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Spin susceptibility in interacting two-dimensional semiconductors and bilayer systems at first order:
Kohn anomalies and spin density wave ordering
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This work is an analytic theoretical study of a two-dimensional (2D) semiconductor with a Fermi surface that
is split by the Zeeman coupling of electron spins to an external magnetic field in the presence of electron-electron
interactions. We calculate the spin susceptibility for long-range and finite-range interactions diagrammatically,
and we find a resonant peak structure at the Kohn anomaly already in first-order perturbation theory. In contrast
to the density-density correlator that is suppressed due to the large electrostatic energy required to stabilize
charge density order, the spin susceptibility does not suffer from electrostatic screening effects, thus favoring
spin density wave order in 2D semiconductors. Our results impose significant consequences for determining
magnetic phases in 2D semiconductors. For example, a strongly enhanced Kohn anomaly may result in helical
ordering of magnetic impurities due to the Ruderman-Kittel-Kasuya-Yosida interaction. Furthermore, the spin
degree of freedom can equally represent a layer pseudospin in the case of bilayer materials. In this case, the
external “magnetic field” is a combination of layer bias and interlayer hopping. The sharp peak of the 2D static
spin susceptibility may then be responsible for dipole-density-wave order in bilayer materials at large enough
electron-phonon coupling.
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I. INTRODUCTION

Two-dimensional (2D) semiconductors are increasingly
popular materials in condensed matter physics due to various
high-precision techniques, allowing physicists to control the
chemical content, geometry, strain, disorder, electron density,
and various spectral features of an experimental device. The
ability to tune the electron density in a 2D device by elec-
trostatic gates enables extensive experimental studies of a
variety of phase transitions and emergent orders, from metal-
to-insulator transitions and non-Fermi-liquid behavior [1–11],
to spin and valley polarized ground states [12–17].

In this paper, we study spin and charge density wave (DW)
ordering in doped 2D semiconductors, the phenomenon that
has attracted much attention due to potential applications
in electronics, photodetection, and information storage [18].
While in one-dimensional metals, DW order emerges due to
long-lived collective spin and charge excitations [19–25], DW
ordering in 2D metals is often associated with either hot-spot
physics or perfectly nested Fermi surfaces (FSs) [26–29].
Instead, in this work we study the effect of the repulsive
electron-electron interaction on spin and charge susceptibili-
ties of an isotropic 2D electron gas (2DEG), which has neither
hot spots nor perfect FS nesting.

Nonanalyticities of a 2DEG have been mostly studied for
a zero-range contact interaction [30–41], where the first non-
analytic contributions emerge from second-order perturbation
theory. These nonanalyticities do not provide resonant peak
structures in static susceptibilities, yet they still could be re-
sponsible for first-order magnetic quantum phase transitions
[15,30–41]. Here, we show analytically that, in contrast to a
zero-range interaction, any finite-range repulsive interaction

results in sharp resonances in 2D static susceptibilities already
in first-order perturbation theory. The resonances appear in
the form of a logarithmically enhanced square-root nonana-
lyticity near q = 2kF , where kF is the Fermi momentum. This
intriguing result shows that 2D semiconductors are strongly
susceptible to 2kF spin and charge density fluctuations.

A previous numerical study found that the charge suscep-
tibility has a resonant Kohn anomaly [42–44] when evaluated
for a screened Coulomb interaction [45]. However, the sit-
uation for the spin susceptibility is far from clear. While
the charge and spin susceptibilities are the same for non-
interacting systems, it is well known that this is no longer
the case in the presence of interactions. In particular, it was
shown that the analytic behavior of the two quantities is
dramatically different for short-ranged interactions at small
q in second-order perturbation theory [33]: while the charge
susceptibility stays analytic, the spin susceptibility becomes
nonanalytic. Surprisingly, this distinction has not been studied
for long-range interactions, even at first order in perturbation
theory. The present work aims to fill that gap. We show that
the spin susceptibility exhibits a strong Kohn anomaly and
features nonanalyticities. We provide analytic expressions for
logarithmically enhanced interaction corrections to both spin
and charge susceptibilities, including the prefactors, which
allow us to make predictions for specific materials. We also
show that higher-order interaction corrections to the charge
and spin susceptibilities are different. In particular, the charge
susceptibility is further suppressed by electrostatic screening,
while the spin susceptibility is not. This means 2kF spin den-
sity wave (SDW) ordering is favored in 2D semiconductors.

There are two main resonant scattering processes near
the isotropic FS: forward scattering with small momentum
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transfer, q � kF , and backscattering with momentum transfer,
q ≈ 2kF . In the case of a noninteracting isotropic 2DEG, static
susceptibilities have a plateau for all momentum transfers
q < 2kF [44]. Here, we show that the first-order interaction
corrections result in sharp resonances in static susceptibilities
at the Kohn anomaly that can be further responsible for the
DW instabilities of an interacting 2DEG.

Analytic calculations are possible because resonances in
static susceptibilities emerge due to scattering processes near
the FS that can be accounted for within the semiclassical
approximation [46,47]: kF r � 1, EF τ � 1, where r and τ are
spatial and temporal arguments of a correlation function; EF

is the Fermi energy. The semiclassical approximation results
in a substantial reduction of the spatial degrees of freedom,
also known as the dimensional reduction [47].

The SDW order can be experimentally observed by means
of spin-polarized scanning tunneling microscopy (STM) and
Raman spectroscopy in a wide range of materials [48–50].
Even in the absence of a bona fide DW, we expect strong
signatures of the enhanced Kohn anomaly. The spin suscepti-
bility for a 2DEG in a magnetic field is also exactly equivalent
to the layer pseudospin susceptibility in a bilayer 2DEG with-
out a magnetic field. Our result then supports the existence
of interlayer-dipole-density Friedel oscillations, which can be
detected by STM or nitrogen-vacancy centers [51,52]. Indeed,
Friedel oscillations have been observed in bilayer graphene,
silicene, and WSe2 [53,54]. These results may also be appli-
cable to transition-metal dichalcogenide (TMD) bilayers, as
this family of layered van der Waals materials often exhibits
DW ordering at low temperatures [55–59]. Beyond structures
with natural stacking, DW orders have also been observed
in twisted bilayers where the DW domain is confined to a
moiré unit cell [60]. Apart from DW orders, multilayer semi-
conductor heterostructures with electron and hole layers can
host a variety of other exotic phases [61,62]. In this work,
we concentrate on the electron-doped 2D materials, while the
case of coupled electron-hole layers is considered elsewhere.

The paper is organized as follows. The theoretical model
is introduced in Sec. II. The free-fermion 2D susceptibility
is discussed in Sec. III. The first-order interaction corrections
to the 2D susceptibilities are calculated in Sec. IV. Further
screening of the charge susceptibility compared to the spin
susceptibility is discussed in Sec. V. Comments on the three-
dimensional (3D) case are provided in Sec. VI. Discussion of
the physical consequences of a strongly peaked Kohn anomaly
is presented in Sec. VII. Conclusions are given in Sec. VIII.
Details of derivations are outlined in the Appendixes.

II. THEORETICAL MODEL

In this work, we consider a 2D semiconductor with a
quadratic electron dispersion that is coupled to an external
magnetic field, B, via the Zeeman coupling. The results apply
equally well to the case of hole-doped semiconductors, but
for concreteness we consider here positive dispersions. Such
a system is described by the Hamiltonian

H0 = p2

2m
− EF + η · B, (1)

where p = (px, py) is the 2D electron momentum, p = |p|, m
is the effective mass, and η = (ηx, ηy, ηz ) are the spin Pauli
matrices. In semiconductor quantum wells, B = |B| plays the
role of the standard Zeeman energy due to the coupling be-
tween the external magnetic field and the electron spin. In
general, we choose the x axis directed along the in-plane
component of B, i.e.,

B = (Bx, 0, Bz ). (2)

In the case of bilayer materials, the spin corresponds to the
layer number such that components of the effective “magnetic
field” B correspond to the electrostatic bias α = Bz between
the layers and the interlayer hopping t⊥ = Bx,

B = (t⊥, 0, α). (3)

Such a model is qualitatively suitable for doped bilayer and
heterobilayer TMDs [63–70] as well as doped Bernal (AB-
stacked) bilayer graphene [71–73] at zero magnetic field. The
valley degree of freedom that is typical for the honeycomb
lattice materials merely contributes to the degeneracy factor
of each band.

In this paper, we consider a clean system at zero tem-
perature where the electron-electron interaction provides the
leading corrections to the spin and charge susceptibilities. We
show that resonant contributions to static susceptibilities orig-
inate from the forward-scattering interaction with an effective
radius R0 � λF ; λF = 2π/kF is the Fermi wavelength. In
particular, any zero-range interaction such as intervalley and
interlayer dipole interactions can be safely neglected here.
Here, we consider any interaction with an effective radius
R0 � λF to be zero-ranged. Finally, we stress that the Zee-
man field B in Eq. (1) can be momentum-dependent, i.e., it
may also include spin-orbit interaction. Indeed, the forward-
scattering component of the electron-electron interaction that
results in the most resonant contribution to susceptibilities
transfers a small momentum q � 1/R0 � kF , such that the
spinors of scattered electron states are almost collinear and
the corresponding spinor matrix elements are always close to
one regardless of the symmetry of the spin-orbit interaction.

