequency ωn = (2n + 1)πT associated
with the integer n and the wavevector k. In Eq. (11), we define

V ab
lσ (q) = �b

ccχ
ba
cc (q) + �b

zzχ
ba
zz (q) − σ

1

2

(
�b

zzχ
ba
zc (q)

+ �b
chχ

ba
cz (q) + χba

zc (q)�a
ch + χba

cz (q)�a
zz

)
, (12)

V ab
tσ (q) = �b

xxχ
ba
xx (q) + �b

yyχ
ba
yy (q). (13)

These expressions are obtained by expanding the four-
point correlation function for the self-energy once in the

longitudinal and once in the transversal channel, and then
taking the average and additionally restoring TR symmetry.

The Matsubara Green’s function G(2) is then calculated
from the Dyson equation

G(2)
σ (iωn, k) = (

iωn − Hσ (k) + μ − �(2)
σ (iωn, k)

)−1
. (14)

The TPSC internal consistency check is discussed in
Appendix.

IV. NUMERICAL DETAILS

We use the sparse-ir library [75–77] to represent Green’s
functions and susceptibilities in an efficient manner. The li-
brary also allows for efficient Fourier transforms between
imaginary times and Matsubara frequencies, as well as an
efficient calculation of the sum rules Eq. (9) and Eq. (10).
Convolutions can be efficiently evaluated using fast Fourier
transforms. The matrix notation in Eq. (4) allows for an ef-
ficient implementation. The Eqs. (4), (9), and (10) present
a multidimensional root-finding problem for �cc and �zz. A
good starting guess can be obtained by first neglecting the
spin-charge coupling χcz and χzc and solving the resulting
one-dimensional root-finding problems. After that, the full
root-finding problem is solved. All calculations are performed
on a 300 × 300 k-point grid. A python code for TPSC on
the Kane-Mele-Hubbard model, that is capable of calculating
the observables presented in this article, can be found in the
github repository, Ref. [78].

V. RESULTS

In the following, we present results for the antiferromag-
netic spin correlation length, the spin Hall conductivity with
and without vertex corrections, and the band gap renormal-
ization. We also compute a phase diagram from the spin
correlation length. All results are obtained at half filling.

A. Spin correlation length

With an increasing interaction strength U , antiferromag-
netic spin fluctuations are expected to be larger than the
ferromagnetic fluctuations or charge fluctuations. Hence, we
focus on the antiferromagnetic susceptibilities which are de-
fined as

χ afm
αα (q) = χ11

αα (q) − χ12
αα (q) − χ21

αα (q) + χ22
αα (q), (15)

where α = x, y, z label the component of the spin. From the
maximal value of the antiferromagnetic susceptibilities at
wavevector qmax = (0, 0) and Matsubara frequency q0 = 0,
we define the antiferromagnetic correlation length as

ξ afm
α = 1∣∣qHM

α

∣∣ , (16)

where qHM
α is determined from the condition χ afm(0, qHM

α ) =
χ afm(0, qmax)/2. Note that ξ afm

x = ξ afm
y due to spin-rotation

symmetry around the z axis.
The results are shown in Fig. 2. The transversal spin cor-

relation lengths ξ afm
x and ξ afm

y becomes exponentially large
at lower U values than the longitudinal one ξ afm

z . Hence,
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FIG. 2. Antiferromagnetic spin correlation length ξ afm
α as a func-

tion of U/t for spins aligned in the xy plane (solid lines) and in the
z direction (dashed lines) at T/t = 0.001 and various values of SOC
λ/t .

the system undergoes a transition to an XY antiferromag-
net. The corresponding divergence of the spin susceptibility
indicates that the transition is of second order in TPSC. We
can also observe that increasing SOC by increasing λ/t shifts
the transition to higher values of U , by decreasing the spin
fluctuations.

Further, we find that the spin correlation lengths as a
function of temperature saturate at temperatures lower than
T/t = 0.01 except very close to the phase transition, as al-
ready observed in Ref. [65] (not shown).

