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Edge theories for anyon condensation phase transitions

David M. Long 1,2,3,* and Andrew C. Doherty 2

1Department of Physics, Boston University, Boston, Massachusetts 02215, USA
2ARC Centre of Excellence for Engineered Quantum Systems School of Physics, The University of Sydney, Sydney, NSW 2006, Australia

3Condensed Matter Theory Center and Joint Quantum Institute, Department of Physics, University of Maryland,
College Park, Maryland 20742, USA

(Received 2 August 2023; revised 15 January 2024; accepted 29 January 2024; published 20 February 2024)

The algebraic tools used to study topological phases of matter are not clearly suited to studying processes
in which the bulk energy gap closes, such as phase transitions. We describe an elementary two edge thought
experiment, which reveals the effect of an anyon condensation phase transition on the robust edge properties of
a sample, bypassing a limitation of the algebraic description. In particular, the two edge construction allows
some edge degrees of freedom to be tracked through the transition, despite the bulk gap closing. The two
edge model demonstrates that bulk anyon condensation induces symmetry breaking in the edge model. Further,
the construction recovers the expected result that the number of chiral current carrying modes at the edge
cannot change through anyon condensation. We illustrate the construction through detailed analysis of anyon
condensation transitions in an achiral phase, the toric code, and in chiral phases, the Kitaev spin liquids.
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I. INTRODUCTION

Motivated by experimental observation of the fractional
quantum Hall effect [1–3], and connections to fault tolerant
quantum computing [4–6], the study of topological phases
of matter has seen immense progress [1,3,4,7–24]. These
phases do not break any local symmetry—they have no lo-
cal order parameter [25–27]. Nonetheless, topological phases
are sharply defined phases of matter. A tuning of param-
eters which takes a system from one topological phase to
another must be accompanied by a divergence of the corre-
lation length [17]—a conventional indication of a continuous
phase transition [27]—or by a first-order transition. Under-
standing topological phases required the development of new
mathematical tools, and has driven many advances in our
understanding of both condensed matter and other fields of
physics [3,28–30].

By now, there is a well developed mathematical toolkit
for the study of gapped topological phases in two dimensions
[3,16]. A particular focus of the literature is those phases that
host anyons as excitations in the bulk [3,4,16,32]. Another
crucial piece of phenomenology is the gapless edge modes
that appear in finite samples of some topological materials
[8,16,21–23,33,34]. Important features of these propagating
edge states are determined by the bulk topological phase, a
feature known as the bulk-boundary correspondence.

The study of phase transitions between topological phases
has also seen progress, but is less well developed than the
study of individual phases [35–39]. Restricting to an impor-
tant class of phase transitions known as anyon condensation
transitions (also called topological symmetry breaking), far
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more is known [40–47] (see Ref. [39] for a review). In fact,
there is a close analogy between anyon condensation and the
conventional symmetry breaking transitions of the Landau-
Ginzburg paradigm [39].

Both the study of condensation phase transitions and of
the bulk phase are usually framed in abstract algebraic terms
[16,47]. While this abstraction makes it possible to make
powerful conclusions about physical systems without refer-
ence to microscopic details, it is also a framework in which
several natural physical questions are difficult or impossible
to address.

The motivating question of this work is: what happens to
the edge modes when an anyon condenses in the bulk? An
expert in topological phases might already intuit the result
that the number of chiral edge modes remains the same [48].
However, this fact is not straightforward to see within the
mathematical formalism of the anyon model [16,47] for the
bulk, nor the conformal field theory (CFT) description of the
edge [21–23,49–54]. Both descriptions rely on a restriction to
just the low energy degrees of freedom in the model—they
treat the bulk gap as being infinitely large. However, during
a condensation phase transition, the bulk gap closes, and it
becomes unclear this treatment is legitimate.

We present an elementary and physically motivated con-
struction that reveals the effect of anyon condensation on the
edge of a topological phase. By performing a simple thought
experiment in a two edge geometry [40,55]—where the edge
between the condensate phase and the vacuum is interrupted
by a thin section of the uncondensed phase—we make a
detailed characterization of the edge of the condensate, and
its relation to the phase before condensation. In particular,
we show that bulk anyon condensation breaks a symmetry
of a generic edge model, and that—when the edge theory is
a CFT—anyon condensation in the bulk extends the chiral

2469-9950/2024/109(7)/075140(23) 075140-1 ©2024 American Physical Society

https://orcid.org/0000-0001-5685-9023
https://orcid.org/0000-0002-8069-7754
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.075140&domain=pdf&date_stamp=2024-02-20
https://doi.org/10.1103/PhysRevB.109.075140


DAVID M. LONG AND ANDREW C. DOHERTY PHYSICAL REVIEW B 109, 075140 (2024)

FIG. 1. The existence of anyons in a semi-infinite cylinder of
a topological phase implies the existence of nonlocal symmetry
transformations on the edge [31]. The two edge model relates
condensation of the anyon c to a breaking of this symmetry. Be-
fore condensation, the symmetry is implemented by unitary loop
operators LX

a , corresponding to moving an anyon a around the cir-
cumference of the cylinder (the x direction). The vertical (y direction)
anyon string operators, LY

b (x), also define nonlocal operations on the
edge. After condensing an anyon c, the edge in the condensate phase
(right) is modeled by a thin strip of the uncondensed phase—forming
two edges. The string operators tunneling c anyons between the two
edges act locally on the new edge model, and explicitly break any LX

a

symmetry for which a and c have nontrivial braiding.

algebra of the edge CFT [40,52]. This process maintains
the number of chiral modes in the CFT. Each of these re-
sults may be anticipated based on previous work [21–23,40],
but they are revealed straightforwardly with the two edge
construction.

The construction is illustrated in Fig. 1. In a cylinder ge-
ometry, the phase before condensation has nonlocal symmetry
operators associated to loops of anyons [31,56–58]. When
an anyon c condenses, the ground state gains a macroscopic
occupation of that anyon, and its associated loop operator
can arise from the vacuum. Thus it acts trivially on the
edge of the condensate model. Further, symmetries asso-
ciated to anyons with nontrivial exchange statistics with c
are explicitly broken by local string operators which tunnel
c anyons between the two edges. Thus anyon condensa-
tion has a direct interpretation as symmetry breaking for
the edge model [39]. The same tunneling operators describe
the extension of the chiral algebra when the edge theory is
a CFT.

Our construction explicitly addresses the fact that the bulk
gap closes throughout the course of the transition. As the
domain wall between the condensate phase and the uncon-
densed phase can always be gapped [39], low energy degrees
of freedom can be identified unambiguously, so that control of
the edge degrees of freedom can be maintained in the two edge
model. The construction works without alteration both when
the bulk anyons are Abelian or when they are non-Abelian,
and for both chiral or achiral phases.

Once the two edge geometry has been adopted, existing
mathematical results can be used to characterize the new edge
in great detail [21–23]. In particular, Ref. [21] explained how
to calculate the new algebraic data describing the edge of

the condensate phase [21], Eq. (5.3),1 and how to compute
long-wavelength observables on the new edge. Reference [54]
also formalizes the notion in which anyon condensation cor-
responds to symmetry breaking on the edge. Our heuristic
construction reproduces parts of these results, but is substan-
tially more elementary.

Not all features of the edge are uniquely determined by
the bulk topological phase. As such, our analysis should be
interpreted as restricting the possible edge theories that may
be realized by the condensate, given a particular set of edge
properties before the condensation. In principle, additional
structure not captured by our analysis may occur in the edge
theory as a result of fine tuning of the edge degrees of free-
dom. We will restrict ourselves to the low energy features of
the edge that are robust to generic perturbations, which may
be characterized in some detail.

This paper is structured as follows. In Sec. II, we pro-
vide an intuitive overview of basic notions in the study of
topological phases of matter. Our discussion avoids most of
the abstract mathematical machinery of this field, and instead
emphasizes the qualitative features required to follow the two
edge thought experiment, which is presented in Sec. III. In
Secs. IV and V, we make the construction more concrete by
making a detailed exploration of anyon condensation in two
examples: the toric code and the Kitaev spin liquids, respec-
tively. We discuss the implications of our results in Sec. VI.

II. BACKGROUND

Understanding the different possible phases of matter, and
the phase transitions between them, is one of the overarching
goals of condensed matter physics [3,27]. Many phases can
be successfully characterized by the different symmetries they
manifest [25,26]. Phase transitions are then understood as
being due to the (spontaneous) breaking of such symmetries,
as revealed by a local order parameter attaining a nonzero
expectation value. This is known as the Landau-Ginzburg
paradigm [25,26].

In recent decades, it has been appreciated that not all
phases (nor phase transitions) can be understood within the
Landau-Ginzburg framework [3]. Topological phases of mat-
ter (Sec. II A) cannot be distinguished from nontopological
phases by any measurement of a local observable—they have
no local order parameter. (They do have nonlocal symmetries
[31,58].)

Phase transitions between different topological phases are,
in general, complicated [39]. The primary topic of this paper
will be anyon condensation phase transitions (Sec. II B), a par-
ticularly simple class of phase transitions with many analogies
to Landau-Ginzburg symmetry breaking transitions. Indeed,
the constructions of Sec. III will make these analogies quite
precise when we focus on the effect of condensation on the
edge modes.

1It is not clear to us what specific manipulation of Ref. [21],
Eq. (5.3) is needed to reproduce our results, but we believe such a
calculation should be possible.
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(a)
(c)

(b)

FIG. 2. Fusion of anyons, a × b = c, has two interpretations:
(a) two anyons collide and form a new c bound state, or (b) a region of
the system contains two anyons, such that the total topological charge
of the region is c. (c) Braiding an anyon a around b introduces a
phase to the wave function, eiθ = Rab

c Rba
c . If a and b are non-Abelian,

the phase may depend on the fusion channel, c.

A. Topological phases of matter

What different authors mean by a topological phase of
matter sometimes depends on context [3]. Here, we will mean
a zero temperature phase of a two dimensional gapped bosonic
system (for instance, a lattice of spins) which differs from the
trivial vacuum phase (containing uncoupled product states) in
nonlocal degrees of freedom. We will assume that the reader is
familiar with basic notions regarding anyons, including fusion
and braiding [3,16].

Beyond introducing notation, our focus will be on the na-
ture of domain walls between topological phases—especially
domain walls to the vacuum phase, which we call edges
[59]. The bulk anyon theory [16], Appendix E and the nature
of the edge actually completely characterize all topological
phases [60].

1. Anyons

The quasiparticle excitations of a topological phase, called
anyons, play a key role in their phenomenology [3]. For in-
stance, they are crucial in the description of the fractional
quantum Hall effect [2]. They have also been proposed as
a tool to design fault tolerant quantum computers [4]. This
section briefly summarizes the properties of anyons that will
be needed to understand the rest of the paper—fusion and
braiding. The reader may consult Ref. [16], Appendix E for a
complete description of the algebraic theory of anyons, called
a unitary braided fusion category (UBFC).

Fusion. An anyon theory is based on a finite set of anyon
species, {1, a, b, . . . , c}. These species should be viewed as
superselection sectors: they label the nonlocal properties of
an excitation. As such, they are sometimes referred to as
topological charges.

Fusion of anyons has two interpretations. Either two
anyons coalesce to form another anyon, or alternatively two
anyons (of topological charge red and blue, say) placed in
proximity appear like a different anyon (purple) from far away
(Fig. 2). The mathematical description of fusion is the same
for both physical pictures.

The notation

a × b = c (1)

is used to express that anyon species a and b fuse to an anyon
c. It may happen that the result of fusing a and b results in one
of several possible anyons, depending on the state of the rest
of the system. Such anyon theories are called non-Abelian,
and their fusion rules are written

a × b =
∑

c

Nab
c c, (2)

where Nab
c are integers giving the multiplicity of channels

in which a and b fuse to c. Thus the sum here should be
interpreted as a direct sum. In fact, there is a close analogy
between this algebraic structure and the decomposition of
tensor products of group representations into a direct sum of
irreducible representations [16], Appendix E.

Among the anyons is a distinguished anyon 1, the vacuum
anyon. This is a formalization of the absence of an anyon. It
fuses trivially with all other anyons:

1 × a = a × 1 = a. (3)

Braiding. The exchange of identical particles introduces a
phase factor to the wave function which, in two dimensions,
need not be real but can be any phase factor (hence the name
anyon). The same is true of any other permutation of anyons
that leaves the final state indistinguishable from the original.
For instance, moving an anyon a in a complete circle around
another anyon b.

The rules for how the wave function changes are encoded
in a set of coefficients Rab

c . These are unit modulus complex
numbers that assign a phase to the exchange of a and b
in the background state where they fuse to c. If a �= b, the
resulting state is distinguishable from the initial state, so the
individual Rab

c do not have a gauge invariant meaning. Several
topological invariants may be computed from the Rs, but we
will focus on the monodromy, and the topological spin.

The monodromy associated to a and b in fusion channel c is
the phase Rab

c Rba
c , which measures the phase due to wrapping

a in a circle around b (Fig. 2).
The topological spin is a feature of a single anyon a. It

is also a phase factor, denoted θa. It should be thought of as
analogous to the usual spin—encoding the phase acquired by
a particle when it is rotated.2 Bosons all have θa = 1, while
fermions have θa = −1. In general, θa may be any rational
phase.

2. Edge modes

In the bulk of a topological phase, there are (by definition)
no excitations within the energy gap. However, at domain
walls between different topological phases, there may exist
dispersing modes that traverse the gap, and may carry a cur-
rent [3,7,8,11,21–23]. This feature has been recognized for
much longer than the existence of anyons, going all the way
back to the integer quantum Hall effect (in the fermionic
context) [7,8]. Many important features of the edge modes are
determined by the bulk topological phase, a relation which is
known as the bulk-boundary correspondence [23].