The single-particle Hamiltonian H0 is diagonal in the ψs

basis. Here s = ±1 is the band index,

ψ− =
(

cos θ
2

sin θ
2

)
, ψ+ =

(
sin θ

2− cos θ
2

)
, (4)

where we introduced the mixing angle θ ,

eiθ = Bz + iBx

B
, (5)

and B = |B|. Therefore, it is more convenient to work within
the following rotated basis made of ψs spinors:

η1 = −ηx cos θ + ηz sin θ, (6)

η2 = ηy, (7)

η3 = −ηx sin θ − ηz cos θ. (8)

The spectrum of H0 consists of two parabolic bands,

εs(p) = p2

2m
− EF − sB, (9)
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where the band index s = ±1 is also the eigenvalue of η3. The
Fermi momenta ks defined from the two components of the FS
via the equation εs(ks) = 0 are then given by

ks = kF + s δ, (10)

kF = k+ + k−
2

, (11)

δ = k+ − k−
2

= B

vF
, (12)

where vF = kF /m is the average Fermi velocity, and kF is the
average Fermi momentum. Notice that here we did not define
kF as

√
2mEF but rather introduced it as an average of the two

Fermi momenta. The electron dispersion near the FS is linear
in leading order,

εs(p) ≈ vs(p − ks), (13)

where vs = ks/m is the corresponding Fermi velocity. Again,
the same diagonalization procedure can be done for an arbi-
trary momentum-dependent field B = Bp at Bp � EF , where
the last condition is required to ensure that two spinors with
close (but not necessarily the same) momenta and different
band indices are nearly orthogonal.

In this paper, we study interaction corrections to static
susceptibilities using the Green’s function formalism. The
free-fermion Matsubara Green’s function G(r, τ ) is diagonal
in the ψs basis [see Eq. (4)],

G(r, τ ) =
∑
s=±1

ψsψ
†
s Gs(r, τ ), (14)

where Gs(r, τ ) is the Green’s function corresponding to the
band with index s, and τ is the imaginary time. Throughout the
paper, we assume the zero-temperature limit. The semiclassi-
cal asymptotics of the Green’s function at ksr � 1 and EF τ �
1 are given by the following expression (see Refs. [41,46,47]
for details):

Gs(r, τ ) =
∑
ν=±1

eiν(ksr−π/4)

√
λsr

gν
s (r, τ ), (15)

gν
s (x, τ ) = 1

2π

1

iνx − vsτ
, (16)

where λs = 2π/ks is the Fermi wavelength corresponding to
the band with index s. The index ν can be interpreted as the
chirality index: ν = +1 (ν = −1) is referred to as the right-
handed (left-handed) electron chirality; see Refs. [41,47].
Here we also stress that Eqs. (15) and (16) account explic-
itly for the FS curvature, while the electron dispersion near
the FS is linearized according to Eq. (13). The subleading
∝ (p − ks)2/m correction to εs(p) near p = ks is negligible
in the semiclassical limit kF r � 1.

In this work, we consider a repulsive instantaneous density-
density interaction between electrons,

V (r, τ ) = V (r)δ(τ ), (17)

where δ(τ ) is the delta function, and V (r) is a function of
r. We are specifically interested in two cases. The first is the

Coulomb interaction

VC (r) = e2

εr
, (18)

where e is the elementary charge, and ε is the dielectric
constant. The second is an arbitrary finite-range interaction,
VR0 (r). As a particular example of the latter, we use the
screened Thomas-Fermi interaction in 2D, VTF(r),

VTF(r) =
∫ ∞

0

dq

2π
qJ0(qr)VTF(q), (19)

VTF(q) = 2πe2

ε

1

q + κ
, (20)

κ = 2πe2NF

ε
= 2g

aB
, aB = ε

me2
, (21)

NF = gm

π
, (22)

where Eq. (19) is the 2D Fourier transform, J0(x) is a Bessel
function, 1/κ = R0 � λF defines the effective radius of the
Thomas-Fermi interaction, aB is the effective Bohr radius, g
is the degeneracy of each FS, and NF is the total density of
states at the Fermi energy.

Note that the effective Bohr radius aB is a few nanome-
ters for TMD bilayers, Si MOSFETs, and GeS monolayers
[74–76]. Several monochalcogenides as well as bilayer
graphene have effective Bohr radii of 5–9 nm [76,77], while
quantum wells typically do better with aB = 8, 10, and 18 nm
for GaAs, AlGaAs, and strained Ge/Si wells, respectively
[75,78–80]. Ideal candidates are 2DEGs surrounded by a
high-dielectric environment to fulfill the condition aB � λF .
Indeed, some semiconductors have dielectric constants over
1000 [81]. One would need to tune the density via gates or
chemical doping into this regime to see the predicted suscep-
tibility that will be derived in Sec. IV C.

It is convenient to introduce the Wigner-Seitz radius rs,
which plays the role of a dimensionless coupling constant for
the interactions,

rs ≡
√
g

aB
√

πne
≈

√
2

kF aB
, (23)

where ne is the 2D electron density. In the approximate re-
lation we implied δ � kF , i.e., the Fermi surfaces are only
slightly split by the effective Zeeman term, so ne ≈ gk2

F /(2π ).
We also point out that screening of the Coulomb interaction in
real devices has contributions from the proximity to metallic
gates that control the electron density, such that R0 in real
devices is bound from above by the distance to the closest
metallic gate. The Thomas-Fermi screening does not account
for dynamic screening effects. Such effects can be taken into
account within second-order perturbation theory; see, e.g.,
Ref. [36]. As here we are interested in the first-order interac-
tion corrections to the susceptibilities, we can neglect dynamic
screening as long as rs � 1. Note that this perturbative
regime is consistent with the condition aB � λF discussed
earlier.
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III. FREE-FERMION SUSCEPTIBILITY

The free-fermion susceptibility is represented by the bub-
ble diagram (see Fig. 6 in Appendix A),

χ
(0)
i j (r, τ ) = −Tr{ηiG(r, τ )η jG(r,−τ )}

=
∑
s,s′

ηss′
i ηs′s

j χ
(0)
s′s (r, τ ), (24)

χ
(0)
s′s (r, τ ) = −gGs′ (r, τ )Gs(r,−τ ), (25)

where Gs(r, τ ) is defined in Eq. (14), its semiclassical
asymptotics is given by Eq. (15), ηss′

i = 〈ψs|ηi|ψs′ 〉, i, j ∈
{0, 1, 2, 3}, where ηi is a Pauli matrix if i ∈ {1, 2, 3} [see
Eqs. (6)–(8)], and η0 = I , where I is the 2 × 2 identity matrix.
Here, Tr stands for the trace over the spin as well as any
other possible degree of freedom; the latter ones are accounted
for by the degeneracy factor g of each FS. In Si MOSFETs,
g = 2 due to the valley degeneracy, whereas g = 1 in III-V
semiconducting quantum wells. Note that for the case of the
layer pseudospin susceptibility in a bilayer TMD, g = 4 due
to the electron spin and valley degeneracies (in this case, we
treat η as the layer pseudospin).

The Fourier transform of Eq. (25) at zero frequency yields
the 2D static susceptibility (see Ref. [44] and Appendix A):

χ
(0)
s′s (q) = NF

2

×
⎡
⎣1 − ϑ (δq)

√(
1 − [Q−

s′s]
2

q2

)(
1 − [Q+

s′s]
2

q2

)⎤
⎦,

(26)

Q±
s′s = |ks′ ± ks|, (27)

where ϑ (x) is the Heaviside step function and
δq = q − Q+

s′s.
The free-fermion susceptibility has a one-sided square-root

nonanalyticity at q > Q+
s′s that does not provide a peak struc-

ture: the maximal value of χ
(0)
s′s (q) is given by NF /2 at all

q < Q+
s′s, where Q+

s′s ≈ 2kF . This is the usual Lindhard func-
tion. Thus, the interaction corrections determine the resonant
value of q where the susceptibility reaches its maximum. This
is especially important for studying possible DW instabilities
of the 2DEG.

IV. FIRST-ORDER INTERACTION CORRECTIONS

In this section, we calculate the first-order corrections to
irreducible susceptibilities. We show that these corrections
yield a two-sided logarithmically enhanced square-root non-
analyticity with an asymmetric peak structure near the Kohn
anomaly q = Q+

s′s, even for a finite range interaction. Our
results agree with a numerical study of the charge suscepti-
bility of spin-degenerate 2DEGs with a dynamically screened
Coulomb interaction [45]. We also find a weak nonanalyticity
at q = Q−

−ss = 2δ, however this nonanalyticity is removed
by the Thomas-Fermi screening of the Coulomb interaction.
The nonanalyticity at q ∼ 0 is canceled for arbitrary density-
density interactions within first-order perturbation theory. A
weak linear-in-q nonanalyticity at q ∼ 0 is possible within
the second-order perturbation theory; see, e.g., Refs. [32–36].

FIG. 1. First-order diagrams for the irreducible susceptibility,
χ�

i j (z), z = (r, τ ), � ∈ {a, b, c}; see Eqs. (28), (29), and (30).

However, the much stronger square-root nonanalyticity near
the Kohn anomaly that emerges already within the first-order
perturbation theory is more important.

Irreducible susceptibilities are represented by the sum of
all diagrams that remain connected after cutting an arbitrary
interaction line. The first-order interaction corrections to the
irreducible susceptibility are given by the three diagrams in
Fig. 1,

χa
i j (z) =

∫
dz1dz2 V (z1 − z2)

× Tr{ηiG(z − z1)G(z1 − z2)G(z2)η jG(−z)}, (28)

χb
i j (z) =

∫
dz1dz2 V (z1 − z2)

× Tr{ηiG(z)η jG(−z2)G(z2 − z1)G(z1 − z)}, (29)

χ c
i j (z) =

∫
dz1dz2 V (z1 − z2)

× Tr{ηiG(z − z1)G(z1)η jG(−z2)G(z2 − z)}, (30)

where zi = (ri, τi ), and V (z) = V (r, τ ) = V (r, τ ) is an ar-
bitrary density-density interaction. Note that in the case of
a finite-range interaction, the analytic part of the polariza-
tion operator is included self-consistently via the screening
momentum κ; see Eq. (21). The nonanalytic part of the
polarization operator does not contribute in first order and
results in a weak nonresonant nonanalyticity in second order
[32–36].