In Fig. 3, we show the U − λ phase diagram for the KMH
model obtained by estimating the critical value Uc(λ) of the
phase transition for various λ values as the linear extrapola-
tion of 1/ξ afm

x to 0 at the lowest temperature we considered
(T/t = 0.001). We only show critical U values for up to
λ/t = 0.05, because for U/t > 5 TPSC loses its validity (see

FIG. 3. Phase diagram for the KMH model. Critical Uc(λ) values
(black crosses) are obtained from the linear extrapolation of the
inverse antiferromagnetic correlation length 1/ξ a f m

x to 0 at T/t =
0.001. The phase transition line is obtained from a quadratic fit.
We also show the critical Uc (red cross) at zero spin-orbit coupling
(λ = 0) for the transition between the semimetal and the antiferro-
magnet obtained by QMC in Ref. [49].

Appendix). The exact location of the phase transition line is
not known to the best of our knowledge. The phase diagram
also shows the phase transition between the semimetal and the
antiferromagnet at zero SOC, where there is no easy plane for
the spins.

Without SOC we obtain Uc(λ = 0)/t = 3.72 which agrees
well with the previous TPSC result Uc/t = 3.79 ± 0.01 [65]
obtained from the zero temperature extrapolation for the
crossover to the renormalized classical regime. Our result
is also in reasonable good agreement with Uc/t = 3.869 ±
0.013 [49] from quantum Monte Carlo simulations.

B. Spin Hall conductivity

Similar to Ref. [53], we calculate the spin Hall conductivity
by evaluating the following expression valid in the presence of
interactions and at finite temperature

σ SH = e2

h

εμνρT

12π
Im

(∑
ωnσ

sign(σ )
∫

dkTr
(
Gσ (k)

× ∂μG−1
σ (k)Gσ (k)∂νG−1

σ (k)Gσ (k)∂ρG−1
σ (k)

))
, (17)

where εμνρ is the totally antisymmetric tensor. The μ, ν, and
ρ indices are summed over and stand for iωn, kx, ky. The trace
runs over the orbital indices. All matrices in the above equa-
tions are expressed in the gauge in momentum space which
includes the site positions in the unit cell [79].

In the zero-temperature limit, the sum over Matsubara
frequencies becomes an integral. The resulting expression is
a topological invariant expressed in terms of the Matsubara
Green’s function [80], which agrees with the Adler-Bell-
Jackiw anomaly of the coefficient of the current correlator.
Hence, at zero temperature, σ SH must always be an integer
multiple of 2 e2

h .
Note that the vertex corrections to the electrical conductiv-

ity in TPSC correspond to the analogs of the Maki-Thompson
and Aslamasov–Larkin contributions [81]. However, for the
(spin) Hall conductivity, the Aslamasov–Larkin contributions
cancel because of the antisymmetrization in x ↔ y. A graphi-
cal representation of the expression to calculate σ SH is shown
in Fig. 4. Vertex correction to the spin Hall conductivity
in TPSC arise from the excitation and reabsorption of spin,
charge, or mixed spin-charge excitations.

To evaluate Eq. (17) within TPSC, we use the TPSC
Green’s function G(2) [Eq. (14)]. Expressions for momentum
and frequency derivatives of the inverse Green’s function
G(2)(k)−1 = iωn − H (k) + μ − �(2)(k) can be found ana-
lytically by noticing that when deriving �(2)(k) given by
Eq. (11), the derivatives only act on G(1). Using the iden-
tity ∂μG(1)(k) = −G(1)(k)∂μG(1)−1(k)G(1)(k) the resulting
expression can be evaluated numerically. We note that the
momentum-dependent vertex corrections show sharp point-
like features at K and K ′ near (and beyond) the critical Uc

which require a dense k-point grid to resolve. In Fig. 5 we
show the results for the calculation of σ SH with (solid lines)
and without (dashed lines) momentum-dependent vertex cor-
rections ∂kα

�(k). The case without momentum-dependent
vertex corrections corresponds to the so-called conductivity
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(a)

k k

k

(b)