2The precise definition is slightly more involved, as this phase may
depend on the state of the rest of the system, and a need not have an
actual spin associated to rotations.
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For the edge modes to scatter off of some impurity at the
edge, there must be another state for them to scatter to. As the
edge modes are in the middle of a gap in the bulk, there are
no other states with which they can hybridize. It is said that
the edge modes are protected by the bulk gap. If the bulk gap
closes then the edge modes may, in principle, meander into
the bulk. This is why the edge modes can change through a
bulk phase transition, where the gap closes.

When the domain wall between the phases has gapless
modes, the low energy effective theory for these excitations
can often be described by a conformal field theory (CFT)
[49,52,53], and we will restrict our analysis of gapless edges
to the cases where this is possible. CFT is a huge subject on
its own, and the modern theory of anyons is in large part a de-
scendant of this field [61–63]. We will be able to avoid the vast
majority of CFT machinery, but we will need to understand
the connection between a bulk anyon theory and the CFT at
its edge. The interested reader should consult Refs. [49,52] for
more technical and complete information on CFTs.

Any CFT has several quantities associated to it, including:
its central charge, a list of primary fields, and a chiral algebra
of operators that can be implemented locally, and correspond
to observables [64]. We will present an intuitive explanation
of these quantities, and their relation to the bulk anyon model.

Much of this data is determined by the bulk anyon theory
(the UBFC), but the central charge is not. Heuristically, a CFT
may be divided up into a number c of right-moving bosonic
modes and c̄ left-movers. The central charge need not be an
integer when the modes do not have a bosonic character. The
combination c + c̄ appears in formulas for the heat capacity
of the model, while the chiral central charge c− = c − c̄ mea-
sures how many more right-movers there are than left-movers.
A nonzero c− implies the theory has an inherent handedness,
and breaks time-reversal symmetry. The chiral central charge
manifests physically in chiral heat currents at low tempera-
tures [16,65].

The bulk anyon data turns out to only constrain c− mod 8
[16]. There are distinct topological phases, with different c−
at their edges that nonetheless have the same anyon content. A
complete classification of bosonic topological phases requires
both a description of the anyons, and the value of c− [60].

The other CFT data relevant to our discussion have analo-
gies in the anyon theory. First, we consider the chiral algebra
[40,49,64]. In a colloquial description, the chiral algebra is the
collection of local operators.3 The theory of anyons ignores all
local operations, so the subsequent conclusions we draw about
the relation between anyons and CFT should all be considered
modulo the chiral algebra. Equipping ourselves with some
notation, we will write [φ] for the equivalence class of the
edge field φ under the chiral algebra.

3This characterization can be obtained from more formal defini-
tions by noting that the chiral algebra generators are constructed from
commutators (or operator product expansions) between the stress
tensor (which is a local operator) and local symmetry generators.
For the simplest example of the Virasoro algebra, the construction
of the symmetry generators (usually denoted Ln) from the stress
tensor is standard [49]. For more complicated chiral algebras, such
as Kac-Moody algebras, similar constructions exist [49,64].

FIG. 3. When two primary fields a(z) and b(w) are very close,
they present as a single field c(z) to a more distant O(Z ) for the
purpose of correlation functions. This is the basis for the operator
product expansion, Eq. (6). Note the similarity to the picture of anyon
fusion in Fig. 2.

CFTs in two dimensions have a very large symmetry al-
gebra, which allows many exact analytic results [49,52]. The
primary fields of a CFT are the most relevant (in the renor-
malization group sense) fields in each symmetry block. When
the only symmetries considered are those spatial symmetries
common to all CFTs, the primaries are called Virasoro pri-
maries. Less relevant operators in the same symmetry block
are called descendants of the primary field.

The primary field equivalence classes [φ] correspond to the
anyons of the bulk theory [53]. Indeed, moving an anyon from
the bulk onto the edge implements a primary field operator
in the edge CFT, up to local details. This construction is the
origin of most relations between CFT and anyons, and will
be important for characterising the effects of anyon condensa-
tion.

An important parameter assigned to each primary field are
its conformal weights, hφ and h̄φ . These are the eigenvalues of
the right- and left-moving parts of the primary field φ under
rescaling of space, which is an important symmetry of CFTs.
The conformal weights are closely related to the topological
spin θφ of the bulk anyon corresponding to φ. We have

θφ = e2π i(hφ−h̄φ ). (4)

The fusion and braiding of pairs of anyons appears in the
CFT language within the operator product expansion of pri-
mary fields. We will consider just the holomorphic component
(associated to right-movers) of the CFT. Suppose one mea-
sures a correlator between a pair of nearby primary fields, a(z)
and b(w) (with two dimensional coordinates parameterized
by the complex numbers z and w), with a more distant field,
O(Z )). Taking z → w, we can treat a(z)b(w) as composing
a single composite field. Writing c(z) for the most relevant
primary making up this field, we have (Fig. 3)

〈a(z)b(w)O(Z )〉 ∼ (z − w)ha+hb−hc 〈c(z)O(Z )〉 . (5)

Here, the factor of (z − w)ha+hb−hc is introduced to ensure both
sides of the equation have the same behavior under a rescaling
of space. The numbers ha,b,c are the conformal weights.

We use a common shorthand for Eq. (5),

a(z)b(w) ∼ (z − w)ha+hb−hc c(z), or [a][b] = [c]. (6)

This is the analogous expression to a × b = c for anyons.
Indeed, the physical picture associated with the OPE—putting
two primary fields close together and measuring their behavior
from far away—is reminiscent of anyon fusion. (More than
one primary field may appear in the OPE of [a] and [b], as was
the case for anyons. We will not discuss any such models.)
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Braiding also follows from (6). Taking a(z) in a loop
around b(w) returns the right hand side to itself up to a phase
associated to possibly changing branches in the Riemann sur-
face of (z − w)ha+hb−hc . This phase factor is Rab

c Rba
c .

B. Anyon condensation

The Landau-Ginzburg paradigm associates continuous
phase transitions to the spontaneous breaking of symmetry.
In general, transitions between topological phases do not fit
within this framework. However, an important subclass of
these transitions, called anyon condensations, do have some
analogy with symmetry breaking. This analogy has prompted
some authors to call anyon condensation transitions “topolog-
ical symmetry breaking” [39].

The quotation marks are usually mandatory. Topological
features are not associated to any local symmetry of the
model, and there is no local order parameter which acquires
a nonzero expectation value in the “topological symmetry
broken” phase. (There may be a nonlocal one.) Even so, the
study of anyon condensation is a simple starting point for any
theory of topological phase transitions.

1. Bulk description

The consequences of anyon condensation are simple to
explain in the bulk. Their effect on the edge of a system will be
deduced in Sec. III. For a more detailed review than presented
here, the interested reader should consult Ref. [39].

Glibly, anyon condensation is Bose condensation of
anyons. Through some tuning of potentials, the ground state
acquires a macroscopic population of anyons of species c. For
this to occur, there cannot be a Pauli exclusion associated
to c. That is, c must be symmetric under exchange—it is a
self-boson. In the condensate, the creation of c anyons from
the vacuum is free—it is a local operation with no energy cost.

The condensed anyon c need not be a mutual boson with
other anyons in the theory. There may be nontrivial statis-
tics between c and some other anyon species, b. However,
if this does occur, then movement operators for b must not
commute with c creation operators. As c creation is now a
local operation, the background condensate of c anyons in
the ground state means that it now costs energy to move a
b anyon around the system. Indeed, the cost of creating an
anyon-antianyon pair bb̄ and moving b along some trajectory
away from b̄ scales linearly in the length of the trajectory.
This provides a linear confining potential between the anyon-
antianyon pair, just as occurs between pairs of quarks in
quantum chromodynamics. Thus the b anyon never appears in
isolation, only close to its antianyon b̄ near which it remains
confined.

The confined anyon b should not be regarded as being
a part of the condensate anyon theory. The anyon theory
concerns only nonlocal features, and b always comes with its
antiparticle pair, and so appears trivial from far away.

Further consequences arise from the background of c
anyons. Anyons a and a′ = c × a related by the fusion of c
become identified in the condensate model. As the creation of
c anyons is free, a local operation now relates a and a′. The
anyon theory only keeps track of nonlocal features, so a and
a′ must be regarded as the same anyon after condensation.

The inverse process of the identification of anyons may
also occur upon condensation. An anyon d may decompose
into two (or more) anyons di. This occurs when d and its
antiparticle d̄ can fuse to c: Ndd̄

c > 0. The anyon c should now
be identified with the vacuum, so d and d̄ may annihilate in
two distinct ways. This turns out to violate the consistency
conditions for an anyon theory. The resolution is that d dis-
sociates in the new phase. Each dissociated anyon di has only
one channel fusing to the vacuum with its antianyon d̄i.

These rules—confinement, identification, and splitting—
will be enough for us to work with. Anyon condensation also
has a description in terms of the mathematical machinery of a
UBFC, but we will avoid this formalism in favour of a more
physically based picture.

2. Gapped domain walls

There is a close connection between anyon condensation
and gapped domain walls between topological phases [47,59].
Indeed, two topological phases are related by anyon conden-
sation if, and only if, the domain walls between them can
be gapped [39,44,47,59]. (More precisely, each phase can
be obtained by condensation from some parent phase.) This
crucial fact underlies our analysis of the edge of a topological
phase as it goes through a condensation phase transition. It
also allows for a description of how anyons behave when
moving through a domain wall in terms of the confinement,
identification and splitting rules from Sec. II B 1.

Phases related by condensation. The domain walls between
two topological phases can be gapped if, and only if, the two
phases are related by anyon condensation [39,44,47,59]. We
will not give the full proof of this statement, but it is revealing
that the proof relies not on UBFC technology, but rather on
CFT. The UBFC, while it strongly constrains the edge, is
not sufficient to completely characterize it. This is also the
case when considering the effect of anyon condensation on
the edge—the UBFC description of condensation leaves the
resulting edge modes ambiguous.

At the level of a sketch, the proof that the domain walls
may be gapped proceeds as follows. Consider a domain wall
between two topological phases in a finite cylindrical geom-
etry, such that their edges to vacuum are gapless (which may
or may not require fine tuning). By folding the cylinder, as
illustrated in Fig. 4, only two edges need to be considered:
a gapless bottom edge and a top edge that may or may not
be gapped. The cylinder now consists of a double layer of
topological materials.

When can the top edge have a gap? If the top edge can be
gapped, then the bottom edge is the only gapless thing left
in the system. Shrinking the cylinder produces a quasi-one-
dimensional gapless model, described by some CFT. There
are strong constraints on what CFTs can actually occur in one-
dimensional Hamiltonian models, so the top edge can only be
gapped if the bottom edge meets these constraints.

However, the CFT at the edge of a topological phase is
(barring fine tuning) determined by the topological order in
the bulk (Sec. II A 2)—there is a bulk-boundary correspon-
dence. A constraint on the edge CFT can then be extended to
a constraint on the double-layered topological phase. These
constraints turn out to require that the two phases in the
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FIG. 4. A domain wall between two topological phases (1 and 2)
can be gapped if, and only if, the two phases are related by an anyon
condensation transition. In a cylindrical geometry, the presence of
a gapped domain wall is equivalent to the presence of a gapped
edge after folding the cylinder into two layers. The gapless bottom
edge must be described by a CFT that can be achieved in a one
dimensional Hamiltonian system, which puts constraints on the bulk
through the bulk-boundary correspondence. These constraints turn
out to be that the phases 1 and 2 are related by anyon condensation.

unfolded cylinder were related by anyon condensation. More
precisely, two gapped topological phases A and B may share
a gapped edge if there exists a third phase, C, such that both A
and B can arise as condensates of C. That is, there is some set
of anyons that can be condensed in C which drives a transition
into the phase A, and there is another (distinct, if A �= B) set
of anyons which when condensed cause a transition from C to
the phase B [39,47].

The reverse implication is also true: if the two phases are
related by anyon condensation, then the domain wall between
them can be gapped.

We will explore the consequences of these gapped domain
walls in Sec. III.

Anyons moving through domain walls. The effect of moving
through a gapped domain wall on an anyon can be understood
through the rules that appeared in the algebraic description of
condensation: confinement, identification and splitting [39].
We will focus just on confinement and identification.

If an anyon in the uncondensed phase is confined in the
condensate, then it can not move freely through the domain
wall. Instead, it becomes trapped at the boundary, leaving
behind an excitation. In this context, we also describe it as
being confined.

Alternatively, if the anyon in question is a mutual boson
with the condensed particle c, it is deconfined in the con-
densate. The background of c anyons in the condensate now
means that the anyon can fuse with any number of cs, and
all such fusion products become identified. Any two anyons
which are identified in the condensate become indistinguish-
able when they cross the domain wall.

A particularly striking example of this is moving c itself
through the domain wall. The anyon c becomes identified with
the vacuum—in a more physical picture, it is absorbed into the
condensate background.

The reverse process can also happen. Anyons c can emerge
from the condensate to the uncondensed phase, without need-
ing a c̄ antianyon to be present in the uncondensed domain.
The antianyon remains in the condensate background.

When the gapped domain wall is to the vacuum phase—
when it is an edge—all anyons either become condensed or
confined at the edge. This is a simple consequence of the fact
that the vacuum phase only supports the vacuum anyon.