The trace, Tr, in Eqs. (28)–(30) is evaluated the same way
as in Eq. (24), yielding

χ�
i j (z) =

∑
s,s′

ηss′
i ηs′s

j χ�
s′s(z), (31)

where z = (r, τ ), � ∈ {a, b, c}, ηss′
i = 〈ψs|ηi|ψs′ 〉, and χ�

s′s(z)
are given by the following integrals:

χa
s′s(z) = χb

ss′ (−z) = gGs(−z)
∫

dz1dz2 V (z1 − z2)

× Gs′ (z − z1)Gs′ (z1 − z2)Gs′ (z2), (32)
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χ c
s′s(z) = g

∫
dz1dz2 V (z1 − z2)Gs′ (z − z1)

× Gs′ (z1)Gs(−z2)Gs(z2 − z). (33)

Nonanalytic corrections to the susceptibilities originate
from resonant scattering processes near the FS. The lead-
ing nonanalytic contribution of each Feynman diagram can
be evaluated exactly within the semiclassical approximation
kF r � 1, EF τ � 1. Using the semiclassical asymptotics of
the Green’s function [see Eq. (15)], we perform the dimen-
sional reduction of the diagrams in Fig. 1 following the recipe
described in Ref. [47]. The details are given in Appendix B,
and we find

χ�
s′s(r, τ ) = g

∑
ν,ν ′

ei π
4 (ν−ν ′ )

√
λsλs′

eirQγ ′γ

r
χ̃ �

γ ′γ (r, τ ), (34)

Qγ ′γ ≡ ν ′ks′ − νks = (ν ′ − ν)kF + (ν ′s′ − νs)δ. (35)

Here, the collective indices γ = {ν, s}, γ ′ = {ν ′, s′} are intro-
duced to shorten notations, ν, ν ′ ∈ {±1} are the chiral indices
[see the discussion after Eq. (16)], � ∈ {a, b, c}, and χ̃ �

γ ′γ (x, τ )
are represented by the one-dimensional analogs of the dia-
grams in Fig. 1,

χ̃a
γ ′γ (ξ ) = χ̃b

γ γ ′ (−ξ ) = gγ (−ξ )
∫

dξ1dξ2 V (ξ1 − ξ2)

× gγ ′ (ξ − ξ1)gγ ′ (ξ1 − ξ2)gγ ′ (ξ2),
(36)

χ̃ c
γ ′γ (ξ ) =

∫
dξ1dξ2 V (ξ1 − ξ2)gγ ′ (ξ − ξ1)

× gγ ′ (ξ1)gγ (−ξ2)gγ (ξ2 − ξ ), (37)

where ξi = (xi, τi ), and dξi = dxidτi. Here, xi ∈ (−∞,∞) =
R is an effective one-dimensional coordinate so that integrals
over x1 and x2 are taken over R. We have also introduced a
short-hand notation for the one-dimensional Green’s function
and the interaction,

gγ (ξ ) = gν
s (x, τ ), (38)

V (ξ ) = V (|x|, τ ), (39)

where gν
s (x, τ ) is given by Eq. (16). The derivation of

Eqs. (36) and (37) is outlined in Appendix B. Thus, the dimen-
sional reduction technique (see Ref. [47]) allowed us to reduce
the first-order diagrams in Fig. 1 to their one-dimensional
analogs given by Eqs. (36) and (37). The 2D susceptibili-
ties are then expressed through the one-dimensional ones via
Eq. (34).

Now, we proceed to calculate the static susceptibilities
in the zero-temperature limit for instantaneous interactions;
see Eq. (17). The one-dimensional static susceptibilities
χ̃ �(Qγ ′γ , x) are given by the following expression:

χ̃ �(Qγ ′γ , x) ≡
∫ ∞

−∞
χ̃ �

γ ′γ (x, τ ) dτ. (40)

The nonanalytic contribution to the 2D static susceptibilities

then follows directly from Eq. (34),

χ�
s′s(r) ≡

∫ ∞

−∞
χ�

s′s(r, τ ) dτ

= g
∑
ν,ν ′

ei π
4 (ν−ν ′ )

√
λsλs′

eirQγ ′γ

r
χ̃ �(Qγ ′γ , r), (41)

where χ̃ �(Qγ ′γ , r) is given by Eq. (40) at x = r and represents
the amplitude of the Qγ ′γ harmonic of the 2D static suscepti-
bility. All time integrals can be evaluated analytically for an
arbitrary instantaneous interaction [Eq. (17)] (see Appendix C
for details),

χ̃a(Qγ ′γ , x) = χ̃b(Qγ γ ′ , x) =
∫

dx1dx2

4π2

V (x1 − x2)

vs′ (x1 − x2)

× ϑ (x2)ϑ (−νν ′|x| − x1)

vs′ |x| + vs(|x2| + |x1 + νν ′|x||) , (42)

χ̃ c(Qγ ′γ , x) =
∫

dx1dx2

4π2

V (x1 − x2)

vs|x1| + vs′ |x2|

× ϑ (−νν ′x1x2)ϑ ( − νν ′(x − x1)(x − x2))
vs|x − x1| + vs′ |x − x2| ,

(43)

where the integrals over x1 and x2 are taken over the real line
R. At this point it is more convenient to work with the sum of
all three first-order contributions,

χ̃ (1)(Qγ ′γ , x) =
∑

�∈{a,b,c}
χ̃ �(Qγ ′γ , x), (44)

where the superscript (1) indicates the first-order correction
due to interactions. The remaining integrals over x1 and x2 in
Eqs. (42) and (43) can be further simplified for arbitrary V (x)
(see Appendix C for details),

χ̃ (1)(Qγ ′γ , r
) = 1

4π2vsvs′r

∫ +∞

−σ r
dx V (x)Fσ

s′s

(x

r

)
, (45)

Fσ
s′s(y) = 2

aσ

ln

∣∣∣∣1 + aσ

y + σ

y2

∣∣∣∣ − (y + σ )(2y + aσ )

y[y2 + aσ (y + σ )]
,

(46)

aσ = (ks + σks′ )2

ksks′
, (47)

where σ = −νν ′, y ∈ R. Next, we discuss the anomalies at
q ∼ 0, q = 2δ, and q = ks + ks′ separately.

A. No anomaly at q ∼ 0

Here we consider the contribution to the susceptibilities at
q ∼ 0 that correspond to Qγ ′γ = 0 [see Eq. (35)]. This condi-
tion is met if ν ′ = ν and s′ = s, which results in σ = −1 and
aσ = 0 in Eqs. (45)–(47). Taking the limit aσ → 0 in Eq. (46),
we find that Fσ

s′s(y) = F−
ss (y) = 0 under these conditions. This

happens because the self-energy corrections in Figs. 1(a) and
1(b) exactly cancel the nonanalyticity in diagram (c). There-
fore, there is no nonanalyticity/discontinuity of the first-order
interaction contribution to the susceptibilities at q = 0. Here
we stress that the exact value of the first-order interaction
correction to static susceptibilities at q = 0 is not necessarily
zero due to the contributions of the virtual scattering processes
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far away from the FS, however those contributions must be
analytic in the vicinity of q = 0, i.e., there is no resonant
structure of the susceptibilities there. Nonanalytic contribu-
tions to the static susceptibilities at q ∼ 0 may appear from the
dynamic screening of the interaction. This can be accounted
for via second-order perturbation theory and results in small
linear-in-q correction; see, e.g., Refs. [32–36].

B. Weak Kohn anomaly at q = 2δ

Next, we consider |Qγ ′γ | = 2δ [see Eq. (35)]. This condi-
tion is met when ν ′ = ν and s′ = −s, which corresponds to
σ = −1 and aσ = 4δ2/(k+k−) in Eqs. (45) and (46). If the
Zeeman splitting of the FS is small, δ � kF , then aσ � 1 and
Fσ

s′s(y) can be expanded in powers of aσ . The leading term is
the following:

F−
−ss(y) ≈ −4δ2

k2
F

y − 1

y4
, (48)

where δ � kF . Substituting Eq. (48) into Eq. (45), we find the
2δ harmonic χ̃ (1)(±2δ, r) = χ̃ (1)(2δ, r),

χ̃ (1)(2δ, r) ≈ −
(

δ

πvF kF

)2 ∫ +∞

1
dy V (ry)

y − 1

y4
, (49)

where Qγ ′γ = ±2δ at ν ′ = ν and s′ = −s. We also introduced
a new integration variable y = x/r in Eq. (45).

First, we consider the Coulomb interaction [see Eq. (18)],
which we insert into Eq. (49) to get

χ̃ (1)(2δ, r) ≈ −
√

2rs

24π2vF

(
δ

kF

)2 1

r
. (50)

Summing over all three first-order diagrams in Eq. (41) and
using Eq. (50), we find the 2δ harmonic, χ

(1)
−ss(2δ, r), in the

large-distance asymptotics of the static 2D susceptibility that
corresponds to ν ′ = ν and s′ = −s in Eq. (41), given by

χ
(1)
−ss(2δ, r) ≈ g

λF

∑
ν

e−2iνsδ r

r
χ̃ (1)(2δ, r)

≈ −
√

2rsNF

24π2

(
δ

kF

)2 cos (2δr)

r2
, (51)

where we used λ+ ≈ λ− ≈ λF . Indeed, we find a weak Kohn
anomaly in Eq. (51). The Fourier transform of Eq. (51) results
in a weak one-sided square-root nonanalyticity at q = 2δ,

χ
(1)
−ss(2δ, q) ≈ rsNF

6π

(
δ

kF

)2

ϑ

(
2δ

q
− 1

)√
2δ − q

2δ
, (52)

where q − 2δ � δ. This nonanalyticity does not produce a
resonant peak structure near q = 2δ due to its positive sign
and the one-sided character. Moreover, this nonanalyticity is
strongly suppressed by the factor (δ/kF )2 � 1.