TPSC = + q

k + q

k + q

FIG. 4. (a) Graphical representation of the expression for the spin
Hall conductivity. The thick lines represent the interacting Green’s
function, which in TPSC is G(2) given in Eq. (14). The triangles with
attached dashed lines represent the renormalized vertices ∂μG−1(k)
with μ standing for either iωn, kx , or ky. (b) TPSC expression for
the renormalized vertex. The thin lines here represent the (here
noninteracting) Green’s function G(1). A dot with attached dashed
line represents a bare vertex ∂μG(1)−1(k). The wiggled line represents
either a spin, a charge, or a mixed spin-charge excitation.

bubble. In the greyed-out region TPSC is strictly not valid
anymore, because the spin correlation length becomes expo-
nentially large in that region.

We first discuss the case without vertex corrections (dashed
lines). At all temperatures considered, the spin Hall conduc-
tivity decreases smoothly as the Hubbard interaction increases
towards the phase transition. At the phase transition, the drop
in σ SH becomes sharper. The drop is more pronounced at low

FIG. 5. Spin Hall conductivity as a function of U/t calculated
from Eq. (17) at λ/t = 0.01 and for different temperatures including
momentum-dependent vertex corrections ∂kα

�(k) (solid) and ne-
glecting them (dashed). In the vicinity of the phase transition to the
XY antiferromagnet at U/t ≈ 4 the inclusion of vertex corrections
almost doubles σ SH at all temperatures. In the greyed-out region
TPSC is strictly not valid anymore, because the spin correlation
length becomes exponentially large in this region.

temperatures. In the conductivity bubble, the main effect of
the interactions is to broaden the interacting Green’s function.
This causes the phase transition to be visible in σ SH with
the conductivity bubble through a drop off. Without vertex
corrections, the quantized value of σ SH is only reached in the
limit where the Hubbard interaction goes to 0.

We now turn our attention to the case with vertex cor-
rections (solid lines). The spin Hall conductivity once again
decreases with increasing U . However, this decrease is much
slower than for the case without vertex corrections. With ver-
tex corrections, the SHC converges to the quantized value of
−2e2/h in the zero-temperature limit at all values of U below
the phase transition. This is in stark contrast to the case with-
out vertex corrections. At larger temperatures, where there
is no quantization, momentum-dependent vertex corrections
also give a large contribution to σ SH. In the vicinity of the
phase transition to the XY antiferromagnet at U/t ≈ 4, the
inclusion of vertex corrections almost doubles the value of
σ SH at all temperatures.

The impact of the vertex corrections can be explained by
the following: When approaching the phase transition, the
antiferromagnetic spin fluctuations become strong and scat-
tering of electrons on them yields a large contribution to σ SH.
Numerically, we see that the momentum dependence of the
self-energy is rather strong near the phase transition. This
shows that especially in the vicinity of the phase transition,
where antiferromagnetic spin fluctuations are strong, using
only the conductivity bubble is insufficient and vertex correc-
tions become important.

We also note that, at the phase transition, the decrease
in σ SH is visible through a much smaller kink. The reason
is that, through the enforcement of TR symmetry in the
above TPSC self-consistency equations, the system cannot
become magnetic even though the spin correlation length
becomes exponentially large. The small peak seen at certain
temperatures in the greyed-out region, where TPSC is not
valid, could be caused by the averaging of the self-energy
expressions expanded in the longitudinal and the transversal
channels. Indeed, as discussed in Sec. V A, with SOC the
antiferromagnetic instability is reached first for transversal
spin fluctuations and only at larger U values for longitudi-
nal ones. In Fig. 6, we show the temperature dependence of
σ SH including vertex corrections for different values of U .
At low temperatures, σ SH goes to the quantized values of
−2e2/h. Deviations from the quantized value start when the
temperature becomes of the order of the band gap, which is
determined by the value of the SOC. Increasing the Hubbard
U decreases σ SH but the overall trend stays the same. We
conclude that interactions destabilize the QSH state. The de-
crease is explained with a renormalization of the band gap
by interactions, which increases the effective temperature in
the system. Hence, the spin Hall conductivity is decreased
because more electrons occupy states above the band gap and
give canceling contributions to it.