III. TWO EDGE CONSTRUCTION FOR
CONDENSATION EDGE EFFECTS

In this section, we present the abstract characterization of
bulk anyon condensation’s effect on edge physics. Our under-
standing is based around a model for the edge that relates the
presence of bulk anyons to symmetries of the low energy edge
model [31]. In a two edge geometry (Fig. 1), the model can be
used to characterize the effects of bulk anyon condensation on
the edge.

We begin by describing the two edge model in Sec. III A.
This model is a generalization of a model in Ref. [31],
adapted to be appropriate for the study of bulk phase transi-
tions [40,55]. Interrogation of this model provides elementary
methods to find general consequences for the edge in terms of
the properties of bulk anyons. Several such consequences are
found in Sec. III B.

A. Two edge model

The two edge model is based around the analysis of a
particular geometry of a topological phase of matter—a semi-
infinite cylinder (Fig. 1). This geometry is convenient because
of its simple edge geometry, a single circle, and because the
noncontractible loops wrapping around the circumference of
the cylinder can be used to access topological information,
provided the circumference is much larger than the correlation
length.

The eponymous two edges will refer to a domain wall
between a condensate phase and an intermediary uncondensed
phase, and a second edge between the uncondensed phase
and the vacuum, but a nontrivial analysis of edge physics is
possible even with only the single edge shown in the left of
Fig. 1. This analysis was pursued in the context of achiral
phases of matter in Ref. [31], and in Sec. III A 1, we reiterate
it in a form adapted to also apply to chiral phases of matter,
before considering condensation transitions in Sec. III A 2.

1. One edge

The central observation of the analysis of Ref. [31] is that
the existence of bulk anyons implies the presence of symme-
tries in any effective model of the edge. In this section, we
make a minor extension to that argument which allows us to
address chiral topological phases.

We first demand two natural requirements of any effective
edge Hamiltonian. The first is locality: the edge Hamiltonian
must be a sum of terms that act only within a finite range (in
the continuum they only act at a point). The second is that
the effective edge Hamiltonian, Hedge, does not excite the bulk
gap. That is, the edge model we consider is capturing only the
low energy degrees of freedom of the edge.

With these assumptions, nontrivial conclusions about the
nature of the edge model are possible. Consider creating an
anyon a and its antianyon pair ā from the vacuum at a distance
y from the edge, with y � ξ the correlation length. Transport
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FIG. 5. A deformation of the cylindrical geometry shown in
Fig. 1 is a flat plane with a hole cut out.

a around the cylinder (in the +x direction, say) and then
annihilate the aā pair with each other. Call this operation LX

a .
The string operator LX

a does not change the number of exci-
tations in the bulk: it returns the bulk to the vacuum state after
annihilating the excitations a and ā with each other. As such,
LX

a acts as a unitary on the low energy degrees of freedom of
the material. All these degrees of freedom are at the edge, as
the bulk is gapped. Due to the strongly correlated nature of
the phase, this action may be nontrivial on the edge degrees
of freedom, even if the entire pair creation and annihilation
process took place far away from the edge. However, due to
the finite correlation length in the material, and the assumption
of locality of the edge Hamiltonian, we still have that the norm
of the commutator ‖[LX

a , Hedge]‖ decreases exponentially in
y/ξ . That is, LX

a acts as a symmetry transformation on Hedge

if y � ξ .
Additional details of the symmetry action can be worked

out by considering the string operator LY
b (x). This operator

takes b from very far away in the bulk, along the vertical line
at position x, and off the edge.

To describe the action of LY
b (x) on the effective edge

model, we consider three different cases. First, we consider
the case of the edge being gapped (so the bulk phase is achi-
ral). Recall from Sec. II that all the bulk anyons are either
confined or condensed at a gapped edge. The trivial case is
that of b being confined at the edge. Then, LY

b (x) does not act
just on the low energy degrees of freedom: it leaves behind an
excitation, which can easily be on the same scale as the bulk
gap.

On the other hand, when b is condensed at the edge, LY
b (x)

does not leave behind any bulk excitation, and thus has an
effective action on the edge. The nature of this action is
revealed by considering how LY

b (x) alters the eigenvalues of
the symmetry operators LX

a . It is useful to consider the geom-
etry shown in Fig. 5, where we have deformed the cylinder
into a plane with a hole cut out. In this picture, it is clearer
that the eigenvalues of LX

a are revealing something about the
topological charge (that is, the anyon content) of the edge.
Indeed, if we transport a b anyon from far away and deposit it

on the edge, we change the phase on LX
a by the winding phase

between a and b:

LY
b (x)LX

a = (RabRba)LX
a LY

b (x), (7)

where we have dropped the dependence of R on the fusion
channel to avoid further subscripts.

In terms of anyons, condensing b at the edge alters the
topological charge of the edge, aedge 
→ b × aedge. In the sym-
metry language, LY

b (x) moves the edge between symmetry
sectors, as revealed by LX

a . Combining these two interpreta-
tions, we see that symmetry sectors of the edge can be labeled
by a topological charge—one can imagine the presence of an
anyon in the hole of Fig. 5, provided the anyon in question is
condensed at the edge.

The last case we consider is that of a gapless (possibly
chiral) edge, described by a conformal field theory (CFT).
This is similar to the case of b being condensed at the edge,
in that LY

b (x) does generically have some action on the low
energy degrees of freedom without exciting the bulk [53].
Indeed, it has been understood for a long time that bulk anyons
can be related to primaries of the edge CFT through the
action of LY

b (x), as we now briefly recall from Sec. II. The
restriction of LY

b (x) to the edge can be divided up into a linear
combination of primary fields and their descendants, as is true
of all operators in the CFT. The chiral algebra is the algebra
of local operators, so LY

b (x) is only in the chiral algebra if
b = 1, as otherwise LY

b (x) is nonlocal—it involves a string
which spans the entire length of the cylinder. We can label the
primary field which contains LY

b (x) in its descendants by the
anyon b.

It also remains true that LY
b (x) moves the edge between

symmetry sectors—though, in the CFT context, the primary
field content is usually of greater interest.

2. Bulk phase transitions and the second edge

Bulk anyon condensation can be studied within the frame-
work developed above. However, one must be cautious in
studying the edge in this context. Universal and nontrivial
statements can be made about the edge only when it is
protected by the bulk gap. As the bulk gap closes in the
condensation phase transition, we may lose control of our
description of the edge. We could recharacterize the edge after
the transition is complete, but we would then necessarily be
restricted to a purely algebraic description of the edge, based
only on the anyon content of the bulk [39,59] (without addi-
tional data from other sources [48,66]). Similarly, the usual
bulk-boundary correspondence does not clearly apply during
the transition, so CFT tools are also not clearly valid [49,52]

To be able to keep track of the edge degrees of free-
dom all the way through the transition, we must be more
specific about the condensation protocol. Suppose we wish
to condense an anyon c in the bulk. (Recall that c must
be a self boson.) Rather than tuning parameters in the bulk
Hamiltonian uniformly, so that c is condensed everywhere,
we instead tune parameters in the part of the system below
the horizontal line y = yc � ξ . While the bulk gap closes
in the lower part of the system y > yc, the gapped segment
yc > y > 0 protects the edge degrees of freedom. A local
perturbation at the edge would have to tunnel an excitation
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through the gapped segment, with its finite correlation length,
in order to couple to the gapless part of the system. The
amplitude for this process is exponentially small in yc/ξ .

Once the condensation in the part of the system y > yc

has been accomplished, the domain wall between the con-
densed and uncondensed parts of the phase can be gapped
(Sec. II) [40,55]. This is the eponymous second edge. Then,
this domain wall can be moved towards the vacuum edge until
ξ � yc. Once the second edge is within a correlation length
of the first edge, it loses its distinct identity. The sequence of
two edges should now be regarded as a single entity.

The low energy degrees of freedom on the edge can still
be sensibly identified as distinct to those belonging to the
bulk because the bulk has no low energy excitations, even
at yc as the domain wall is gapped. This is the feature that
required us to make the restriction to condensation phase
transitions. If we considered an arbitrary phase transition, then
the domain wall at yc could be gapless. Then, this domain wall
cannot be moved close to the first edge while retaining a sharp
identification of degrees of freedom. The effect of the gapless
second edge would have to be incorporated, which is beyond
the scope of this work.

The two edge model is pictured in the right hand side of
Fig. 1. In the next section, we explore how this model reveals
the consequences of anyon condensation for the edge.

B. General consequences

The two edge model reveals that bulk anyon condensation
is a symmetry breaking transition of the edge (Sec. III B 1)
[54]. Furthermore, when the edge is described by a CFT, it
becomes straightforward to show that the chiral central charge
(related to the thermal current on the edge) is invariant across
the transition (Sec. III B 2). In contrast, purely algebraic de-
scriptions are only capable of addressing the chiral central
charge modulo 8 [16,39], though more detailed analyses of
the bulk do show that that the chiral central charge is prop-
erly invariant [48], Eq. (58). Beyond the central charge, we
can characterize how the primary field content of the edge
is altered equally straightforwardly (Sec. III B 4). More so-
phisticated analyses also predict the primary field content but
require more mathematical machinery [21–23,40].

1. Symmetry breaking

The analogy between anyon condensation and symmetry
breaking is already prevalent in the literature [39,54]. How-
ever, topological phases do not possess local order parameters,
and so this analogy usually comes with several caveats. For
the description of the edge, no such caveats are necessary. The
transition is one of symmetry breaking in a more conventional
sense than for the bulk. Indeed, we will see that the edge of
the condensate even acquires a local order parameter [31].

The symmetry operators in question are the LX
a strings of

Sec. III A. The order parameter is the vertical string operator
LY

c (x) corresponding to the condensed anyon c. We picture
this in the two edge geometry. In the condensate phase, c is
equivalent to the vacuum, so this string operator can start at the
domain wall between the condensate and uncondensed phases
(Fig. 1). Crucially, this means that LY

c (x) is a local operator
when the two edges are made very close to each other. This

means it is a candidate to serve as an order parameter for the
edge model [31].

Further, LY
c (x) satisfies all the restrictions we demanded of

the edge Hamiltonian. It does not excite the bulk, and is local.
As such, it is a legitimate term that may appear in the effective
edge Hamiltonian.

Now consider some anyon a which becomes confined
in the condensate phase, so that RacRca �= 1. The loop op-
erator LX

a no longer commutes with the condensate bulk
Hamiltonian—it costs energy proportional to the circumfer-
ence of the cylinder to implement [39]. Nor can it still be
implemented in the narrow band of the original phase between
the two edges, as LY

c (x) may now appear in the Hamiltonian.
Combining Eq. (7) and RacRca �= 1, we see that LX

a and LY
c (x)

do not commute, so the presence of LY
c (x) in the edge Hamil-

tonian explicitly breaks the symmetry LX
a .

Similarly, a nonzero expectation value 〈LY
c (x)〉 [generically

expected when LY
c (x) can appear in the Hamiltonian] reveals

the breaking of the symmetry LX
a . LY

c (x) indeed functions as
an order parameter.

We see that the confinement of an anyon a is reflected in
the symmetry breaking of the edge model. The condensation
of c also identifies any anyon species related by fusion of c.
This manifests as a quotient of the symmetry group by the
subgroup generated by LX

c .
The characterization of the edge in terms of symmetry and

symmetry breaking allows us to relate condensation phase
transitions to much more familiar physics. Further, the expres-
sion of the bulk phase transition on the edge mirrors the effect
of condensation on the anyon content.

2. Invariance of the chiral central charge

A particular limitation of algebraic theories of anyons is
that they are only sensitive to the topological central charge,
as opposed to the chiral central charge c−. It is the latter
that characterizes the CFT appearing at the edge of a chiral
topological phase (when the edge can be described by a CFT),
and relates to physically observable quantities. For instance,
a small (compared to the bulk gap) but finite temperature T
can create excitations in the low energy modes at the edge. A
nonzero c− indicates there is an excess of such modes which
propagate in one direction, and leads to a net heat current at
the edge (h̄ = kB = 1) [16,65],

I = π

12
c−T 2. (8)

The topological central charge is equal to the chiral central
charge modulo 8,

c− ≡ ctop
− mod 8. (9)

It relates to braiding and fusion properties of the bulk anyons,
but does not completely characterize the edge. Algebraic de-
scriptions of anyons—that is, the description in terms of a
unitary braided fusion category (UBFC)—miss this important
physical feature.

As such, while only studying the bulk anyons can, and does
[16,40], lead to the conclusion that the topological central
charge does not change when the bulk goes through a con-
densation phase transition, such arguments do not show that
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FIG. 6. A disk geometry with one half of the system condensed
shows that the chiral central charge of the edge is invariant through a
condensation phase transition. At a temperature T much less than the
bulk gap, the edge of each phase carries a current I = (π/12)c−T 2

[16,65]. With the fact that domain walls between phases related by
condensation can be gapped [59], the conservation of energy then
demands that the current along each half of the disk is equal, and
thus that c− is the same between each phase.

the chiral central charge is also invariant. With the two edge
model in hand, this result becomes transparent.

Roughly, c− counts the difference in the number of right-
and left-moving modes in the CFT [49,52]. In order for c− to
change, other chiral modes must be available to scatter those
of the edge CFT. In a generic phase transition, the closing of
the bulk gap can provide such modes. In a condensation phase
transition, the two edge construction shows that all the gapless
modes can be kept separated from the edge.

Considering both edges as a single entity, the fact that the
domain wall to the condensate phase is gapped shows that it
cannot contribute to c−. Thus c− for the combined edge is due
entirely to the edge between the intermediate uncondensed
phase and the vacuum. That is, the chiral central charge for
the edge of the condensate phase is that same as that for the
uncondensed phase.