The screened 2D interaction in Eqs. (19) and (20)
has asymptotics VTF(r) ∝ 1/r3 for r � 1/κ . From this,
one can easily verify that the nonanalyticity produced
is extremely weak: χ

(1)
−ss(2δ, q) ∝ |2δ − q|5/2 at |q − 2δ| �

min(δ, κ ), which does not result in a resonant peak structure
near q = 2δ.

C. Resonant Kohn anomaly at q ≈ 2kF

Finally, we consider the case when |Qγ ′γ | = ks + ks′ ≈
2kF [see Eq. (35)], which corresponds to ν ′ = −ν for arbitrary
s and s′. In this case, σ = +1 in Eq. (45) and aσ ≈ 4 for
δ � kF . This allows us to further simplify the function Fσ

s′s(y),

F+
s′s(y) ≈ ln

∣∣∣∣1 + 2

y

∣∣∣∣ − 2(y + 1)

y(y + 2)
≡ F+(y), (53)

where we used a+ ≈ 4 in Eqs. (46) and (47). Here, we intro-
duced the new notation F+(y) since the dependence on s and
s′ is negligible in the limit δ � kF . Substituting Eq. (45) into
Eq. (41) and taking ν ′ = −ν, we find the contribution to the
static susceptibilities near q = Q+

s′s = ks + ks′ :

χ
(1)
s′s (Q+

s′s, r) ≈ g

λF

∑
ν

eiν( π
2 −Q+

s′sr)

r
χ̃ (1)(Q+

s′s, r)

= NF

4π2vF

sin(Q+
s′sr)

r

∫ +∞

−1
dy V (ry)F+(y).

(54)

Here, χ̃ (1)(Q+
s′s, r) is given by Eq. (45) at σ = +1 and

|Qγ ′γ | = Q+
s′s. Furthermore, we used λ+ ≈ λ− ≈ λF and

Qγ ′γ = −νQ+
s′s at ν ′ = −ν.

First, we study Eq. (54) for the Coulomb interaction given
by Eq. (18). Notice that one has to use V (x) = V (|x|) as the
interaction depends only on the absolute value of the distance.
It is then clear that the integral over y in Eq. (54) is divergent
at y = 0. This divergence is unphysical and it originates from
the semiclassical expansion r � λF that we used here. This
means that the argument of V (ry) in Eq. (54) cannot be too
small as the semiclassical approximation is no longer valid
at r|y| � λF , which gives the bound |y| � λF /r. For this
reason, we introduce the cutoff momentum k� ∼ kF such that
the integration over y in Eq. (54) is taken over the union of
two intervals y ∈ ( − 1,−1/(k�r)) ∪ (1/(k�r),+∞), where
k�r � 1. Substituting the Coulomb interaction into Eq. (54),
we find

χ
(1)
s′s (Q+

s′s, r) ≈
√

2rsNF

8π2

sin(Q+
s′sr)

r2
I (k�r), (55)

I (x) =
∫ −1/x

−1

dy

|y|F
+(y) +

∫ +∞

1/y

dy

y
F+(y). (56)

We are interested in the x � 1 asymptotics of I (x),

I (x) = (ln x)2 + (2 ln 2 − 1) ln x + O(1). (57)

The leading I (x) ≈ (ln x)2 asymptotics originates from the
vertex correction diagram shown in Fig. 1(c). The diagrams
in Figs. 1(a) and 1(b) contribute to the subleading ∝ ln(x)
correction. Within the leading logarithmic order, we find the
Q+

s′s harmonic of the static susceptibilities

χ
(1)
s′s (Q+

s′s, r) ≈
√

2rsNF

8π2

sin(Q+
s′sr)

r2
[ln (k�r)]2. (58)

The Fourier transform of Eq. (58) (see Appendix D)
shows the asymmetric resonant nonanalytic peak near
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q = Q+
s′s = ks + ks′ ,

χ
(1)
s′s (Q+

s′s, q) ≈ − rsNF

2π

√∣∣∣∣ δq

Q+
s′s

∣∣∣∣ ln

∣∣∣∣k�

δq

∣∣∣∣
×

[
ϑ (δq) ln

∣∣∣∣k�

δq

∣∣∣∣ + πϑ (−δq)

]
, (59)

where δq = q − Q+
s′s � Q+

s′s ≈ 2kF . The peak structure origi-
nates from the negative two-sided square-root nonanalyticity.
Here we also see that this nonanalyticity is enhanced by
(ln |k�/δq|)2 at δq > 0 and by ln |k�/δq| at δq < 0.

In real devices, the Coulomb interaction is screened due to
the proximity of the 2DEG to metallic gates, as well as the
Thomas-Fermi screening effect. To account for this, we now
consider a general finite-range interaction, VR0 (r), e.g., the
Thomas-Fermi interaction in Eqs. (19) and (20). The asymp-
totics of χ

(1)
s′s (Q+

s′s, r) in Eq. (54) at r � R0 can be derived for
a general finite-range interaction. Indeed, the integral over y in
Eq. (54) is convergent on the scale of |y| � R0/r � 1, which
allows us to extend the integration over y all the way to −∞
and to use |y| � 1 asymptotics of F+(y) in Eq. (53),

F+(y) = −1

y
− ln |y| + ln 2 − 1

2
+ O(y). (60)

As V (x) is an even function, the leading −1/y term in Eq. (60)
does not contribute to the integral in Eq. (54). Therefore,
the leading approximation of the integral in Eq. (54) is the
following:∫ +∞

−1
dy VR0 (ry)F+(y) ≈ −

∫ +∞

−∞
dy VR0 (ry)

[
ln

∣∣∣ y

2

∣∣∣ + 1

2

]

= 2

r

{
V1 + V2

[
ln

(
2r

R0

)
− 1

2

]}
,

(61)

where we introduced the following constants:

V1 = −
∫ ∞

0
dx VR0 (x) ln

∣∣∣∣ x

R0

∣∣∣∣
=

∫ ∞

0

dq

2π
VR0 (q)[ln (2qR0) + γ ], (62)

V2 =
∫ ∞

0
dx VR0 (x) =

∫ ∞

0

dq

2π
VR0 (q). (63)

Here, VR0 (q) is the 2D Fourier transform of VR0 (x), γ ≈ 0.577
is the Euler-Mascheroni constant, and we have used the fact
that VR0 (x) must be an even function. Notice that both V1 and
V2 are positive constants for an arbitrary finite-range repulsive
interaction. Substituting Eq. (61) into Eq. (54), we find the
Q+

s′s ≈ 2kF harmonic of the static susceptibilities for an arbi-
trary finite-range interaction,

χ
(1)
s′s (Q+

s′s, r) ≈ − NFV2

2π2vF

sin
(
Q+

s′sr
)

r2

[
1

2
− ln

∣∣∣∣ 2r

R0

∣∣∣∣ − V1

V2

]
.

(64)

The asymptotics given by Eq. (64) is valid at r � R0. The
Fourier transform of this expression (see Appendix D) results

in the following two-sided square-root nonanalyticity:

χ
(1)
s′s

(
Q+

s′s, q
) ≈ −

√
2NFV2

2πvF

√∣∣∣∣ δq

Q+
s′s

∣∣∣∣
{
π ϑ (−δq)

+2 ϑ (δq)

[
V1

V2
− ln |2 δq R0| + 3

2
− γ

]}
,

(65)

where δq = q − Q+
s′s � Q+

s′s. The asymptotics given by
Eq. (65) is valid for any finite-range interaction at δq �
1/R0 � kF . As we clearly see here, the nonanalyticity sur-
vives for an arbitrary finite-range interaction, it is two-sided,
negative, and enhanced by the logarithm at q > Q+

s′s ≈ 2kF .
Such a nonanalyticity will always result in a peak structure
near the 2kF Kohn anomaly.

As a concrete example of a finite-range interaction, we now
consider the Thomas-Fermi interaction given by Eq. (20). The
constants V1 and V2 for the Thomas-Fermi interaction are the
following (see Appendix E):

V TF
1 ≈ 1

maB
ln

(
k�

κ

)
ln(2eγ R0

√
κk�), (66)

V TF
2 ≈ 1

maB
ln

(
k�

κ

)
. (67)

To evaluate these interaction constants, the integrals over q in
Eqs. (62) and (63) were taken over the interval q ∈ (0, k�),
where k� ∼ kF � κ . Substituting Eqs. (66) and (67) into
Eq. (65), we find

χ
(1)
s′s (Q+

s′s, q) ≈ − rsNF

π

√∣∣∣∣ δq

Q+
s′s

∣∣∣∣ ln

(
k�

κ

)

×
[
ϑ (δq) ln

∣∣∣∣∣e
3
2
√

κk�

δq

∣∣∣∣∣ + π

2
ϑ (−δq)

]
,

(68)

where δq = q − Q+
s′s � κ � kF . The nonanalyticity in

Eq. (68) has a resonant peak structure near q = Q+
s′s ≈ 2kF

that was first seen numerically in Ref. [45] for the Coulomb
interaction dynamically screened by the particle-hole bubble.