In the case of the anomalous Hall conductivity, Ref. [82]
attributes the decrease to a correlation-induced increase of
spectral weight within the gap at finite temperatures. For
the (spin) Hall conductivity, Refs. [53,82] focus mainly on
the topological insulator to Mott transition, which in the
KMH model is overshadowed by the transition to the XY
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FIG. 6. Spin Hall conductivity including vertex corrections as
a function of T/t calculated from Eq. (17) at λ/t = 0.01 and for
different values of the Hubbard U .

antiferromagnet. The suppression of σ SH by interactions at
finite temperatures has also been observed in DMFT calcula-
tions of the Bernevig-Hughes-Zhang-Hubbard model [53] and
similarly for the anomalous Hall conductivity in the Hubbard
model in the presence of a magnetic field [82].

C. Band-gap renormalization

In the following, we discuss how interactions renormalize
the band gap and thus affect σ SH. The quasiparticle weight is
defined as

Z (ω, k) = (1 − ∂ω�R(ω, k))−1, (18)

where �R(ω, k) is the retarded self-energy on the real
frequency axis, indicated by ω. At k = K, K ′ the TPSC self-
energy �(2)(iωn, k) is diagonal with identical entries that are
purely imaginary, therefore Z (0, K ) becomes just a number Z ,
which in the following we call the band-gap renormalization.
That interactions renormalize the band gap �Eg by a factor of
Z can be seen by expanding the self-energy linearly:

G±(ω, K ) =
(

ω + iη ± �Eg

2
+ μ − �(ω, K )

)−1

≈
(

(1 − ∂ω�(ω, K )|ω=0)ω ± �Eg

2
+ μ

)−1

=
(

ω ± Z
�Eg

2
+ Zμ

)−1

Z. (19)

For small SOC, the main contributions to σ SH are localized
around K and K ′, as can be seen in the noninteracting case. At
nonzero temperature, the band-gap renormalization is crucial
for σ SH since the occupied states above the gap yield cancel-
ing contributions to it. Renormalizing the gap hence can be
seen as increasing the effective temperature in the system.

In Fig. 7 we show the band-gap renormalization Z obtained
from our TPSC calculations as a function of U . To calculate Z
numerically, the analytical continuation to real frequencies is
performed using ∂ωRe�R(ω, K )|ω=0 ≈ Im�(2)(iω0, K )/ω0,
where ω0 = πT is the lowest fermionic Matsubara frequency.
We observe a sharp drop at the phase transition. However, in

FIG. 7. Band renormalization Z as a function of U/t for different
temperatures and λ/t = 0.01. In the greyed-out region TPSC is not
valid anymore. At the phase transition we observe a sharp kink. The
temperature dependence is very weak. This indicates that the stronger
temperature dependence of σ SH for higher values of U stems mostly
from an effective increase of temperature by renormalizing the gap.

contrast to σ SH, Z is almost temperature independent below
the phase transition. This indicates that the stronger tempera-
ture dependence of the spin Hall conductivity at larger values
of U stems mostly from an effective increase of tempera-
ture by renormalizing the gap. We note that the band-gap
renormalization and the corresponding decrease of the spin
Hall conductivity at finite temperature was also observed in
Ref. [53].

In the following we show that the antiferromagnetic spin
fluctuations renormalize the band gap. We consider the diag-
onal elements of the self-energy at zero frequency and k = K
that are responsible for the band-gap renormalization. Since
the antiferromagnetic spin fluctuations dominate over charge
and ferromagnetic spin fluctuations in the system, especially
at large U values, we only keep them. Furthermore, from
χ11

αα (q) = χ22
αα (q) we have χaa

αα (q) ∼ χ afm
αα (q)/2. The Hartee

term can be absorbed in the chemical potential. Focusing only
on χxx (the same holds for χyy and χzz) we can write

�(2)aa
σ (iω0, K ) ∼ U

16

T

N

∑
iqm,qα

G(1)aa
−σ (iω0 + iqm, K + q)

× �a
xxχ

afm
xx (iqm, q), (20)

where we see that the leading contribution to the self-energy
comes from antiferromagnetic spin fluctuations.