3. Alternative geometry

The two edge model uses a cylindrical geometry in order to
access the symmetries LX

a . If we are not interested in symme-
try properties, and only wish to conclude that the chiral central
charge is invariant through as rapid a thought experiment as
possible, a disk geometry is more useful.

Consider the disk shown in Fig. 6, where one half of the
system is in a topological phase, and the other half is in the
condensate phase. The low temperature energy current along
each edge of the system is related to the chiral central charge
by Eq. (8). The conservation of energy implies that the differ-
ence between the current along the edges of the condensate
and uncondensed phases is given by the current along the
domain wall.

Recall from Sec. II that domain walls between phases
related by condensation phase transitions can be gapped. By
adding additional perturbations to the wall, we may ensure
that it is, indeed, gapped. (There is no loss of generality
in assuming the domain wall is gapped, as the necessary
perturbations cannot affect c− in either bulk phase, as the
perturbations are confined to the wall.) Thus the domain wall

cannot carry any energy current at low temperatures. We con-
clude that the current along each external edge is equal, and
thus that c− between the two phases is also equal.

This construction makes it particularly clear that the fact
we are using to conclude invariance of the chiral central
charge is the existence of gapped domain walls between
phases related by condensation.

4. Extension of the chiral algebra

The chiral central charge is, in a sense, the coarsest infor-
mation characterising a CFT. A clear picture of its behavior
is necessary, but not sufficient for a complete description of
the edge. The two edge model also gives us a clean way to
understand how anyon condensation affects the primary fields
of the CFT, which furnishes this more complete description.

The condensation of the anyon c extends the local algebra
of the edge CFT—the chiral algebra—by the primary labeled
by c (Sec. III A 1) [52]. The two edge picture reveals what this
means: the chiral algebra is the algebra of local operators, and
in the two edge model LY

c (x) is local. As such, it now belongs
to the chiral algebra.

This simple observation leads to two major consequences
for the other primary fields. The primaries that labeled chiral
algebra equivalence classes (Sec. II) should now be regarded
modulo fusion by c, as the chiral algebra now includes c.

Additionally, any primary field corresponding to a confined
anyon b generically becomes gapped, and so disappears from
the CFT describing the low energy degrees of freedom. As
c is local, it can be added to the Hamiltonian. This gives an
energetic cost to bb̄ creation operators: b acquires a mass.

These two preceding points should be familiar. They are
once again a reflection of the algebraic structure of condensa-
tion on the bulk model, identification and confinement, now
appearing in the CFT primaries. The two edge model makes
the process by which this occurs comprehensible.

IV. ACHIRAL EXAMPLE: LAYERS OF THE TORIC CODE

Section Sec. III outlined the general construction we have
developed to study the effect of condensation transitions on
the edge of a topological phase. In this section, we make this
abstract procedure concrete through a close examination of a
simple example.

The toric code is the most widely studied model of topo-
logical order in the literature at this time [3,4,17,67]. It has
many attractive properties: it functions as an error correcting
code for the storage of quantum information [4,67]; it is a
paradigmatic example of a spin liquid [3]; and it is exactly
soluble, making very detailed analyses possible. Relevant for
our purposes, it also admits a condensation transition.

Implementing the condensation transition moves the model
away from exact solubility [68], but the two edge model of
Sec. III remains soluble in a particular limit. This allows us to
inspect the effects of anyon condensation on the edge in very
explicit terms.

In Sec. IV A, we review a construction of the toric code
that is particularly convenient for the study of its edges [69].
Indeed, the effective model for the edge in this construction
is just the transverse field Ising model, which is also exactly
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FIG. 7. The Wen plaquette model. Qubits are placed on the ver-
tices of a square lattice, and an operator Ap is associated to each
plaquette p. The Hamiltonian of the system is H = −K

∑
Ap (with

K > 0). The system has anyons appearing as −1 eigenvalues for
some Ap operator, and these anyons can be moved for no energy
cost with the appropriate stringlike operators. The anyon species on
the white plaquettes as shown is denoted e, and that on the shaded
plaquettes is m.

soluble and, as predicted, possesses a global (spin flip) sym-
metry. We then proceed to an analysis of the effects of
condensation on the edge model (Sec. IV B). We will find
that condensing an anyon in the bulk introduces terms on
the edge that appear as a longitudinal field in the effective
Hamiltonian, explicitly breaking the spin flip symmetry of the
original model. This is as predicted in Sec. III. Lastly, we
extend our analysis to an arbitrary anyon condensation in a
stack of multiple layers of the toric code, and show that this
more general scenario actually reduces to the single-layer case
(Sec. IV C).

A. The toric code and its edges

The toric code [3,4,17,67] hosts Abelian anyons, two of
which are bosonic, and so admit condensation [39]. Many
expositions on, and studies of, the toric code have been made
in the literature. A study of the edge of the toric code is most
easily facilitated by a less standard construction developed in
Ref. [69]. This utilizes the Wen plaquette model for the toric
code phase [70], which is unitarily related to the usual toric
code model [4]. In this section, we briefly review this model.

1. Bulk

The bulk of the Wen plaquette model [70] is pictured in
Fig. 7. It places qubit degrees of freedom on the vertices of
a square lattice, and defines plaquette operators associated to
each face p:

Ap = σ x
2 σ z

1

σ z
3 σ x

4

. (10)

Here, qubits are labeled anticlockwise around the plaquette,
and have been written so as to reflect their geometry.

The Hamiltonian is the negative sum of all the plaquette
operators,

H = −K
∑

p

Ap, (11)

where we take K > 0. Crucially, all the plaquette operators Ap

commute [70].
Thus the eigenstates of H can be identified as the simul-

taneous eigenstates of each plaquette operator. The ground
space of the model is the shared (+1)-eigenspace of all the
plaquette operators. Excitations above this state are revealed
as (−1)-eigenvalues of some Ap. This lets us identify such an
excitation as belonging to a plaquette of the lattice.

These excitations can be generated in pairs, and subse-
quently moved around for zero energy cost. Indeed, acting
by σ x (σ z) at a vertex anticommutes with the Ap operators to
the north-east and south-west (north-west and south-east) of
that vertex, flipping their sign. This produces two excitations,
both on plaquettes with the same shading in the checkerboard
pattern of Fig. 7. By flipping more pairs of plaquettes, the
two excitations can be moved around, still on the same color
plaquettes. We identify these mobile excitations with distinct
anyon species, e and m, depending on the color of the plaque-
tte they live on. Say, e being based on the white plaquettes, and
m on the shaded plaquettes. The combination of an adjacent e
and m will be called ε.

These excitations function as anyons. Creating a pair of e
particles and wrapping one around a small closed loop pro-
duces a string operator which is the product of the Ap belong-
ing to shaded plaquettes within that loop. Thus, if an m anyon
is present in that region, this operation gives a (−1) phase to
the wave function. In the notation of Sec. II, Rem

ε Rme
ε = −1.

The Ap operators can be interpreted as loops of one kind of
anyon or the other, which detect the presence of the other
species.

2. Edge

In Ref. [69], a characterization of the edge degrees of free-
dom of the Wen plaquette model in terms of its anyon content
was deduced. The model considered is a single layer of the
Wen plaquette model on a semi-infinite cylinder, such that
there is an even number, L, of plaquettes around the circum-
ference of the cylinder. This allows us to unambiguously color
the plaquettes as white or shaded. We choose the terminating
edge of the cylinder to be to the extreme north (Fig. 8).

We label a shaded plaquette adjacent to the edge of this
system q, and write the Pauli operators which act on the
edge vertices north-west (north-east) of this plaquette σα

q (σα
q̃ )

(Fig. 8).
In Ref. [69], it is shown that{

Ap, Sq̃ = σ z
q̃σ x

q+1,LX
m

}
p,q

, (12)

is a complete set of commuting operators for this system.
Here, LX

m is a path operator for the m anyons which wraps
around the cylinder once. Each of these terms has an inter-
pretation as an anyon movement operator—each Ap can be
thought of as small loop operators for either e or m anyons,
and we defined LX

m as a loop operator explicitly, while the Sq̃

operators can be interpreted as moving an e anyon from off
the edge onto site q̃, and then back off the edge through the
other corner (Fig. 8).

Additionally, the degrees of freedom belonging to the edge
may be characterized. If the circumference of the cylinder is
L ∈ 2Z and the system is in a (+1)-eigenstate of all of Ap and
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FIG. 8. The Wen plaquette model on a semi-infinite cylinder. We
place the edge of the system at the extreme north of the cylinder (up
the page as shown). Each pair of white and shaded plaquettes on the
edge has a qubit degree of freedom associated to it in the analysis
of Ref. [69] (dashed green circles), and the small anyon movement
operators act as Pauli operators on these degrees of freedom. An e
operator Sq̃ acts as the Pauli x on one such degree of freedom, which
we write as τ x

q so as not to be confused with the Pauli operators on
the physical qubits, σα

q(q̃). An m operator Sq acts as τ z
q−1τ

z
q on adjacent

degrees of freedom.

LX
m, then there are L/2 qubit degrees of freedom remaining,

which we associate with the edge. We can arrange these so that
one is associated to every pair of shaded and white plaquettes
q and q̃ on the edge. We say that the edge qubit associated
to (q, q̃) is located at edge site q. We label the Pauli operators
acting on these edge qubits by τα

q to distinguish them from the
bulk Pauli operators.

We could choose to fix LX
m in its (−1)-eigenstate, as it does

not actually appear in the Hamiltonian. This will later lead to
an antiperiodic edge theory, rather than a periodic one. In the
language of Sec. III, this is working in a different symmetry
sector of LX

m.
The relationship between the bulk degrees of freedom and

the edge degrees of freedom is provided by the anyons. The
path operators that take e and m anyons off the edge and then
back on, Sq̃ = σ z

q̃σ x
q+1 and Sq = σ z

qσ x
q̃ respectively, commute

with the bulk Hamiltonian and LX
m, and can thus be interpreted

as acting on the edge degrees of freedom. Any represen-
tation of Sq̃ and Sq on the L/2 edge qubits must preserve
the (anti)commutation relationships between them. A possible
choice is (Fig. 8) [69]

Sq̃ 
→ τ x
q , and Sq 
→ τ z

q−1τ
z
q . (13)

A natural edge Hamiltonian for the Wen plaquette model,
generated by some perturbations to the exact model, then has
the form

He = −h
∑

q

τ x
q − J

∑
q

τ z
q−1τ

z
q , (14)

where J > 0 and h are constants. This is the transverse field
Ising model (TFIM) in one dimension and with periodic
boundary conditions. If we fixed 〈LX

m〉 = −1, then one of the
τ z

q−1τ
z
q terms should have its sign reversed to enforce antiperi-

odic boundary conditions.
The TFIM has a global Z2 symmetry, corresponding to the

operator LX
e = ∏

q τ x
q , which applies the Pauli x operator to

every edge qubit and commutes with He. If we only allow

perturbations to the bulk that maintain the bulk ground space,
then all the resulting edge perturbations respect this symmetry.
In this symmetric regime, this model has two distinct phases,
one corresponding to large h (paramagnetic), and the other to
large J (ferromagnetic). The phases are separated by a gapless
critical point.

Of course, this reflects the general understanding we de-
veloped in Sec. IV. Requiring that the edge model not excite
the bulk gap demands the presence of a symmetry for each
anyon of the bulk model. We explicitly constructed the edge
Hamiltonian in blocks labeled by 〈LX

m〉, and discovered a
model in each block with an LX

e symmetry.

B. Condensation and edges of the toric code

The anyons e and m of the toric code are both bosons [4],
and so they can be condensed. The toric code is not exactly
soluble all the way through the condensation transition [68],
but both extremes of the phase diagram are soluble. This
makes a two edge model as described in Sec. III particularly
useful, as it retains some amount of solubility.

We will focus on condensing m. Microscopically, this is
accomplished by adding pair-creation operators for m to the
Hamiltonian, and making them the dominant term [68]. We
parameterize the condensation Hamiltonian as

Hc = −K

⎡
⎣λ

∑
p

Ap + (1 − λ)
∑

p shaded

σ z
p,NW + σ x

p,NE

⎤
⎦. (15)

Here, σα
p,NW is the Pauli α operator on the qubit in the north-

west corner of the plaquette p, and similarly for σα
p,NE in the

north-east. The dimensionless parameter λ tunes the Hamilto-
nian between the Wen plaquette Hamiltonian λ = 1 and a sum
of local fields λ = 0, for which the ground state is a product
state. The latter is the extreme limit of the m condensate phase.
The condensation transition is a gap closing transition at some
λc between 0 and 1.

At all λ ∈ (0, 1), the Hamiltonian (15) has no known solu-
tion. The general analysis of Sec. III does not rely on any kind
of solubility, but in the interests of having a concrete calcula-
tion verifying those claims, we use the two edge geometry of
Sec. III.

We choose some horizontal line y = yc below which we
will set λ = 1, and above which we will set λ = 0. In the
bulk of either region, the Hamiltonian is a sum of commuting
terms. The ground state is a product state for y > yc and the
toric code ground state in the strip yc > y > 0 (measuring y
increasing southwards, as in Fig. 1). At the interface of the
two phases, the two Hamiltonians do not commute. If we
demand that the condensate phase have the larger gap, then an
effective model of the low energy degrees of freedom favours
the formation of the product state below y = yc. The effective
Hamiltonian is obtained by replacing Pauli operators on the
qubits in a product state by their expectation values. The result
is just a deletion of those Ap which anticommute with the
local fields at the domain wall—those belonging to shaded
plaquettes, which measure the presence of m anyons (Fig. 9).