The semiclassical method of the dimensional reduction
[47] allowed us to analytically find the strong resonant contri-
bution to the susceptibilities that originates from the scattering
processes near the FS. Here we stress again that Eq. (68) rep-
resents the asymptotics at |q − Q+

s′s| � κ � kF ∼ k�. This
asymptotics crosses over to Eq. (59), which is valid at κ �
|q − Q+

s′s| � kF . Notice that the prefactor in Eq. (68) contains
ln(k�/κ ), which suppresses the peak at κ ≈ k� ∼ kF . This
corresponds to the limit of the contact or zero-range interac-
tion, where no resonant peak structure of the susceptibilities at
the 2kF Kohn anomaly is expected (see, e.g., Refs. [30–41]),
which is therefore consistent with our results. It is worth
noting here that the perturbation theory breaks down at rs � 1.
The regime rs � 1 requires a nonperturbative treatment that
goes beyond the scope of this work. Nevertheless, we believe
that our results remain qualitatively correct even at rs ∼ 1.
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V. FULL SUSCEPTIBILITIES

In this section, we sum up the Dyson series for the full
static susceptibility and approximate the irreducible suscep-
tibility by the sum of zero-order and first-order irreducible
susceptibilities shown in Figs. 1 and 6. Inclusion of the first-
order corrections to the irreducible susceptibilities is a step
beyond the random phase approximation. Here, we show that
the charge susceptibility is suppressed by the electrostatic
screening compared to the spin susceptibility. In other words,
a repulsive electron-electron interaction favors the formation
of 2kF SDW order rather than the 2kF charge DW (CDW)
order in the interacting 2DEG. It is worth noting that such
summation was not performed in Ref. [45], which resulted in
a largely overestimated 2kF peak of the charge susceptibility.

The Dyson equation for the 2D static susceptibilities can
be represented as follows:

χi j (q) = χ irr
i j (q) − χ irr

i0 (q)Ṽ (q)χ irr
0 j (q), (69)

Ṽ (q) = VC (q)

1 + χ irr
00 (q)VC (q)

, (70)

where χ irr
i j (q) is the irreducible static susceptibility, and in-

dices i, j ∈ {0, 1, 2, 3} label the spin matrices ηi and η j

introduced in Eqs. (6)–(8) (with η0 = I , the identity matrix).
Here, Ṽ (q) is the dressed electron-electron interaction, and
VC (q) is the Coulomb interaction [see Eq. (18)]. The polariza-
tion operator is equal to −χ irr

00 (q). Here we approximate the
irreducible susceptibilities by the free-fermion susceptibility
(Fig. 6, Appendix A), plus the first-order diagrams (Fig. 1),

χ irr
i j (q) ≈ χ

(0)
i j (q) + χ

(1)
i j (q) =

∑
s,s′

ηss′
i ηs′s

j χ irr
s′s (q), (71)

χ irr
s′s (q) = χ

(0)
s′s (q) + χ

(1)
s′s (q), (72)

where χ
(0)
s′s (q) is given by Eq. (26), and χ

(1)
s′s (q) is considered

in Sec. IV for different interactions. In particular, χ
(1)
s′s (q) is

given by Eq. (68) at |q − Q+
s′s| � κ � kF and by Eq. (59)

at κ � |q − Q+
s′s| � kF . These two limits describe the largest

anomaly in χ
(1)
s′s (q) that is located in the vicinity of q = Q+

s′s =
ks′ + ks ≈ 2kF .

First, we notice that χ irr
0i (q) = χ irr

3i (q) = 0 for i ∈ {1, 2}
which follows from Eq. (71) and ηss′

1 = ηss′
2 = 0 at s′ = s,

where ηss′
i = 〈ψs|ηi|ψs′ 〉. Similarly, one can directly check

that χ irr
12 (q) = 0. Therefore, all nonzero components of the full

static susceptibility are the following:

χρ (q) ≡ χ00(q) = χ irr
++(q) + χ irr

−−(q)

1 + VC (q)[χ irr++(q) + χ irr−−(q)]
, (73)

χ30(q) = χ03(q) = χ irr
++(q) − χ irr

−−(q)

1 + VC (q)
[
χ irr++(q) + χ irr−−(q)

] ,

(74)

χ33(q) = χρ (q) + 4Ṽ (q)χ irr
++(q)χ irr

−−(q), (75)

χ11(q) = χ22(q) = 2χ irr
+−(q), (76)

where χρ (q) is the charge susceptibility, Ṽ (q) is the dressed
interaction [see Eq. (70)], and χ irr

ss′ (q) are defined in Eq. (72),
where s, s′ ∈ {±1}. As we see from the equations above,

1.0 1.5 2.0 2.5

0.5

1.0

1.5

FIG. 2. Components of the full susceptibilities near q = 2kF [see
Eqs. (73)–(76)] at κ = 0.2kF , rs = 1.0, and δ = 0.02kF . Irreducible
susceptibilities are calculated numerically as a sum of diagrams in
Figs. 1 and 6 with the Thomas-Fermi interaction [see Eq. (20)].
Susceptibilities χρ (q), χ33(q), −χ03(q) have two peaks at q = 2k−,
q = 2k+; χ11(q) has single peak at q = k+ + k− = 2kF , see Eq. (10).
The spin susceptibility χ33(q) demonstrates the largest peak at q =
2k−. The charge susceptibility χρ (q) is suppressed by the electro-
static screening. For reference, the noninteracting Lindhard function
χ

(0)
11 (q), see Eq. (26), is shown by a black dashed curve.

χ33(q) > χρ (q) at any q, i.e., the spin density correlations
are always dominant in an interacting 2DEG. We also notice
that χ11(q) = χ22(q) remain unscreened. Different nonzero
components of susceptibilities are plotted in Fig. 2, where
the screening effects are included via Eqs. (73)–(76) and via
the Thomas-Fermi screening of the interaction in diagrams
in Fig. 1. It is clear from Fig. 2 that the largest susceptibil-
ity component is the spin susceptibility χ33(q) at q = 2k−,
which confirms our expectations that electrostatic screening
suppresses the charge susceptibility compared to the spin sus-
ceptibility.

The form of the first-order correction to the irreducible
susceptibility, Eq. (68), reveals that longer-range interactions
(smaller values of κ) correspond to sharper peaks near 2kF .
This is true for the renormalized full susceptibility as well, as
demonstrated by Fig. 3. The most pronounced peaks occur in
the unscreened Coulomb interaction. The irreducible suscep-
tibilities for this case, calculated from Eqs. (41), (45)–(47) and
then Fourier transformed numerically, are shown in Fig. 4.

We should note that the susceptibility components given in
Eqs. (73)–(76) are written in the rotated basis [see Eqs. (6)-
(8)]. To get the physical responses to different perturbations,
one should rotate back. For example, the true spin susceptibil-
ity, i.e., the response in the spin-z channel to a magnetic field
perpendicular to the 2DEG plane, is given by

χzz(q) = sin2 θ χ11(q) + cos2 θ χ33(q), (77)

while the mixed spin-charge susceptibility, i.e., the spin-z
response to an electric potential perturbation, is

χ0z(q) = − cos θ χ03(q). (78)

Here, we used that χ13(q) = χ31(q) = χ01(q) = 0. For ex-
ample, the red (green) curve in Fig. 2 can be understood as
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1.7 1.8 1.9 2.0 2.1

0.6

0.8

1.0
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1.4

FIG. 3. Full charge and spin susceptibilities χρ (q) and χ33(q)
near q = 2kF [see Eqs. (73)–(76)] for increasing values of κ (curves
correspond to κ = 0.07kF , 0.1kF , 0.2kF , 0.3kF , in decreasing order
of opacity). Here we have set rs = 1.0 and δ = 0.02kF . Irreducible
susceptibilities are calculated numerically with the Thomas-Fermi
interaction [see Eq. (20)]. Smaller values of the screening produce
sharper peaks in the susceptibilities.

χzz(q) at θ = 0 (θ = π/2), while the orange curve coincides
with χ0z(q) at θ = 0. In a bilayer system, χzz(q) represents
the out-of-plane electric dipole response to a local potential
difference across the two layers. In this case, θ = 0 (θ = π/2)
corresponds to α � t⊥ (α � t⊥), where α is the layer bias,
and t⊥ is the layer hybridization [see Eqs. (3) and (5)]. Fig-
ures 2 and 4 and Eq. (77) demonstrate that tuning θ shifts
the Kohn anomaly from the double peak at q = 2kF ± 2δ to a
single peak at q = 2kF .

The difference between Eqs. (73) and (75) clearly shows
that χ33(q) > χρ (q), i.e., the 2DEG is more susceptible to
the SDW order than to the CDW order. In a bilayer system,
this means that density waves consisting of interlayer dipoles
are expected to be far more prevalent than a standard CDW.

1.0 1.5 2.0 2.5

0.5

1.0

1.5

FIG. 4. Components of the irreducible susceptibilities given by
the sum of diagrams in Figs. 1 and 6 near q = 2kF for the unscreened
Coulomb interaction [Eq. (18)] with rs = 1.0 and δ = 0.02kF . Note
from Eq. (72) that χ irr

ρ = χ irr
33 , which is shown by the blue curve. The

noninteracting Lindhard function χ
(0)
11 (q), see Eq. (26), is shown by

a black dashed curve.

This behavior is expected because of the large electrostatic
energy needed to stabilize the CDW order. Meanwhile, the
SDW order does not create any local charge imbalance.