On first sight it might be counterintuitive that interactions
make the band gap smaller, since the common picture in mind
is that increasing interactions lead to a formation of Hubbard
bands and thus increasing the band gap. However, a renormal-
ization of the band structure accompanied by an increase of
the effective electron mass through interactions is a common
feature in correlated systems.

VI. CONCLUSION

In this work, we studied the properties of the Kane-Mele-
Hubbard model at finite temperature with TPSC, which we
extended to include SOC.
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FIG. 8. Tr(�G) consistency check as a function of U/t for dif-
ferent values of SOC and T/t = 0.001. Solid lines are the interacting
Green’s function G = G(2) and dashed lines the noninteracting one
G = G(1). Upper panel: Absolute values of 1

2 Tr(�G). Lower panel:
Relative error � [see Eq. (A2)]. The deviation is modest up to the
phase transition or U/t ≈ 5 where TPSC starts losing its validity.

We calculated the spin Hall conductivity for different
values of the Hubbard interaction strength U and of the tem-
perature by using, on the one hand, the conductivity bubble
and, on the other hand, by including vertex corrections. Vertex
corrections for the spin Hall conductivity here correspond to
the analogs of the Maki-Thompson contributions, describing
the excitation and reabsorption of a spin, charge, or mixed
spin-charge excitation by an electron. Our results show that
vertex corrections play a crucial role since they are necessary
to obtain the quantized value of −2e2/h at T = 0 and to keep
the spin Hall effect sizable at finite temperature. In fact, in
the vicinity of the phase transition to the XY antiferromagnet,
the inclusion of vertex corrections almost doubles σ SH at all
temperatures.

We have also shown that at finite temperature the spin
Hall conductivity is reduced by increasing U in a way that
can be mostly explained by a renormalization of the gap by
spin fluctuations. The gap renormalization is stronger when
interactions are stronger.

As a function of SOC and U , we have also calculated the
TPSC phase diagram where we have determined the separa-
tion between an XY antiferromagnetic phase at large U values
from a spin-Hall insulating phase at small to intermediate U
values.

Our main contribution is to show that nonlocal correla-
tion effects that result in a strong momentum dependence of
the self-energy can play an important role in the calculation
of the spin Hall conductivity at finite temperature and that

vertex corrections are extremely important to obtain the zero-
temperature quantized value that corresponds to a topological
invariant of the Matsubara Green’s function. TPSC is well
suited to study these effects quantitatively in the weak to
intermediate coupling regime.
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APPENDIX: Tr(�G) CONSISTENCY CHECK

For the TPSC self-energy �(2) the following relation be-
tween one- and two-particle quantities holds exactly

1

2
Tr(�(2)G(1) ) = 1

2

T

N

∑
kabσ

�(2)ab
σ (k)G(1)ba

σ (k)e−iωn0−

=
∑

a

U 〈na↑na↓〉 , (A1)

where here the trace runs over orbital and spin indices. Using
G(2) instead of G(1) this becomes the Migdal-Galitskii equa-
tion that is an exact relation that does not hold in TPSC but
that can be used as an internal consistency check.

In Fig. 8 we show the following test for different values of
SOC. In the upper panel we present the absolute values and in
the lower panel the relative derivation

� = Tr(�(2)G(2) ) − Tr(�(2)G(1) )

Tr(�(2)G(1) )
. (A2)

The error in general gets worse for larger values of U . For
low SOC, the deviation is relatively small up to the phase
transition, then it starts to diverge rapidly. For larger values
of SOC, where the phase transition is at larger U values, the
error can already be large at the point of the phase transition.
This indicates that TPSC is not valid anymore after the phase
transition or at large enough U values in general. The reason
is that TPSC is a weak to intermediate coupling method that
cannot describe strong coupling physics. The plateau in the
dashed curves involving G(1) corresponds to the vertex �xx

converging to a value, where the spin susceptibility otherwise
would have a pole if �xx would become larger. This is another
indication that TPSC is not valid anymore beyond the phase
transition.
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