Experts will recognize this structure as a smooth edge of the
toric code. In this case, where the condensate phase is a trivial
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m e m

τz τx τz τz

FIG. 9. The two edge model for the Wen plaquette. The Hamil-
tonian in the lower portion of the system, in the condensate phase,
consists of local fields on the qubits (blue arrows). In the strip
between the condensate phase and the edge, the Hamiltonian is that
of the usual Wen plaquette, except that the plaquette operators that
do not commute with the local fields are excluded (pink plaquettes).
This leads to a smooth edge. m anyons can be created for free from
the domain wall and brought off the edge. These short strings act as
τ z on the effective edge degrees of freedom.

product state, the two edge model reduces to a very thin strip
of the toric code.

To find an effective edge model, we use the same
parametrization of the edge degrees of freedom as in
Sec. IV A, so that the short anyon movement operators across
the edge produce a TFIM in the effective edge model. First, we
observe that the loop operator LX

m must act trivially, as it can
be absorbed it into the condensate part of the system, where it
fixes the ground state. There is no longer a 〈LX

m〉 = −1 sector.
Next, we have additional short m movement operators

which leave no excitations in the bulk—those which gener-
ate an m anyon from the domain wall and send it off the
northern edge. These are the LY

m(x) operators we encountered
in Sec. III. Inspecting commutation relations between these
strings and Sq and Sq̃ from Sec. IV A 2, we see that

LY
m(x) 
→ τ z

q (16)

acts as a longitudinal field.
As a result, the model for the edge becomes

Hc,e = −h
∑

q

τ x
q − J

∑
q

τ z
q−1τ

z
q − k

∑
q

τ z
q . (17)

This is the transverse field Ising model with an additional
longitudinal field—the mixed field Ising model (MFIM).

1. Symmetry breaking

The most striking change to the edge model from that
before condensation (14) is the breaking of the Z2 symmetry.
In the τ degrees of freedom, the LX

e symmetry acts as
∏

q τ x
q .

When k �= 0 in Eq. (17), this symmetry is explicitly broken.
This has very significant changes on the phenomenology of

the edge. The transverse field Ising model, with its symmetry
imposed, has two distinct phases, separated by a gap closing
transition at h/J = 1. The longitudinal field Ising model does
not. It has a single gapped phase with a gapless point at h/J =
1, k = 0. It also has a line h/J < 1, k = 0, across which there
is a first-order phase transition, but it is possible to interpolate

between the ferromagnetic and paramagnetic phases separated
by this line by moving through the h/J > 1, k �= 0 region.

As such, the entire phase diagram for the edge is now in
the same phase as the vacuum—it is trivial. This is expected.
After condensation, the bulk enters the trivial product state
phase.

2. Invariance of the chiral central charge

The predictions we had for the CFT describing the gap-
less degrees of freedom at the edge are largely trivial in
this example. We describe the conclusions that can be made
about the gapless point in the phase diagram of the edge for
completeness.

The CFT describing the gapless point h/J = 1 in the TFIM
is the Ising CFT. It is closely related to the free Majorana
fermion CFT [49,52].

The Ising CFT has a chiral central charge of c− = 0. This is
not to be confused with the holomorphic or antiholomorphic
central charges, c and c̄, that describe the number of right- and
left-moving degrees of freedom. The Ising CFT has c = c̄ =
1/2.

Once the longitudinal field gets turned on after condensa-
tion, all the degrees of freedom become gapped, and the CFT
describing the low energy degrees of freedom is the zero CFT.
This also has c− = 0.

This is typical of achiral phases. There is in general no
anomaly which protects the gapless modes on the edge in this
case (the anomaly in question usually being c−). As such, the
edges of such phases are frequently gapped, regardless of any
condensation in the bulk.

3. Extension of the chiral algebra

The effect of condensation on the primary fields at the
gapless point is also straightforward. The Ising CFT has three
relevant primary fields with equal holomorphic and antiholo-
morphic conformal weights, usually denoted ε (the energy), s
(spin) and μ (disorder). (These can each be decomposed into
purely left- or right-moving parts, none of which are in the
chiral algebra.)

Our colloquial definition of the chiral algebra is that it is
the algebra of local operators. Prior to condensation, only
the energy ε is simultaneously local, relevant, and respects
the symmetry. Microscopically, it represents the coupling h-J
in the Hamiltonian, and measures deviation from the critical
point.

The spin s is local and relevant but does not respect the Z2

symmetry. It is dual to the disorder μ, which is nonlocal and
does not respect the dual symmetry which was due to LX

m in
our construction. After condensation, we add s to the list of
permissible perturbations from criticality. The fields s and μ

have nontrivial braiding, so usually this would imply that μ

gets deleted from the CFT. However, the CFT becomes trivial
once deformed by s, so this is an uninteresting statement.

C. Condensation in multiple layers of the toric code

Many interesting topological phases can be constructed
from multiple layers of the toric code [71,72]. Often, such
constructions involve condensing composite anyons which
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span several layers [72]. As such, it is useful to generalize
our discussion of condensation in the toric code, and its effect
on the edge, to the multilayer case.

We will first summarize a very simple case, where conden-
sation occurs separately in each layer (Sec. IV C 1). Then, we
show how to reduce the general case to the simple one, and
enumerate a few examples (Sec. IV C 2).

1. Separate condensation

Consider a stack of N layers of the Wen plaquette model
for the toric code, wrapped into the semi-infinite cylinder
geometry. A complete set of commuting observables for the
entire stack can be obtained by concatenating such sets for
each layer, {

Al
p, Sl

q̃ = σ z,l
q̃ σ x,l

q+1,LX,l
m

}
p,q,l

, (18)

where a superscript l indexes the layers. Similarly, the effec-
tive model for the edge is just N copies of the effective model
for one edge, the TFIM,

He = −
N−1∑
l=0

⎛
⎝h

∑
q

τ x
q + J

∑
q

τ z
q−1τ

z
q

⎞
⎠. (19)

Within the two edge construction, condensing an ml anyon
on layer l produces a new effective model for the edge which
has an additional longitudinal field on layer l (Sec. IV B).
Condensing multiple mli anyons, for i ∈ {0, . . . , n − 1}, intro-
duces a longitudinal field on each of the n layers li,

Hc,e = −
N−1∑
l=0

⎛
⎝h

∑
q

τ x,l
q + J

∑
q

τ z,l
q−1τ

z,l
q

⎞
⎠ − k

n−1∑
i=0

∑
q

τ z,li
q .

(20)
The layers li are now described by MFIMs.

The effect of condensation on the symmetry structure can
similarly be treated separately in each layer. Before condensa-
tion, the separate layers each have two independent symmetry
generators, LX,l

e and LX,l
m , making the total symmetry group

Z2N
2 . After condensation, LX,l

e become confined and LX,l
m acts

trivially—they both disappear from the symmetry representa-
tion on the edge degrees of freedom. The new symmetry group
is Z2(N−n)

2 .

2. General case

Our choice of operators that define the degrees of freedom
on the edge was well suited to the particular condensation
above, but is not unique. To address general anyon conden-
sations, we tailor the choice of degrees of freedom to the
particular condensation of interest. In particular, if n anyons
{a0, . . . , an−1} are condensed, we choose degrees of freedom
τα,l

q such that the LY
ai (x) term in the effective edge model is

still a longitudinal field. This means that the rest of the edge
model will no longer be a TFIM.4

4We could have made the alternative choice to preserve the TFIM
part of the edge model, in which case the longitudinal field would
change form. The result of either choice is related to the other by a
unitary transformation.

Such a choice is possible due to the fact that in order to
condense {a0, . . . , an−1}, they must all be self and mutual
bosons, just as {ml0 , . . . , mln} were. It is possible to find
anyons {an, . . . , aN−1} and {b0, . . . , bN−1} such that each ai

anyon is a self boson, a mutual semion with bi, and a mu-
tual boson with every other anyon in the list. Furthermore,
the full set of a and b anyons should be independent under
fusion.

It is useful to describe what the bosonic condition means
when viewing each ai as a composite anyon

ai =
N−1∏
l=0

cl
i , where cl ∈ {1, el , ml , εl = el ml}. (21)

We can view ai as a vector in (Z2
2)N by identifying el and

ml as basis vectors in this space, and taking fusion of anyons
to be addition of vectors. It is convenient to split ai into a
part composed of el anyons, ai

e ∈ ZN
2 , and a part composed

of ml anyons, ai
m ∈ ZN

2 , and writing ai = ai
e ⊕ ai

m. Then, the
statement that ai is a self-boson is just

〈
ai

e, ai
m

〉 = 0, (22)

where 〈·, ·〉 is the usual Z2 valued dot product in ZN
2 . The e

and m parts of ai must be orthogonal in ZN
2 .

The statement that ai and a j are mutual bosons may be
expressed as the vanishing of a so called symplectic bi-
linear form, which is expressed in terms of the usual dot
product as

(ai, a j ) := 〈
ai

e, a j
m

〉 + 〈
ai

m, a j
e

〉 = 0. (23)

Thus the condensed anyons {a0, . . . , an−1} furnish a lin-
early independent set of vectors in (Z2

2)N that are orthogonal
with respect to the bilinear form (23). It is possible to com-
plete this basis and obtain a set

{a0, . . . , aN−1, b0, . . . bN−1} (24)

such that 〈ai
e, ai

m〉 = 〈bi
e, bi

m〉 = 0 and (ai, a j ) = (bi, bj ) = 0
while (ai, bj ) = δi j . The problem of finding such a basis also
occurs in classical mechanics, when finding a complete set
of conjugate coordinates and momenta; and in quantum error
correction, when finding logical operators and primary errors
for a given set of stabilizers [73].

Translating back into the anyon language, we have found
a set of anyons that have the same fusion and braiding rela-
tions as {m0, . . . , mN−1, e0, . . . eN−1}. Each anyon fuses with
itself to give the vacuum and braiding ai with bi gives a
(−1) sign. All other relations are trivial, or determined by the
anyon theory being Abelian. Then the effect of condensing
{a0, . . . , an−1} is easy to characterize. Each of {b0, . . . , bn−1}
becomes confined, while {an, . . . , aN−1, bn, . . . bN−1} are un-
affected. The algebra here is the same as in Sec. IV C 1.

We define edge operators τ z,li
q as the short strings LY

ai (xq),
where xq is the position of the edge plaquette q. The conju-
gate τ x,li

q are associated to short string operators of bi which
cross one LY

ai (xq), so that τ z,li
q and τ x,li

q anticommute, but
commute with τ operators at other sites. The natural physical

075140-13



DAVID M. LONG AND ANDREW C. DOHERTY PHYSICAL REVIEW B 109, 075140 (2024)

Hamiltonian in the thin uncondensed cylinder of the two edge
model still consists of the el and ml anyon movement oper-
ators Sl

q̃ and Sl
q. The effective τ operators corresponding to

the physical string operators can be deduced through the com-
mutation relations between the Sl

q̃(q) strings and the ai and bi

strings.
With this convention, the terms added by condensation will

always be a longitudinal field,

−Vn := −
n−1∑
i=0

∑
q

τ z,li
q , (25)

where we set k = 1.
In the original lattice model, the edge model is always a

sum of Sq and Sq̃ operators. The expression of these operators
as products of τα

q operators will depend on the choice of basis
{a0, . . . , aN−1, b0, . . . bN−1}. Nonetheless, symmetry breaking
will always appear as reducing Z2N

2 down to Z2(N−n)
2 .

We enumerate a few examples below to make this construc-
tion clear.

3. Condense m0m1 in N = 2 layers

We choose a0 = m0m1, a1 = m1, b0 = e0, and b1 = e0e1.
Taking the physical Hamiltonian to be a sum of Sl

q̃ and
Sl

q operators, and inspecting the braiding relations between
the el and ml anyons defining those strings with the al

and bl strings defining the τ operators, we find an edge
Hamiltonian,

Hc,e = −V1 −
∑(

J0
τ z τ z

τ z τ z + h1
τ x

1

)

−
∑ (

J1
1 1
τ z τ z + h2

τ x

τ x

)
. (26)

We have omitted all qubit specifying subscripts, and indicated
the positions of operators graphically.

In the limit Jl , hl � 1, corresponding to a large amplitude
for tunneling m0m1 from the condensate to the edge, pertur-
bation theory on the degenerate V1 ground space gives the
Hamiltonian

Hc,e ≈ −V1 − (J0 + J1)
∑

1
τ z

1
τ z − h1h2

∑
1
τ x + · · · . (27)

Here, we have assumed all parameters are positive, and we
have replaced τ z τ z

τ z τ z with 1 1
τ z τ z as these have the same action

on the V1 ground space.
The result is a trivial theory on the top layer and a TFIM

on the second layer with transformed parameters. We ex-
pect a phase transition when J0 + J1 = h0h1. In the special
case of identical layers (J0 = J1 = J and h0 = h1 = h), this is
2J = h2.

When Jl , hl � 1, we may safely neglect the V1 term, and
this becomes two copies of the transverse field Ising model,
with a phase transition at h0/J0 = 1 and h1/J1 = 1.