VI. SUSCEPTIBILITIES OF A 3DEG

In this section, we wish to make a comparison between
the two- and three-dimensional electron gas (3DEG), also
in order to underline the special features emerging in lower
dimensions. In particular, the 3D free-fermion susceptibility
is given by the well-known expression (see Refs. [42–44] and
Appendix A)

χ
(0)
s′s (q) = NF Q+

s′s

8kF q2

[
q2 + Q−2

s′s

+
(
q2 − Q−2

s′s

)(
Q+2

s′s − q2
)

2qQ+
s′s

ln

∣∣∣∣q + Q+
s′s

q − Q−
s′s

∣∣∣∣
]
, (79)

where the components χ
(0)
s′s (q) are defined in the same way

as in Eq. (26), the Q±
s′s components are defined in Eq. (27),

NF = mgkF /π2 is the total 3D density of states at the Fermi
energy, and the 3D Hamiltonian is assumed to have the form
of Eq. (1) but with a 3D momentum. The free-fermion 3D sus-
ceptibility χ

(0)
s′s (q) is analytic everywhere except at q = Q+

s′s ≈
2kF . The main difference with respect to a 2DEG here is that
χ

(0)
s′s (q) does not have a plateau at q < Q+

s′s; its maximal value
corresponds to q = 0 and it drops down by a factor of 2 (at
Q−

s′s = 0) at q = Q+
s′s. Therefore, small interaction corrections

near the Kohn anomaly at q = Q+
s′s are not as important as in a

2DEG. Instead, the maximum of the susceptibility near q = 0
may lead to a uniform ferromagnetic instability; this effect has
been studied extensively, see, e.g., Refs. [30,31].

We note that the first-order nonanalytic correction to the
susceptibility of a 3DEG can be calculated using the one-
dimensional susceptibility given by Eq. (45). Applying the
dimensional reduction technique [47] to a 3DEG, one can
easily find the long-distance asymptotics of static 3D suscep-
tibilities that is analogous to the 2D case, see Eq. (41),

χ
(1)
s′s (r) = g

∑
ν,ν ′

ei π
2 (ν−ν ′ )

λsλs′

eirQγ ′γ

r2
χ̃ (1)(Qγ ′γ , r), (80)

where χ̃ (1)(Qγ ′γ , r) is given by Eq. (45). The 3D Fourier
transform of Eq. (80) at q ≈ Q+

s′s yields the nonanalyticity
∝ δq[ln |δq|]2 for an arbitrary finite-range interaction, which
is the same nonanalyticity that is already present in the free-
fermion susceptibility given by Eq. (79) with an additional
power of the logarithm. This is why interaction effects on
the susceptibility of a 3DEG near the 2kF Kohn anomaly are
rather marginal, which has also been pointed out in Ref. [45].

Even though the Kohn anomaly of an isotropic 3DEG
seems to be unimportant for magnetic instabilities, things
might change in 3D layered van der Waals materials where the
interlayer hopping might be orders of magnitude smaller than
the intralayer one. In this case, we expect a crossover to the
2D case where the free-fermion susceptibility flattens out at
q < 2kF , thus making the interaction effects more prominent
near q = 2kF .
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VII. DISCUSSION OF 2kF INSTABILITIES

Here we discuss and explore possible physical conse-
quences of sharp 2kF resonances of the 2D static suscep-
tibilities. In particular, we discuss possible intrinsic SDW
instabilities, magnetic ordering of ensembles of magnetic
impurities and nuclear spins via the Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction [82–84], and instabilities of the
crystal order via the electron-phonon coupling.

Even with finite 2D static spin susceptibilities, there are a
number of phase transitions that can be induced by the reso-
nant 2kF Kohn anomaly found in this work. The first example
is related to the RKKY interaction [82–84] describing effec-
tive spin-spin coupling between localized magnetic moments
embedded in an electron gas whose electrons interact with the
local moments via finite exchange interaction J . To the lowest
order in J , the resulting RKKY interaction is determined by
the spin susceptibility of the electron gas. In particular, a
magnetic helical ordering of the nuclear spins or magnetic
impurities is possible due to the spin density fluctuations in the
2DEG that are enhanced by electron-electron interactions. In-
deed, if the RKKY coupling is sufficiently strong (larger than
some finite critical value), local magnetic moments embedded
in the interacting 2DEG will order into a 2kF helical ground
state. Such magnetic ordering creates an effective magnetic
field oscillating in space with the 2kF wave vector, which
results in a helical gap opening in the electron spectrum; see,
e.g., Refs. [23,24] for the concrete physical mechanism and
the caveats related to the generalized Mermin-Wagner theo-
rem [85]. Moreover, proximity coupling to a superconductor
may further result in the induced topological superconductiv-
ity; see, e.g., Refs. [25,86,87].

In this paper, we also emphasize that the same resonant
peaks at the 2kF Kohn anomaly appear in the layer pseudospin
susceptibilities in bilayer materials such as bilayer graphene
[71–73] and bilayer TMDs [54–60]. In this case, the pseu-
dospin susceptibilities derived here provide the linear charge
response in each layer (δnl ) to perturbations in the electric
potential φl via(

δn1(r)
δn2(r)

)
=

∫
d2r′ �χ (r − r′)�

(
φ1(r′)
φ2(r′)

)
, (81)

where the susceptibility χ is written in the unrotated basis,
and � transforms this to the layer basis,

χ =
(

χρ χ0z

χ0z χzz

)
, � = 1√

2

(
1 1
1 −1

)
. (82)

Consider a local potential difference φ1(r) ≡ φδ(r) =
−φ2(r). Noting from Fig. 2 and Eq. (78) that χ0z is much
smaller than the other components, the charge response is
simply given by the zz-component of the pseudospin suscep-
tibility, i.e.,

δn1(r) = −δn2(r) = φχzz(r). (83)

These density perturbations are shown in Fig. 5. In general,
local impurities will induce oscillations at wave number 2kF

with a π phase difference between the layers, forming a dipole
density wave.

As in the case with magnetic impurities and nuclear spins,
a true dipole-density-wave instability may be instigated by

π

kF

FIG. 5. Density response in each layer of a bilayer 2DEG to
a local potential difference φδ(r). The two layers have decaying
Friedel oscillations of wavelength π/kF exactly out of phase with
each other.

coupling to phonons: at large enough electron-phonon cou-
pling or soft enough phonon modes, the Kohn anomaly can
result in phonon condensation, causing an effective 2kF -
periodic potential with a relative π phase-shift between the
layers. This potential opens a partial gap in the electron spec-
trum. In principle, the 2kF dipole density wave together with
the interlayer bias and proximity to an s-wave superconductor
may also be considered as an alternative way to engineer
topological superconductors.

VIII. CONCLUSIONS

In this paper, we performed a calculation of the spin
susceptibility of an isotropic 2DEG with long-range and
finite-range interactions at first-order in perturbation theory.
As the 2D free-fermion susceptibilities have a plateau at q <

2kF , the interaction effects become particularly important.
Here we find that already the first-order interaction contri-
bution to the spin susceptibility results in a resonant peak
structure near the 2kF Kohn anomaly for a Coulomb inter-
action [see Eq. (59)], as well as for an arbitrary finite-range
repulsive interaction [see Eq. (65)]. This is of fundamen-
tal importance for the spin physics and magnetic phases of
low-dimensional systems. Our analytic calculation reveals a
structure of resonant Kohn anomaly in the 2D static sus-
ceptibilities of both charge and spin. While for the charge
susceptibility this has been previously spotted numerically in
Ref. [45], the spin susceptibility has not been analyzed before
for finite-range interactions. We also show that the charge sus-
ceptibility is suppressed compared to the spin susceptibility
due to the electrostatic screening.

Our analysis is further applicable to bilayer materials,
where the layer index plays the role of a pseudospin. In
particular, we find that the dominant linear response is the out-
of-plane dipole susceptibility, χzz. When the electron-phonon
coupling is introduced, the resonant Kohn anomaly in χzz

can result in an instability towards a 2kF density wave of
interlayer dipoles. We should note that our analysis does not
include electron-phonon interactions within the susceptibility
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diagrams themselves, but rather is applicable to the adiabatic
limit where the ion mass goes to infinity. In this case, the
ionic displacements provide the potential landscape that the
electrons react to via the susceptibility computed here. The
material parameters then determine a critical value of the
susceptibility peak that would instigate a dipole-density wave.
In particular, if the bare phonon dispersion is ωk, then the
renormalized dispersion starting from the Fröhlich Hamilto-
nian is [88]

ωren
k =

√
ω2

k − k2
D(k)2

ρion
χzz(k), (84)

where D(k) is the deformation potential, and ρion is the av-
erage (2D) monolayer density. For an acoustic mode with
speed of sound vs, the zero of this equation defines the critical
value of the susceptibility peak at which a density wave forms,

χ crit = v2
s ρion

D(2kF )2 . Such a dipole-density wave is equivalent to
two 2kF CDWs in each layer with the relative phase shift of
π . The dipole-density wave can be observed experimentally
by local probes such as STM and nitrogen-vacancy centers.

We also argue that peaked spin susceptibilities at 2kF may
instigate magnetic helical order of localized spins via the
RKKY interaction.