4. Condense m0m1m2 in N = 3 layers

We choose a0 = m0m1m2, a1 = m0, a2 = m2, b0 = e1,
b1 = e0e1, and b2 = e1e2, resulting in an edge Hamiltonian

Hc,e = −V1 −
∑ ⎛

⎝J0

1 1
τ z τ z

1 1
+ h0

τ x

τ x

1

⎞
⎠

−
∑ ⎛

⎝J1

τ z τ z

τ z τ z

τ z τ z
+ h1

τ x

1
1

⎞
⎠

−
∑ ⎛

⎝J2

1 1
1 1
τ z τ z

+ h2

τ x

1
τ x

⎞
⎠. (28)

In the perturbative regime, this is

Hc,e = −V1 −
∑ ⎛

⎝J0

1 1
τ z τ z

1 1
+ h0h1

1
τ x

1

⎞
⎠

−
∑ ⎛

⎝J1

τ z τ z

τ z τ z

τ z τ z
− h0h2

1
τ x

τ x

⎞
⎠

−
∑ ⎛

⎝J2

1 1
1 1
τ z τ z

+ h1h2

1
1
τ x

⎞
⎠ + · · · . (29)

This bears some similarity to the Ashkin-Teller model if we
disregard the top layer [74–76]. We have not pursued this
comparison.

5. Condense ε0ε1 in N = 2 layers

Note that while εi is a fermion, ε0ε1 is a boson.
We choose a0 = ε0ε1, a1 = m0e1, b0 = m0, b1 = m0m1,

giving an edge Hamiltonian

Hc,e = −V1 −
∑ (

J0
τ y τ z

τ z τ y + h0
τ x

1

)

−
∑ (

J1
τ x 1
τ z τ z + h1

τ x

τ x

)
. (30)

In the perturbative regime Jl , hl � 1 this is again a single
copy of the transverse field Ising model.

6. Condense ε0ε1 and ε1ε2 in N = 3 layers

We choose a0 = ε0ε1, a1 = ε1ε2, a2 = m0m1m2 and b0 =
e1e2, b1 = e0e1, b2 = e0e1e2.

We have been keeping this discussion at the level of anyons
as much as possible. However, that is no longer sufficient for
this case. The issue is that while ε0ε1 and ε1ε2 are mutual
bosons, ε1 is a fermion. Thus not all of the movement op-
erators for ε1 commute. Our assignment of the degrees of
freedom in terms of a set of commuting operators requires
us to make a choice of which movement operators we will use
such that everything commutes. This is most easily achieved
by choosing a different definition of the sites that support the
ε1 fermion in each of a0 and a1.

First, we will use p only to refer to white plaquettes in the
coloring of Fig. 7, and use p̃ to refer to the shaded plaquette
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to the east of p. To distinguish the two choices of sites, we
will denote an ε anyon that resides on faces p and p̃ by ε, and
one on faces p and ˜p − 1 by ε̄. The movement operators for ε

commute with all movement operators for ε̄.
We choose a0 = ε̄0ε̄1, and the rest as previously stated.

This gives a Hamiltonian

Hc,e = −V2 −
∑ ⎛

⎝J0

1 τ x

τ z τ z

τ z τ z
+ h0

τ x

1
τ x

⎞
⎠

−
∑ ⎛

⎝J1

τ z τ y

τ y τ z

τ z τ z
+ h1

τ x

τ x

τ x

⎞
⎠

−
∑ ⎛

⎝J2

τ z τ z

τ x 1
τ z τ z

+ h2

1
τ x

τ x

⎞
⎠. (31)

7. Condense εi−1miεi+1 in N layers

Reference [72], Sec. IV describes a three-dimensional
symmetry protected topological phase (SPT) through a con-
densation of εi−1miεi+1 (i ∈ {1, . . . , N − 2}) in N � 5 layers
of the toric code. We will show how to obtain the correspond-
ing edge model for N �≡ 0 mod 3.

We choose ai = εi−1miε̄i+1 (note the bar on εi+1), inter-
preting i mod N . The form of b depends on whether N ≡ 1
or 2 mod 3. We put

bi =

...

1
e
e
1
ei

1
e
e
1
...

, or, bi =

...

e
e
1
e
ei

e
1
e
e
...

, (32)

with the first being for N ≡ 2 mod 3. The form of this is
repeating blocks of ee1, with the specific structure near layer
k depending on N mod 3.

Only the Hamiltonian for the N ≡ 2 mod 3 case will be
reproduced here for the sake of brevity. It is

Hc,e = −k
n−2∑
l=1

∑
q

τ z,l
q −

∑
l

∑
q

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Jl

...
...

1 1
τ z τ z

τ z τ z

1 τ x

τ z,l
q τ z,l

q+1
τ x 1
τ z τ z

τ z τ z

1 1
...

...

+ hl

τ x

τ x,l
q
τ x

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(33)

Our choice of anyons results in the condensation occurring
in the middle layers, reflecting the physical situation. The
position indices have been omitted on many of the τ operators,
as we did previously. The pattern of τ zτ z terms in the large
operator above should match the pattern of e anyons in bk ,
while the τ x part should always be as it appears here. This is
also true for the N ≡ 1 mod 3 case.

It is not easy to see what difference this has to our pre-
vious examples, but in the small J/k, small h/k regime this
should be the edge theory of two copies of a time-reversal
symmetry respecting version of the three-fermion model [72],
Sec. IV. Understanding how this theory differs from two
copies of the transverse field Ising model would likely be
enlightening.

V. CHIRAL EXAMPLE: KITAEV SPIN LIQUIDS

The characterization of anyon condensation in Sec. III
is particularly useful when the bulk phase is chiral. In this
case, the edge modes are necessarily gapless, with low energy
excitations being described by a CFT in the simplest cases
[49,52,53]. However, for a given anyon theory in the bulk
there is a countable infinity of candidate CFTs that could
appear on the edge [39,40,55,60]. Which of these CFTs is
the correct one is fixed by the knowledge of the chiral central
charge, c−.

The chiral central charge does not change when a conden-
sation phase transition occurs (Sec. III B 2). This observation
fixes the topological phase that is achieved after condensation.
Furthermore, the resulting edge CFT can be characterized in
terms of the pre-condensation CFT and the introduction of
additional local operators (in technical language, extending
the chiral algebra [39,40]).

In this section, we will illustrate these points through a
detailed discussion of anyon condensation in the Kitaev spin
liquid (KSL) phases [16]. These are a relatively simple class
of chiral (in general) topological phases which have been
widely studied in the literature [77–80]. In Sec. V A, we will
review their classification in terms of a Chern number ν and
their basic properties, with a particular focus on ν = 1. Then
we will proceed to deduce the edge physics of higher ν KSLs
by treating them as the result of a condensation in first two
(Sec. V B) then several (Sec. V C) layers of ν = 1. Lastly, we
discuss an alternative condensation phase transition that can
occur when ν ≡ 0 mod 16 in Sec. V D. The result is a non-
trivial topological phase which, nonetheless, has no anyons,
called the E8 state [39,40,55,60].

A. Kitaev spin liquids

The Kitaev spin liquids (KSLs) are a class of two di-
mensional bosonic topological phases of matter. They have a
relatively simple structure while still allowing for the presence
of non-Abelian anyons and chiral edge modes [16,79,80].

The KSLs are characterized by an integer topological in-
variant usually denoted ν. This invariant is related to the chiral
central charge through

c− = ν

2
. (34)
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As such, ν may be interpreted as counting the number of
fermionic right-movers at the edge of the system—which is
twice the number of bosonic degrees of freedom [49].

The anyon theory describing the KSLs is determined by ν

modulo 16 (an illustration of the fact that distinct topological
phases may have the same anyon theory). The description of
the anyons is most easily discussed by further breaking up the
models into finer classes.

ν ≡ 0 mod 4. The even ν cases are very similar, and, in
fact, only differ in their fusion rules. When ν is divisible by 4
the anyons are usually labeled

1 (vacuum), ε (fermion), e, m (vortices), (35)

which have the same fusion rules as the toric code

ε × ε = e × e = m × m = 1, e × ε = m,

m × ε = e, and e × m = ε. (36)

Indeed, ν = 0 is the toric code phase.
The topological spins are determined by ν:

θ1 = 1, θε = −1, θe = θm = e2π i
ν
16 . (37)

The remaining nontrivial monodromies not implied by the
spins of the anyons are

Reε
m Rεe

m = −1, Rem
ε Rme

ε = −e2π i
2ν
16 , (38)

and a similar vortex-fermion braiding for m and ε. In words,
fermions acquire a (−1) phase when wrapped around a vortex,
and vortices acquire a phase that depends on ν when one is
wrapped around another.5

ν ≡ 2 mod 4. As noted above, the case of ν ≡ 2 mod 4
differs from ν ≡ 0 mod 4 only in the fusion rules. To distin-
guish this behavior, an alternative labeling of the vortices is
usually used:

1 (vacuum), ε (fermion), a, ā (vortices), (39)

which have the nontrivial fusion rules

ε × ε = 1, a × ε = ā, ā × ε = a,

a × a = ā × ā = ε, and a × ā = 1.
(40)

The topological spins are again determined by ν:

θ1 = 1, θε = −1, θa = θā = e2π i
ν
16 . (41)

The remaining nontrivial braidings are

Raε
ā Rεa

ā = −1, Raā
1 Rāa

1 = e−2π i
2ν
16 , (42)

and a similar vortex-fermion braiding for ā and ε.
ν ≡ 1 mod 2. When ν is odd the anyon model is non-

Abelian. The anyons are labeled

1 (vacuum), ε (fermion), σ (vortex), (43)

5Kitaev [16] makes a distinction between ν ≡ 0 mod 8 and ν ≡ 4
mod 8, but in the combinations Reε

m Rεe
m and Rem

ε Rme
ε the distinction is

not required. More complicated braids may need to distinguish these
cases.

which have the nontrivial fusion rules

ε × ε = 1, σ × ε = σ, and σ × σ = 1 + ε. (44)

Recall that the “+” here should be thought of as a direct sum.
Two σ anyons fuse to the vacuum or a fermion depending on
the state of the system globally.

The topological spins of each species are

θ1 = 1, θε = −1, and θσ = e2π i
ν
16 . (45)

The nontrivial braidings relations are those for ε and σ , which
acquire a minus sign on braiding,

Rεσ
ε Rσε

ε = −1, (46)

and that for exchanging vortices, which gives a phase which
depends on whether they fuse to 1 or ε, and on ν:

Rσσ
1 = χe−2π i

ν
16 , Rσσ

ε = χe2π i
3ν
16 . (47)

Here χ = e2π i
ν2−1

16 is given by χ = 1 for ν ≡ 1, 7 mod 8 and
χ = −1 for ν ≡ 3, 5 mod 8.

Exactly soluble models are known that achieve several
different values of ν [16,77,81,82]. Indeed, the achiral phase
ν = 0 is actually the toric code phase. However, the exact
solubility of these models is meant in a more limited sense
than occurs in the toric code. Usually, these models have
immobile vortex anyons, and may be mapped to a model of
free fermions in any specific background of frozen vortices.
This allows one, in principle, to find all the energies and
eigenstates, but the vortex movement operators do not have a
simple closed form. This should be expected—chiral models
have nonzero correlation lengths, and so not all the movement
operators can be simple strings of finite range operators.

As a consequence, our characterization of the KSL edge
physics must be presented with a greater level of abstraction
than for the toric code. We will not to find an explicit model
for the edge that demonstrates the features we predict, and
only derive a more schematic description.

1. The ν = 1 Kitaev spin liquid

The exactly soluble models for the KSLs will still be useful
for us, as they allow a straightforward identification of the
edge physics for ν = 1. We can then use our techniques to
build up the description of higher ν edges.

Specifically, Kitaev’s honeycomb model [16,79,80] can, in
the vortex free sector, be mapped to a model of noninteract-
ing Majorana fermions with a Chern number of ν ∈ {0,±1}.
Chern insulators have ν chiral modes at their edge. As the
model is one of Majorana fermions, the edge mode is also
Majorana. Thus the CFT describing the edge of the ν = 1
KSL is that with a single right-moving Majorana fermion.

It is useful to see how the bulk anyon content is reflected
in the edge CFT explicitly for the ν = 1 KSL, as similar
structures occur in later examples.

The free Majorana CFT has chiral central charge c− = 1/2
[49], as expected from Eq. (34). Being a minimal model, the
free fermion CFT has finitely many (four) Virasoro primaries.
They are

1 (vacuum), ψ (fermion), σ, μ (twists), (48)

075140-16



EDGE THEORIES FOR ANYON CONDENSATION PHASE … PHYSICAL REVIEW B 109, 075140 (2024)

with operator product expansions (OPEs) (Sec. II)

[ψ][ψ] = [σ ][σ ] = [μ][μ] = [1], [ψ][σ ] = [μ],

[ψ][μ] = [σ ], and [σ ][μ] = [ψ]. (49)

The conformal weights of each nontrivial primary are hψ = 1
2

and hσ = hμ = 1
16 [49]. The antiholomorphic weights are all

zero—all these fields are right-moving, not left-moving.
The fusion rules and conformal weights can be used to

deduce braiding relations by matching scaling dimensions.
For example, matching scaling dimensions in [ψ][σ ] = [μ]
gives (6)

ψ (z)σ (w) = 1

(z − w)1/2
μ(z) + · · · (50)

from which we can see that moving z around w introduces a
minus sign due to the branch cut in the square root. Similarly,
we have for braiding σ and μ

σ (z)μ(w) = 1

(z − w)−3/8
ψ (z) + · · · (51)

The structure of these primary fields is very suggestive of
the bulk anyon structure we described for the ν = 1 KSL.
More explicitly, we have the following correspondence be-
tween bulk anyons and edge primaries, induced by taking a
bulk anyon to the edge:

1 ↔ [1], ε ↔ [ψ], σ ↔ [σ ] or [μ]. (52)

Whether σ (the vortex anyon) produces [σ ] (the twist field
and its descendants) or [μ] when brought to the edge depends
on the global state of the bulk system. Namely, what pairs of
vortices fuse to ε or 1.

One can see that this correspondence is legitimate by
checking the fusion and braiding rules. Some fusion rules are
immediate, ε × ε = 1 ↔ [ψ][ψ] = [1], but some require us
to understand when σ produces [σ ] or [μ].

If we have a pair of anyons σ in the bulk fusing to 1, then
on the edge they should correspond to [σ ] and [σ ] (or [μ]
and [μ], which is equivalent through the creation of a pair of
fermions from the vacuum). In this fermion parity even sector,
all the fusion and braiding rules are obeyed:

σ × σ = 1 and (Rσσ
1 )2 = e−2π i

2
16

←→ σ (z)σ (w) = (z − w)−1/81 + · · · (53)

[We focus on the monodromy (Rσσ
1 )2, representing a loop

of one vortex around another—rather than Rσσ
1 , representing

exchange of vortices—as it is simpler.]
The bulk fusion rule ε × σ = σ should be thought of as

appending a fermion to σ , which can be resolved at the edge
if we are decomposing primaries there into parity even and
odd sectors. The addition of a fermion ε ↔ [ψ] to one of
the vortices brings us to the fermion parity odd sector, where
the σ anyons now fuse to ε, and correspond at the edge to
[σ ] and [μ] (or vice versa, again by the creation of a pair of
fermions). This follows from the edge product [ψ][σ ] = [μ].
In this sector, the fusion and braiding rules are once more

obeyed:

σ × σ = ε and
(
Rσσ

ε

)2 = e2π i
2·3
16

←→ σ (z)μ(w) = (z − w)3/8ψ (z) + · · · (54)

B. Condensation in two layers of ν = 1

The edge physics of the ν = 1 KSL is straightforwardly de-
duced from the exactly soluble honeycomb model [16]. There
are similar exactly soluble models that achieve other values
of ν [81,82], but it becomes progressively more difficult to
characterize the edge without some additional knowledge of
CFT. In this section, we show that the ν = 2 edge CFT may
be characterized by applying the methods of Sec. III to a
condensation transition in a double layer of ν = 1.

Anyons in a model with multiple layers are composites of
anyons in each layer. In a double layer of the ν = 1 KSL,
the composite ε1ε2 consisting of fermions on each layer is a
boson. That is, its topological spin is unity,

θε1ε2 = θε1θε2 = (−1)2 = 1. (55)

Consequently, it is a legitimate target for condensation [39].
The phase resulting from the condensation of ε1ε2 is the

ν = 2 KSL [39]. We can see this at the level of anyons by car-
rying through the algebraic transformation of the bulk anyon
theory—confinement, identification, and splitting. Anything
which does not have trivial statistics with ε1ε2 becomes con-
fined. The vortices on each layer, σ1 and σ2, each gain a factor
of −1 upon braiding with ε1ε2, and so are both confined.
However, the composite vortex σ1σ2 remains deconfined.
Similarly, the individual fermions, ε1 and ε2, remain decon-
fined.

All anyons related by fusion of ε1ε2 should be identified, so
actually the fermions on each layer become a single species,
ε1 ∼ ε2 ∼ ε. Microscopically, we can think of ε1ε2 creation
operators as hopping a fermion from one layer to the other, so
it makes sense that ε1 should be able to transform into ε2.

Lastly, we come to splitting. The composite vortex σ1σ2

is not one of the “irreducible” anyons of this model. (Recall
that this follows from the fact that σ1σ2 and its antiparticle,
which is also σ1σ2, can fuse to the condensed anyon ε1ε2.)
The composite vortex can be decomposed into a direct sum of
two Abelian anyons while preserving all fusion and braiding
rules. These are the ν = 2 vortices,

σ1σ2 = a + ā. (56)

One may check that this identification conforms with the
fusion and braiding rules for both ν = 2 and two layers of
ν = 1.

In Sec. V B 3, we derive another way of showing the con-
densate phase is ν = 2 by examining the primary fields at the
edge.

What is the effective theory describing the edge of the
resulting ν = 2 phase? An expert may be aware, or correctly
intuit, that it is a free boson CFT. We will be able to deduce
this from our construction.
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1. Symmetry breaking

As always, there is a symmetry associated to the anyons
of the bulk which acts on the edge. It is convenient to use
the picture of an anyon existing past the edge, the topological
charge of which is revealed by the loop operators LX

a (Fig. 5).
Before any condensation, the edge theory is two decoupled

free fermion CFTs, which each have an independent symme-
try algebra. The loop LX

εl
reveals whether the layer l edge

theory has periodic (the topological charge of the edge is 1
or ε) or antiperiodic (the topological charge is σ ) boundary
conditions for the free fermion. The full edge theory is a direct
sum of both of these sectors.

Meanwhile, LX
σl

reveals the fermion parity of the edge.
In fact, when the topological charge of the edge is σ , the
eigenvalue of this loop operator even distinguishes between
the case where the anyon in LX

σl
fuses with the edge to give 1

or ε, as these fusion channels have different braiding phases.
If we did not already know the edge CFT was a free fermion,
and that the twist operators could be split up into fermion
parity even, [σ ], and odd, [μ], this observation may have let
us deduce this fact.

When ε1ε2 is condensed the fermion parity in each layer is
no longer conserved—only the global fermion parity remains
conserved. Explicitly, we may now add LY

ε1ε2
(x) to the edge

Hamiltonian, breaking the LX
σl

symmetries. LY
ε1ε2

(x) is a pair
creation operator for fermions on different layers. Fermions
may now move between layers, which alters the fermion par-
ity of each of the separate layers.

From this perspective, the trivial action of LX
ε1ε2

in the
condensate phase also becomes natural. Eigenvalues of LX

ε1ε2

reveal the difference in the boundary conditions between the
fermions in layer 1 and those in layer 2. But fermions in layer
1 can now hop to layer 2, so this distinction no longer makes
sense, and the boundary conditions must be the same.

2. Invariance of the central charge

The chiral central charge of the free fermion CFT is c− =
1/2. As such, the central charge for the double-layer model is

c− = 2 · (1/2) = 1. (57)

Together with the characterization of the bulk anyons, this
observation confirms that the bulk phase after condensation
is, indeed, the ν = 2 KSL, as we have claimed.

While knowledge of the central charge is helpful and nec-
essary, there is not a unique CFT with c− = 1, so a more
complete description of the edge CFT requires more work.

3. Extension of the chiral algebra

The free fermion CFT has only four Virasoro primaries,
and only the vacuum [1] is local. The chiral algebra, in our
intuitive description as the algebra of local operators, is triv-
ial, containing only the descendants of the vacuum. After
condensation, the composite field [ψ1ψ2] and its descendants
are included in the chiral algebra. This lets us make a more
complete characterization of the primaries appearing in the
new edge CFT.

It is convenient to bosonize the edge CFT of the two-layer
model [55]. Nominally, the edge is described by a CFT of two

free Majorana fermions ψ1 and ψ2. However, it is possible to
express these in terms of a boson φ as [49]

ψ± = i√
2

(ψ1 ± iψ2) = e±iφ. (58)

Of special interest in this CFT are the (Virasoro) primaries
known as the vertex operators,

Vα (z) = eiαφ(z). (59)

With free boundary conditions all α ∈ C give inequivalent
primaries. With periodic or antiperiodic boundary conditions
only α ∈ Z ∪ (Z + 1

2 ) are acceptable. There are now infinitely
many Virasoro primaries.

The OPE and braiding of vertex operators is given by

Vα (z)Vβ (w) = (z − w)αβVα+β (z)(1 + · · · ). (60)

While all the vertex operators Vα are Virasoro primaries,
we will find they fall into finitely many chiral equivalence
classes. That is, many are related by operators that can be
applied entirely locally. As anyons cannot have their species
changed locally, bulk anyons correspond to an entire family of
Virasoro primaries that belong to the same chiral equivalence
class.

The chiral algebra is generated by the fields corresponding
to LY

ε1ε2
(x). In the CFT, this is [ψ1ψ2]. We observe that

[ψ+][ψ+] = − 1
2 ([ψ1][ψ1] − [ψ2][ψ2] + 2i[ψ1][ψ2])

(61a)

= −i[ψ1][ψ2], (61b)

so that ψ2
+ = V2 should be in the chiral algebra. Similarly,

V−2 is in the chiral algebra. Then the values of α correspond-
ing to vertex operators in the chiral algebra are

α ∈ 2Z. (62)

From Eq. (60), these are precisely the vertex operators that are
self-bosons.

Then chiral equivalence classes correspond to cosets of the
form α0 + 2Z. There are four such cosets for α ∈ Z ∪ (Z +
1
2 ). They have representatives

α0 = 0, α0 = 1, α0 = 1
2 , and α0 = − 1

2 . (63)

The vertex operators corresponding to these α0 are represen-
tatives of each of the chiral equivalence classes.

We can also see how to construct these from the fermion
operators in each layer. We have already discussed α0 = 0—
the chiral algebra itself. These are fermion hops. Equally
simple is α0 = 1. These are the fermion operators, as can be
seen from

ψ1 ∝ V1 + V−1, (64)

which expresses ψ1 in terms of the vertex operators ψ± =
V±1, which both correspond to an odd α ∈ 1 + 2Z.

The remaining α0 = ±1/2 correspond to the twist fields,
and their descendants. The fermion parity definite twist fields
that survived the bulk condensation are (up to fusion with
[ψ1ψ2])

[σ1σ2] and [σ1μ2]. (65)
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However, neither of these are candidates for α0 = ±1/2 be-
cause, for instance, they both square to 1, not ψ . Rather, we
should use the linear combinations

[σ±] = i√
2

([σ1σ2] ± i[σ1μ2]). (66)

That these satisfy all the fusion and braiding rules for an
operator in the equivalence class of V±1/2. Namely, they both
square to a fermion, annihilate each other, have the right spin,
and so on.

This accounts for all the fields arising from bringing an
anyon to the edge of the system. We can confirm that the
edge CFT we have deduced—that of a free boson, with
chiral equivalence classes characterized in terms of vertex
operators—is compatible with the bulk anyon theory by
checking fusion and braiding relations. (This CFT has the
correct value c− = 1 [49].)

We state the correspondence between ν = 2 anyons and
chiral classes in terms of α0.

1 ↔ α0 = 0, ε ↔ α0 = 1,

a ↔ α0 = 1
2 , and ā ↔ α0 = − 1

2 . (67)

Which vortex gets assigned to ±1/2 is arbitrary.
We discuss each correspondence in Eq. (67), beginning

with 1 ↔ 0—the vacuum corresponds with the chiral algebra
itself. This is definitional: the chiral algebra contains all local
operators, while the vacuum anyon also captures all purely
local operations.

The next correspondence, ε ↔ 1, is also straightforward. It
is inherited from εl ↔ [ψl ]. Recall V1 is a linear combination
of ψ1 and ψ2, which are identified by the chiral algebra.

The cases of a ↔ 1/2 and ā ↔ −1/2 are more compli-
cated, but again we have done most of the work. Both a
and ā came from σ1σ2, which corresponds to either [σ1σ2] or
[σ1μ2] at the edge, depending on fermion parity. We saw that
the correct combination of these fields to ensure membership
of just one chiral equivalence class are [σ±] from Eq. (66).
These are then what a and ā should correspond to. From an
alternative perspective, that we can split the edge chiral classes
into two distinct cosets [σ±] hints that the bulk anyon σ1σ2

splits into two different anyons.
The fusion and braiding relations are also satisfied by

Eq. (67). Indeed, from (60), we see that fusion is just addition
for α. Taking the quotient by the chiral algebra is regarding
the result modulo 2. Then we can readily see that

ε × ε = a × ā = 1 ↔ 1 + 1 = 1
2 − 1

2 = 0 mod 2, (68a)

ε × a = ā ↔ 1 + 1
2 = − 1

2 mod 2, (68b)

ε × ā = a ↔ 1 − 1
2 = 1

2 mod 2, and (68c)

a × a = ā × ā = ε ↔ 1
2 + 1

2 = − 1
2 − 1

2 = 1 mod 2.

(68d)

Obtaining braiding statistics is also immediate, involving
multiplication of α rather than addition. As an example,

a × ā = 1 and Raā
1 Rāa

1 = e−2π i
4
16

←→ V1/2(z)V−1/2(w) = (z − w)−1/4V0(z). (69)

The prescription dictated by the two edge model success-
fully deduces the edge CFT for ν = 2 by extending the chiral
algebra in two layers of ν = 1.

C. Condensation in many layers of Kitaev spin liquids

The analysis of Sec. V B is not limited to ν = 2. We can
use the same construction in any number of layers to deduce
the edge CFT for all Kitaev spin liquids. In this section, we
repeat the analysis of Sec. V B (in lesser detail) for positive ν.
The results for negative ν are obtained through the action of
time reversal.

The anyons for ν = k > 0 can be obtained by condens-
ing the two-fermion composites εlεl+1 in k layers of ν = 1.
Furthermore, c− for the resulting topological phase is, by the
invariance of the chiral central charge under condensation,
c− = ν/2. These two facts imply that a KSL of any given
positive ν may be obtained by condensing pairs of fermions in
a stack of ν = 1 KSLs. Using this characterization of KSLs, it
is possible to deduce the edge theory of a KSL for any value
of ν using the two edge model.