Finally, we note that the logarithmic corrections to the
2D susceptibilities that we derived in this manuscript signal
a strong renormalization of the bare square-root nonanalyt-
icity near the 2kF Kohn anomaly. It is likely that second-
and higher-order terms in the perturbation expansion will
also yield logarithmic corrections, though their sign must be
evaluated explicitly. Summation of these leading corrections
may further clarify whether intrinsic SDW instabilities are
possible in an interacting 2DEG or not. This, along with the
construction of a renormalization-group procedure for inter-
acting 2DEGs with a finite-range repulsive interaction, is a
subject of our future study.
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APPENDIX A: FREE-FERMION 2D AND 3D
SUSCEPTIBILITIES

Here we briefly review well-known results for the free-
fermion 2D and 3D susceptibilities [42–44] generalized for
the split FS. The free-fermion static susceptibilities of a D-
dimensional electron gas are given by the diagram in Fig. 6,

χ
(0)
s′s (q) = − g

∫
d p

(2π )D

×
∫ ∞

−∞

dω

2π
Gs(p, iω)Gs′ (p + q, iω), (A1)

where p and q are the D-dimensional momenta, the temper-
ature is set to zero, and the free-fermion Green’s function is

FIG. 6. Free-fermion susceptibility χ
(0)
i j (z), z = (r, τ ) [see

Eqs. (24) and (25)]. Here, ηi is either a Pauli matrix for i ∈ {1, 2, 3}
[see Eqs. (6)–(8)] or the identity matrix, η0 = I; the same applies
to η j .

represented by the quasiparticle pole,

Gs(p, iω) = 1

iω − εs(p)
. (A2)

The electron dispersion εs(p) is given by Eq. (9). The integral
over frequency yields the standard Lindhard function

χ
(0)
s′s (q) = −g

∫
d p

(2π )D

ϑ (ks′ − |p + q|) − ϑ (ks − p)

εs′ (p + q) − εs(p)
, (A3)

where ϑ (ks − p) represents the Fermi-Dirac distribution func-
tion at zero temperature.

It is more convenient to introduce an auxiliary function
fs′s(q),

χ
(0)
s′s (q) = fs′s(q) + fss′ (q), (A4)

fs′s(q) = −g

∫
d p

(2π )D

ϑ (ks′ − p)

εs′ (p) − εs(p + q)
. (A5)

Here all integrations will be performed for the parabolic elec-
tron dispersion [see Eq. (9)], not for the linearized one.

First, we consider the 2D case. For this, we require the
following angular integral:∫ 2π

0

dφ

2π

1

cos φ + z + i0σ
= sgn(z)√

(z + i0σ )2 − 1
, (A6)

where σ = ±1, z is an arbitrary real number, sgn(z) returns
the sign of z, the square root represents the principal branch,
i.e., its real part is non-negative, and the infinitesimal term i0σ

is added to avoid problems at −1 < z < 1. The easiest way to
derive Eq. (A6) is to introduce a complex variable eiφ such
that the initial integral is reduced to a complex integral from
a meromorphic function over the unit circle. Using Eq. (A6),
we perform the integration over the angle φ between p and q
in Eq. (A5),

fs′s(q) = NF

2q

∫ ks′

0

sgn [μs′s(q)] d p√(
μs′s (q)

p + i0σ
)2

− 1

, (A7)

μs′s(q) = q

2
+ k2

s′ − k2
s

2q
, (A8)

where NF is the 2D density of states [see Eq. (22)], and
σ = ±1 is chosen arbitrarily; the final result for χs′s(q) is
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independent of the choice of σ . The remaining integral over p
in Eq. (A7) is elementary,

fs′s(q) = NF

2q

[
μs′s(q)

− sgn (μs′s(q))
√

[μs′s(q) + i0σ ]2 − k2
s′

]
, (A9)

where the square root represents the principal branch. Sub-
stituting Eq. (A9) into Eq. (A4) and performing elementary
algebraic transformations, we find the free-fermion 2D sus-
ceptibility given by Eq. (26).

The angular integration in the 3D case is even simpler,∫ 2π

0
dφ

∫ π

0

sin β dβ

cos β + z
= 2π ln

∣∣∣∣ z + 1

z − 1

∣∣∣∣, (A10)

where z is an arbitrary real number, and φ and β are 3D
azimuthal and polar angles, respectively. Choosing the polar
direction along q and introducing the angles φ and β defining
the position of p in Eq. (A5), we perform the angular integra-
tion via Eq. (A10),

fs′s(q) = NF

4qkF

∫ ks′

0
ln

∣∣∣∣ p + μs′s(q)

p − μs′s(q)

∣∣∣∣p d p, (A11)

where we introduced the 3D density of states NF = mgkF /π2

at the Fermi energy, kF is defined in Eq. (11), and μs′s(q) is
given in Eq. (A8). After the integration over p in Eq. (A11)
(e.g., integration by parts), we substitute fs′s(q) into Eq. (A4),
which gives us Eq. (79).

APPENDIX B: DIMENSIONAL REDUCTION OF THE
SUSCEPTIBILITY DIAGRAMS

Here we show how to reduce Eqs. (32) and (33) to the form
of Eq. (34) with effective one-dimensional susceptibilities
given by Eqs. (36) and (37). For this, we refer to Appendix B
in Ref. [47] where the leading large-distance asymptotics of
the following integral is derived:∫ 2π

0
dφ1 f (r1, r2)eiνQ|r1−r2|

≈
∑

σ1=±1

f (σ1r1n2, r2)

× eiνQ|σ1r1−r2|eiνσ1
π
4

√
2π |σ1r1 − r2|

Qr1r2
, (B1)

where f (r1, r2) is an arbitrary function that changes slowly
at Qr1 � 1, Qr2 � 1, the integration is taken over the angle
φ1 between 2D vectors r1 and r2, such that r1 = |r1| and r2

are fixed, ν = ±1, and n2 = r2/r2 is the unit vector along r2.
The asymptotic expansion given by Eq. (B1) follows from the
stationary phase method. The stationary points correspond to

the extrema of |r1 − r2| =
√

r2
1 + r2

2 − 2r1r2 cos(φ1), i.e., the
leading large-distance contribution to the integral comes from
the directions of r1 that are nearly collinear to r2.

Let us begin by integrating out the angular dimensions in
Eq. (32) starting from r2. For brevity, we only show the part

of Eq. (32) that depends on r2 (the rest is denoted by dots),

χa
s′s(r, τ ) =

∫
· · ·

∫
dr2 V (r1 − r2)Gs′ (r1 − r2)Gs′ (r2),

(B2)

where we also suppressed the time arguments for brevity of
expressions as the time integrations are unaffected by this
procedure. Substituting the large-distance asymptotics of the
Green’s function, see Eq. (15), we find

χa
s′s(r, τ ) ≈

∫
· · ·

∫ ∞

0
dr2 r2

∫ 2π

0
dφ2

∑
ν1,ν2

e−i π
4 (ν1+ν2 )gν2

s′ (r2)

λs′
√

r2|r1 − r2|
× V (r1 − r2)gν1

s′ (|r1 − r2|)eiks′ (ν1|r1−r2|+ν2r2 ),

(B3)

where φ2 is the angle between r2 and r1 at fixed r1. As
V (r1 − r2), |r1 − r2|−1/2, and gν1

s′ (|r1 − r2|) change slowly on
the scale of Fermi wavelength at kF r1 � 1 and kF r2 � 1,
we can use Eq. (B1) with Q = ks′ and ν = ν1 to evaluate the
leading asymptotics of the integral over φ2,

χa
s′s(r, τ ) ≈

∫
· · ·

∑
ν1,ν2,σ1

e−i π
4 (ν1(1−σ1 )+ν2 )

√
λs′r1

∫ ∞

0
dr2 gν2

s′ (r2)

×V (|r1 − σ1r2|)gν1
s′ (|r1−σ1r2|)eiks′ (ν1|r1−σ1r2|+ν2r2 ).

(B4)

Next, we sum over ν1 = ±1 and only take into account the
sector where the oscillatory phase in Eq. (B4) is independent
of r2. This corresponds to the following choice of ν1:

ν1 = σ1ν2 sgn(r1 − σ1r2), (B5)

gν1
s′ (|r1 − σ1r2|) = gσ1ν2

s′ (r1 − σ1r2), (B6)

gν2
s′ (r2) = gσ1ν2

s′ (σ1r2), (B7)

ν1(1 − σ1) + ν2 = σ1ν2, (B8)

ν1|r1 − σ1r2| + ν2r2 = σ1ν2r1. (B9)

Here we also simplified different terms in Eq. (B4) at ν1 =
σ1ν2 sgn(r1 − σ1r2). At this point we neglect the contribution
coming from ν1 = −σ1ν2 sgn(r1 − σ1r2) as there is the os-
cillatory factor e2iks′ ν2r2 that results in very fast convergence
of the integral over r2 on the scale of the Fermi wavelength.
Thus, the leading term in Eq. (B4) is the following:

χa
s′s(r, τ ) ≈

∫
· · ·

∑
ν2,σ1

e−i π
4 ν2

√
λs′r1

∫ ∞

0
dr2 gν2

s′ (σ1r2)

× V (|r1 − σ1r2|)gν2
s′ (r1 − σ1r2)eiks′ ν2r1 , (B10)

where we relabeled σ1ν2 → ν2. As the index σ1 in Eq. (B10)
is only present in the combination σ1r2, the summation over
σ1 just extends the integral over r2 to the real line. We thus
relabel this coordinate to x2,

χa
s′s(r, τ ) ≈

∫
· · ·

∑
ν2

e−i π
4 ν2

√
λs′r1

∫ ∞

−∞
dx2 gν2

s′ (x2)

× V (|r1 − x2|)gν2
s′ (r1 − x2)eiks′ ν2r1 . (B11)
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Now we also restore the terms in Eq. (B11) that depend on r1,

χa
s′s(r, τ ) ≈

∫
· · ·

∫
dr1 Gs′ (r − r1)

∑
ν2

e−i π
4 ν2

√
λs′r1

eiks′ ν2r1

×
∫ ∞

−∞
dx2 V (|r1 − x2|)gν2

s′ (r1 − x2)gν2
s′ (x2).