Namely, condensation of εlεl+1 breaks the fermion parity
symmetry of each layer. The surviving symmetry group is the
global fermion parity across all layers. As occurred for ν = 2,
vortices thread all layers after condensation. Thus the periodic
or antiperiodic boundary conditions of the edge theory are
shared between all layers.

For ν � 2, there are several candidate CFTs for the edge
theory with the correct value of c− and symmetry properties.
Charaterising the CFT primaries is necessary to distinguish
which CFT is correct. Thus the remainder of this section fo-
cuses on the description of the primary fields.

1. Even number of layers

The KSLs with odd ν have non-Abelian anyons [16], which
complicates their description. By expressing the ν = 2n KSLs
as a condensation of n layers of ν = 2, we avoid this compli-
cation for as long as possible.

Recall from Sec. V B 3 that the edge CFT for ν = 2 is a
free boson, and may be described in terms of vertex operator
primaries. Composites of these vertex operators between the
n layers can be written

V�α (z) = ei�α· �φ(z), (70)

where now, with periodic or antiperiodic boundary con-
ditions on each layer, �α ∈ (Z ∪ (Z + 1

2 ))n, and �φ(z) =
(φ1(z), . . . , φn(z)). The OPE of two such fields takes the form

V�α (z)V�β (w) = (z − w)�α·�βV�α+�β (z)(1 + · · · ). (71)

Just as was the case for ν = 2, some primaries in the
uncoupled CFT consisting of n bosons become gapped when
the symmetry protecting them is broken. Anything which is
charged under LX

εl εk
becomes gapped by LY

εl εk
(x), and disap-

pears from the CFT. This is the same as demanding that the
elements of the chiral algebra braid trivially with all primaries.
Only V�α (x) such that

αl + αk ∈ Z for all l, k, (72)
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are allowed. Here, αl and αk are components of �α. The �α
which satisfy Eq. (72) are

�α ∈ Zn ∪ ((
1
2 , . . . , 1

2

) + Zn
)
. (73)

The first partition of this set consists of bosons and fermions.
The half-integer part consists of vortices. That all entries must
be half-integer if any of them are is a reflection of the fact that
vortices must thread all the layers.

The chiral algebra may also be characterized by a condition
on �α [55]. It is generated by composites of fermions on differ-
ent layers. The vertex operators obtained by taking products of
these may be interpreted as hopping any number of fermions
between any layers—equivalently, creating an even number of
fermions. Thus the chiral algebra consists of vertex operators
V�α with

�α ∈ Zeven =
{
�α = (α1, . . . , αn) ∈ Zn :

∑
l

αl ≡ 0 mod 2

}
.

(74)

Once more, these are precisely the vertex operators which are
bosons. Eq. (71) shows that the conformal weight of V�α is
h�α = |�α|2/2. If �α ∈ Zeven, we have

|�α|2 =
∑

l

αl ≡ 0 mod 2, (75)

as α2
l ≡ αl mod 2 for integer αl . Then h�α ∈ Z is an integer,

and V�α is a boson.
This is a complete enough description of the edge CFT

for our purposes. We can again check the correspondence
between anyons and primaries, which is in complete analogy
with ν = 2. We write b ↔ �α0,b if taking the anyon b to the
edge produces a field in the edge CFT which is a sum of vertex
operators V�α with �α ∈ �α0,b + Zeven and their descendants.

Then the correspondence inherited from ν = 2 according
to the construction of ν = 2n by n layers is

1 ↔ (0, 0, . . . , 0), ε ↔ (1, 0, . . . , 0),

a, e ↔ (
1
2 , 1

2 , . . . , 1
2

)
, and ā, m ↔ (− 1

2 , 1
2 , . . . , 1

2

)
.

(76)

Whether the vortices are labeled a, ā or e, m depends on ν.
One may also explicitly check that all the fusion and

braiding relations match with this assignment. From our con-
struction, these relations must match, but we will also check
this for a small number of examples.

Indeed, for the fusion and braiding of a and ā in any ν =
2(2k + 1), we have

a × ā = 1 and Raā
1 Rāa

1 = e−2π i
4(2k+1)

16

←→ V(1/2,...,1/2)(z)V(−1/2,...,1/2)(w)

= (z − w)(2k−1)/4V(0,1,...,1)(z), (77)

where (0, 1, . . . , 1) ∈ Zeven, as 2k + 1 is odd, and taking z

around w produces as phase e2π i
(2k−1)

4 = e−2π i
4(2k+1)

16 .

For an example with ν = 4k, we have

e × m = ε and Rem
ε Rme

ε = −e2π i
8k
16

←→ V(1/2,...,1/2)(z)V(−1/2,...,1/2)(w)

= (z − w)2(k−1)/4V(0,1,...,1)(z), (78)

where (0, 1, . . . , 1) ∈ (1, 0, . . . , 0) + Zeven, as 2k is even, and

taking z around w produces a phase e2π i
2(k−1)

4 = −e2π i
8k
16 .

2. Odd number of layers

To fill in the odd values of ν = 2n + 1, we consider con-
densing ε1ε2 in a stack of ν = 1 and ν = 2n.

The uncoupled primaries are composites of free fermion
primaries and vertex operators in the ν = 2n edge,

1 · V�α (z), ψ (z)V�α (z), σ (z)V�α (z), and μ(z)V�α (z),

(79)

where �α ∈ Zn ∪ (( 1
2 , . . . , 1

2 ) + Zn).
After condensing ε1ε2 ↔ [ψV(1,0,...,0)] some of these pri-

maries may be gapped by LY
ε1ε2

(x). The remaining primaries
are

1 · V�α (z), �α ∈ Zn, (80a)

ψ (z) · V�α (z), �α ∈ Zn, (80b)

σ (z) · V�α (z), �α ∈ (
1
2 , . . . , 1

2

) + Zn, (80c)

μ(z) · V�α (z), �α ∈ ( 1
2 , . . . , 1

2 ) + Zn. (80d)

As we saw in the even case, vortices must thread all the
layers.

The new chiral algebra is found by appending [ψV(1,0,...,0)]
to the chiral algebra for ν = 2n. Also as in the even case, the
chiral algebra consists of all operators with an even number of
fermions. That is, of all the bosons:

1 · V�α (z), �α ∈ Zeven, (81a)

ψ (z) · V�α (z), �α ∈ Zodd, (81b)

where Zodd = (1, 0, . . . , 0) + Zeven.
There are four chiral equivalence classes, with representa-

tives

1 · V�0(z), ψ (z) · V�0(z), σ (z) · V�α0,σ
(z), and

μ(z) · V�α0,σ
(z), (82)

where �α0,σ = ( 1
2 , . . . , 1

2 ). The vacuum anyon and the fermion
are clearly identified with the first two fields here. The bulk
vortex may correspond to one of two twist fields at the edge,
depending on fermion parity (as in the ν = 1 case).

Let us check a few of the fusion and braiding relations.
We choose the vortex braiding relations in each of its fusion
channels, as these are the least immediate. For n = 2k, we
have

σ × σ = 1 and
(
Rσσ

1

)2 = e−2π i
2(2n+1)

16

←→ σ (z)V�α0,σ
(z)σ (w)V�α0,σ

(w)

= (z − w)n/4−1/8V(1,...,1)(z), (83)
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where (1, . . . , 1) ∈ Zeven, as n is even. Wrapping z around w

correctly produces a phase e2π i[n/4−1/8] = e−2π i
2(2n+1)

16 .
Meanwhile, still for n = 2k, the other fusion channel gives

σ × σ = ε and
(
Rσσ

ε

)2 = e2π i
6(2n+1)

16

←→ σ (z)V�α0,σ
(z)μ(w)V�α0,σ

(w)

= (z − w)n/4+3/8V(1,...,1)(z). (84)

Wrapping z around w produces a phase e2π i[n/4+3/8] =
e2π i

6(2n+1)
16 .

Similar calculations may be performed when n = 2k + 1
is odd.

D. Condensing vortices in ν = 16 and the E8 state

When ν ≡ 0 mod 16, the bulk anyon theory is that of
the toric code [4,16]. Notably, the vortices e and m are both
bosonic, and themselves are candidates for condensation. The
anyon theory produced by condensing e (or m) in the toric
code is trivial (Sec. IV). However, the invariance of the chi-
ral central charge under condensation also tells us that the
topological phase produced by condensing e in the ν = 16
KSL has

c− = 8. (85)

The condensate phase has no anyons in its bulk, but
nonetheless has nontrivial topological order, with eight chiral
bosonic edge modes [55]. This topological phase is known
as the E8 state. It is a particularly striking example of the fact
that topological phases are not determined solely by their bulk
anyon content [55,60].

The E8 state is named for a relation to the exceptional
simple Lie group E8. Deducing the CFT describing the edge
of this phase reveals what this connection is.

Before condensation, the edge CFT has vertex operators
V�α (z), where �α ∈ Z8 ∪ (( 1

2 , . . . , 1
2 ) + Z8), and the chiral al-

gebra consists of the vertex operators with �α ∈ Zeven.
The anyon e corresponds to the chiral equivalence class of

�α0,e = (
1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2

)
. (86)

This is a boson: h�α0,e = |�α0,e|2/2 = 1 ∈ Z. As such, it can be
appended to the chiral algebra.

None of the other primaries braid trivially with this vertex
operator, and so they all become gapped, reflecting the lack of
anyons in the bulk condensate. We are left with only a single
chiral equivalence class, and a chiral algebra

�α ∈ Zeven ∪ ((
1
2 , . . . , 1

2

) + Zeven
) = �8. (87)

This lattice, �8, is the root lattice for the exceptional simple
Lie group E8. This is the origin of the bulk phase’s name.

VI. DISCUSSION

The abstract mathematical tools employed in the study of
topological phases maintain little contact with the physical
system. While this makes them powerful and general [16,21–
23,59,60], it also restricts the class of questions which they
can answer. Our motivating question is outside the scope of

any method which assumes a large gap in the bulk: what
happens to the edge modes when an anyon condenses in the
bulk?

The two edge model introduced in Sec. III provides a
platform in which simple thought experiments reveal answers
to this question: the edge generically breaks a symmetry
previously imposed by the bulk anyons [31,54], the chiral
central charge (related to the heat current at the edge) remains
invariant, and additional operators at the edge become local
[40].

The toric code [4] provides a setting where we can see
these principles manifest explicitly in a soluble model. The
edge model in that case is just the transverse field Ising
model [69]. Anyon condensation in the bulk of the toric code
generically introduces a longitudinal field to the edge model,
breaking its Z2 symmetry.

The Kitaev spin liquids [16] also admit anyon condensa-
tions when they are layered. By applying two edge technology
to these chiral examples, we are able to deduce the nature of
the CFT describing the edge for any value of the Chern index
ν describing the Kitaev phases. We can also construct the E8

state, an important example of a topological phase without
bulk anyons, and see the E8 lattice structure of its edge CFT.

Further work could also include an examination of what
effect gauging in the bulk—which is in a sense the inverse
operation of condensation—has on the edge. The two edge
model should be directly applicable to this scenario. From the
CFT analogy, one should discover that the CFT undergoes
a process known as orbifolding [49,52]. Having a physical
picture for this process, through the two edge model, would
also be helpful.

In order to adapt the two edge method to other phase tran-
sitions, beyond gauging and condensation, one must consider
gapless excitations at both edges, and how they can couple to
each other. This should certainly be possible but is likely to
become complicated in general.

It may be possible to carry through similar two edge
thought experiments to study the edges of symmetry protected
topological phases (SPTs) [19]. Such phases also express
anomalous edge states, and characterising these through the
two edge construction could prove enlightening. In this con-
text, it would also be interesting to generalize the construction
to higher dimensions, as there are many interesting SPTs
which are not two dimensional.

A possible route towards such a generalization of our
model is to rephrase the two edge thought experiment in the
modern language of higher form symmetries [56,57,83,84].
The symmetry operators associated to loops of anyons, LX

a ,
are examples of higher form symmetries, and reformulating
our conclusions in this language could open a route to straight-
forward generalization of the two edge construction—both
to higher dimensions and to SPTs. Indeed, there has been
recent work exploring the connection between higher form
symmetries and anyon condensation [85–87].

The two edge construction provides a means of assessing
the phase structure of specific lattice models. As a specific
example, consider the condensation transition from the ν =
16 Kitaev spin liquid to the E8 state described in Sec. V D.
Models of the ν = 16 Kitaev spin liquids are relatively easy to
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construct from layers of the ν = 1 honeycomb model. As the
vortex movement operators in such a model are not known ex-
actly, it is not clear exactly how one should deform the model
in order to cause a condensation of the composite vortex
anyons, as required to produce the E8 state [55]. Determining
whether a given model actually achieves the E8 state or a
trivial state can be a difficult task. Distinguishing the E8 phase
from the trivial phase in the bulk requires knowledge of the
wave function [66], which is not available in models without
exact solutions. However, by using the two edge geometry, it
may be possible characterize an effective model of the edge,
as was done for the toric code in Sec. IV, and hence verify that
a proposed model does lie in the E8 phase. Similarly, deriving
effective models of the edge in other lattice models may assist
in determining their phase diagrams.

At a broader level, our results demonstrate the utility of
studying topological phases through the application of sim-
ple thought experiments. The kinds of thought experiments
we perform underlie the construction of the mathematical
theory of anyons. Returning to these thought experiments

can overcome questions that would otherwise be rendered
opaque. Such thought experiments are usually more direct and
intuitive to a broad audience, and the study of anyons and
topological phases would likely be more accessible if such
constructions were provided when they are possible.
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