(B12)

Substituting the asymptotics of Gs′ (r − r1) [see Eq. (15)] into
Eq. (B12) and integrating over φ1, the angle between r1 and r,
using the asymptotic relation Eq. (B1), we find

χa
s′s(r, τ ) ≈

∫
· · ·

∫ ∞

0
dr1

∑
ν1,ν2,σ1

e−i π
4 [ν1(1−σ1 )+ν2]

√
λs′r

×
∫ ∞

−∞
dx2 V (|r1 − x2|)gν1

s′ (|r − σ1r1|)

× gν2
s′ (r1 − x2)gν2

s′ (x2)eiks′ (ν1|r−σ1r1|+ν2r1 ). (B13)

The nonoscillatory sector in Eq. (B13) corresponds to ν1 =
σ1ν2 sgn(r − σ1r1); only this sector is important for the
leading large-distance asymptotics of χs′s(r, τ ). Relabeling
σ1ν2 → ν2 and x2 → σ1x2 and then summing over σ1 gives
us the following result:

χa
s′s(r, τ ) ≈ gGs(−r)

∑
ν2

eiν2(ks′ r− π
4 )

√
λs′r

∫
dτ1dτ2

∫ ∞

−∞
dx1

×
∫ ∞

−∞
dx2 V (x1 − x2)gν2

s′ (r − x1)

× gν2
s′ (x1 − x2)gν2

s′ (x2). (B14)

Finally, substituting the asymptotics of Gs(−r) and restoring
the time arguments, we find that χa

s′s(r, τ ) can be represented
in the form of Eq. (34) with the one-dimensional susceptibil-
ity χ̃a

γ ′γ (r, τ ) given by Eq. (36). The dimensional reduction
procedure can be applied exactly the same way to Eq. (33).

APPENDIX C: ONE-DIMENSIONAL STATIC
SUSCEPTIBILITIES

First, we derive Eqs. (42) and (43) for the one-dimensional
static susceptibilities. For this, we only have to evaluate in-
tegrals over τ and τ1 [see Eqs. (36), (37), and (40)]; the
integral over τ2 is trivial for instantaneous interactions [see
Eq. (17)]. Integrals over imaginary times at zero temperature
are simple-pole integrals, for example∫ ∞

−∞
dτ gγ (−x,−τ )gγ ′ (x − x1, τ − τ1)

= − 1

2π

ϑ ( − νν ′x(x − x1))
vs′ |x| + vs|x − x1| + iνvsvs′τ1 sgn(x)

, (C1)

where γ = {ν, s} and γ ′ = {ν, s′}. In fact, all other time in-
tegrals can be expressed through the integral in Eq. (C1) by
relabeling the arguments. Performing the time integrals using
Eq. (C1), we get Eqs. (42) and (43).

Next, we derive Eq. (45) starting from Eqs. (42), (43), and
(44). Relabeling |x| → r in Eq. (42) and then making a change

of variables x2 − x1 = z, x2 = y, we find

χ̃a(Qγ ′γ , r) = − 1

4π2vsvs′

∫ +∞

−σ r
dz

V (z)

z

z + σ r

z + (
vs′
vs

+ σ
)
r
,

(C2)

where σ = −νν ′. Here we already accounted for the fact
that the integration is taken over the region {(x1, x2) : x1 <

σ r, x2 > 0} = {(y, z) : z > −σ r, z + σ r > y > 0}. As the
function under the integral depends only on z, the integration
over y just yields the factor z + σ r in Eq. (C2). Notice that
here z is just a real variable.

In Eq. (43), we relabel |x| → r and make the change of
variables z = x2 − x1, y = x1 + σx2vs′/vs, and σ = −ν1ν2. In
the case σ = +1, the integration is taken over the region
R+ = R+

1 ∪ R+
2 ∪ R+

3 consisting of three square regions:
R+

1 = {(x1, x2) : x1 > r, x2 > r}, R+
2 = {(x1, x2) : r > x1 >

0, r > x2 > 0}, and R+
3 = {(x1, x2) : x1 < 0, x2 < 0}. In the

case σ = −1, the integration region R− = R−
1 ∪ R−

2 consists
of two square regions: R−

1 = {(x1, x2) : x1 < 0, x2 > r} and
R−

2 = {(x1, x2) : x1 > r, x2 < 0}. The integration over y can
be performed in all five different cases:

χ̃ c(Qγ ′γ , r|R+
1 ) = χ̃ c(Qγ ′γ , r|R+

3 )

= 1

vsvs′ra+

∫ +∞

0
ln

∣∣∣∣1 + a+
r(r + z)

z2

∣∣∣∣
× V (z) dz

4π2
, (C3)

χ̃ c(Qγ ′γ , r|R+
2 )

= 2

vsvs′ra+

∫ r

0
ln

∣∣∣∣1 + a+
r(r − z)

z2

∣∣∣∣V (z) dz

4π2
, (C4)

χ̃ c(Qγ ′γ , r|R−
1 ) = χ̃ c(Qγ ′γ , r|R−

2 )

= 1

vsvs′ra−

∫ +∞

r
ln

∣∣∣∣1 + a−
r(z − r)

z2

∣∣∣∣
× V (z) dz

4π2
. (C5)

Combining all Rσ
i contributions for a given σ , we can repre-

sent χ̃ c(Qγ ′γ , r) in the following form:

χ̃ c(Qγ ′γ , r)

= 1

raσ

∫ +∞

−σ r
ln

∣∣∣∣1 + aσ

r(z + σ r)

z2

∣∣∣∣ V (z) dz

2π2vsvs′
. (C6)

Combining Eqs. (C2) and (C6), we get Eq. (45).

APPENDIX D: USEFUL FOURIER TRANSFORMS

First, we use the asymptotics of the following D-
dimensional angular integral at qr � 1:

∫
dnr e−iq·r ≈

(
2π

qr

) D−1
2

2 cos
(

qr − π

4
(D − 1)

)
, (D1)

where nr = r/r, and dnr is a surface element of the unit (D −
1)-dimensional sphere. This allows us to find the asymptotic
behavior of the following D-dimensional Fourier transform at
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q − Q � Q:

∫
dDr

eiνQr

r
D−1

2

f (r)e−iq·r

=
∫ ∞

0
dr f (r)r

D−1
2 eiνQr

∫
dnr e−iq·r

≈
∣∣∣∣2π

Q

∣∣∣∣
D−1

2

eiν π
4 (D−1)

∫ +∞

0
dr f (r)e−iν(q−Q)r, (D2)

where f (r) is an arbitrary function that changes slowly on the
scale of 1/Q at Qr � 1, ν = ±1. We use Eq. (D2) to calculate
the nonanalytic Kohn anomalies in momentum space.

In this paper, we also make use of the following integrals
(and their analytic continuations):

Lν (α, q) ≡
∫ ∞

0

dr

rα
e−iνqr = π |q|α−1eiν sgn(q) π

2 (α−1)

sin(πα)�(α)
, (D3)∫ ∞

0

dr

rα
e−iνqr[ln(r)]n =

(
− ∂

∂α

)n

Lν (α, q), (D4)

where q is a real variable, �(x) is the Euler gamma func-
tion, n is a positive integer, and α is an arbitrary real
number. We often use Eq. (D3) for α � 1 where the inte-
gral L(α, q) is formally divergent. In our case, this means
that a short-distance cutoff must be introduced. However,
the nonanalyticities/discontinuities of susceptibilities can be
found exactly via the analytic continuation of this divergent
integral that is given by the right-hand side of Eq. (D3).

APPENDIX E: V1 AND V2 FOR THE THOMAS-FERMI
INTERACTION

First, we prove the representations of V1 and V2 given in
Eqs. (62) and (63). For this, we use the 2D Fourier transform

of VR0 (x),

VR0 (x) =
∫ ∞

0

dq

2π
qJ0(qx)VR0 (q), (E1)

where VR0 (q) is the 2D Fourier transform of VR0 (x). Substitut-
ing Eq. (E1) into Eqs. (62) and (63), we find

V1 = −
∫ ∞

0

dq

2π
VR0 (q)

∫ ∞

0
dz J0(z) ln

∣∣∣∣ z

qR0

∣∣∣∣, (E2)

V2 =
∫ ∞

0

dq

2π
VR0 (q)

∫ ∞

0
dz J0(z), (E3)

where we introduced the new integration variable z = qx.
Here, V1 and V2 then follow from the following identities:∫ ∞

0
dz J0(z) ln(z) = −γ − ln 2, (E4)∫ ∞

0
dz J0(z) = 1, (E5)

where, again, γ is the Euler-Mascheroni constant.
Substituting VTF(q) [see Eq. (20)] into Eqs. (62) and (63),

we find

V TF
1 =

∫ k�

0

dq

maB

ln(2qR0) + γ

q + κ
, (E6)

V TF
2 =

∫ k�

0

dq

maB

1

q + κ
≈ 1

maB
ln

(
k�

κ

)
, (E7)

where the ultraviolet cutoff satisfies k� ∼ kF � κ . Here,
Eq. (E7) already coincides with Eq. (67). To get Eq. (66), we
use the following identity:∫ 1

0

ln u du

u + z
= [ln(1 + z)]2 − [ln z]2

2
− π2

6
+ Li2

(
z

1 + z

)
,

(E8)

where z > 0, and Li2(z) = ∑∞
n=1 zn/n2 is the polylogarithm.

Rescaling the integration variable q = k�u in Eq. (E6) results
in an integral like Eq. (E8) with z = κ/k�, plus a simple
logarithmic integral like Eq. (E7). As κ � k�, we then expand
Eq. (E8) keeping only the leading logarithmic order, which
gives us Eq. (66).
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