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Quantum order by disorder in frustrated spin nanotubes
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We investigate quantum order by disorder in a frustrated spin nanotube formed by wrapping a J1-J2 Heisenberg
model at 45◦ around a cylinder. Using Schwinger boson theory and density matrix renormalization group
(DMRG), we have computed the ground-state phase diagram to reveal a Z2 phase in which collinear spin stripes
form a right- or left-handed helix around the nanotube. We have derived an analytic estimate for the critical
ηc = J1/2J2 of the Z2-helical phase transition, which is in agreement with the DMRG results. By evaluating the
entanglement spectrum and nonlocal string order parameters we discuss the topology of the Z2-helical phase.

DOI: 10.1103/PhysRevB.109.075137

I. INTRODUCTION

Spin models are “economy” strongly correlated systems
where fluctuations driven by frustrated interactions result in
rich physical phenomena and phase diagrams. Conceptual
advances in many-body physics often arise from studies of
spin models. One popular example is the emergence of order
by disorder in frustrated spin models [1–4], which describes
the mechanism by which quantum or thermal fluctuations lift a
degeneracy of the ground state in favor of states with discrete
[5–13] or algebraic orderings [14–17]. Often studied in the
context of Heisenberg spin models, order by disorder occurs
in a wide range of strongly correlated systems with com-
peting interactions [17–25]. This physics is well understood
within a renormalization group approach: the conventional
scaling picture of magnetism incorporates all fluctuations into
an effective Landau-Ginzburg action for the long-wavelength
modes of the spin system. Even when such an action is well
defined, high-energy, short-wavelength spin fluctuations can
modify its behavior at long distances. The role of such short-
wavelength fluctuations is particularly enhanced in frustrated
spin systems with large ground-state degeneracies. Here the
associated fluctuation free energy often selects maximum en-
tropy states that break lattice symmetries to develop discrete
order.

A classic model of order by disorder is the spin- 1
2 J1-J2

Heisenberg model on the two-dimensional (2D) square lattice
[26,27]. A predicted finite-temperature Ising nematic phase
transition in this model [5] has been computationally con-
firmed for the classical spin model several years ago [7]. At
the Ising nematic transition the fourfold rotation symmetry
of the square lattice is broken down to a twofold rotation via
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the development of a local composite bond order parameter
describing the relative orientation of spins. For the quantum
spin-1/2 model, the transition has only recently been verified
using an SU(2)-invariant finite temperature tensor network
algorithm [28], where both quantum and thermal fluctuations
are present. Indeed prior series expansion studies suggested
that it might be suppressed due to quantum fluctuations
[29,30]. This emergent nematic transition has found analogs
in other spin systems [8,11–13,31] and unexpected realization
in the iron-based superconductors [32–35], where it induces
a nematic structural transition in the absence of long-range
magnetic order. It has also been identified in several other
strongly correlated materials [17,36–38].

However, the question of whether there is a zero-
temperature analog of this phenomenon in (1 + 1)D has
remained open to date. Here we study such fluctuation-
induced symmetry-breaking in a purely quantum spin system
at zero temperature, a J1-J2 spin-S Heisenberg model wrapped
around a cylinder forming a frustrated spin nanotube (see
Fig. 1). Motivated by the discovery of frustrated spin chain
materials [39–46], spin nanotubes have been previously stud-
ied with different couplings and boundary conditions, both
with and without magnetic field [47–55]. Spin nanotubes can
also be regarded as n-leg spin ladders (integer n � 2) with
periodic boundary conditions along the short direction and
we point out similarities and differences to previous studies
of these systems [56–64]. While fluctuation induced cou-
plings, broken symmetry phases and order by disorder have
been identified in these systems (e.g., in two-leg ladders in
Refs. [64–67]), the parameter regime of the J1-J2 nanotube
model we focus on here and the possibility of an emergent
Z2-helical phase transition have not yet been investigated.

Using complementary analytic and computational ap-
proaches, we here identify and characterize fluctuation-
induced symmetry breaking in frustrated J1-J2 spin nanotubes,
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FIG. 1. (a) The J1-J2 square lattice model, where J1 bonds are shown in green, while J2 bonds are shown in orange. In the spin nanotube,
the J1-J2 model is rotated through 45◦ and wrapped around a cylinder as shown in (b) for Nx = 4 and Nx = 2 spins around the circumference.
Note that this implies periodic boundary condition along the short direction of the cut and preserves the mirror symmetry between the (green)
J1 bonds at every site. In the σ = ±1 degenerate ground-states, the columns of parallel spins along the J1 bonds form left- and right-handed
helices around the nanotube (thick green). (c) Showing the Nx = 2 nanotube recast as a two-leg spin-ladder in which the J2 bonds in the x and
y directions are given values J2x and J2y, respectively.

demonstrating that quantum fluctuations alone can sustain
transitions into phases with discrete order. Specifically, we
find that quantum fluctuations select right- and left-handed
helical states from the degenerate ground-state manifold. We
determine the T = 0 quantum critical point associated with
the Z2-helical phase to lie in the universality class of the 2D
Ising model. We describe the complete ground-state phase
diagram for general spin length S and nanotubes with differ-
ent circumference Nx using a Schwinger boson method [68]
and for the case of spin S = 1/2 and Nx = 2 also using the
density matrix renormalization group (DMRG) [69–72]. We
find that the results from both methods to be in good qual-
itative agreement. As expected, the extent of the Z2-helical
phase is smaller in the DMRG method due to more proper
treatment of quantum fluctuations but remains present. This
demonstrates that gauge fluctuations beyond the large-N limit
used in the Schwinger boson SP(N) approach do not destroy
the Z2-helical phase found in the mean-field method.

We now discuss the modular structure of our paper. In
Sec. II, we introduce the frustrated J1-J2 nanotube model. In
Sec. III we describe mean-field results for the phase diagrams
using a symplectic large-N Schwinger boson method. Com-
plementary DMRG studies for a narrow nanotube with spin
S = 1/2 are presented in Sec. IV. We end with a discussion in
Sec. V where we summarize the analytic and numerical work
and suggest open questions for future research.

II. FRUSTRATED SPIN NANOTUBE MODEL

We consider a 1D analog of the square lattice J1-J2 model
shown in Fig. 1(a) and described by the Hamiltonian

H = J1

∑
〈i, j〉

Si · S j + J2

∑
〈〈i, j〉〉

Si · S j . (1)

Here J1, J2 > 0 are fully antiferromagnetic, 〈i, j〉 sums once
over first-neighbor pairs of spins (green bonds), while 〈〈i, j〉〉
sums over second-neighbor pairs (orange bonds). Blue and red
sites in Fig. 1 correspond to the two interpenetrating second-
neighbor square sublattices coupled by J2.

Due to the coexistence of J1 and J2 coupling, this model is
frustrated, lacking a single classical configuration that simul-
taneously minimizes the energy of all bonds. For the square
lattice model in the classical limit, it is known that the ground
state consists of two decoupled antiferromagnetic sublattices
when the frustration parameter

η = J1

2J2
< 1 (2)

and exhibits Néel order if η > 1. Here we focus on the regime
η < 1. The two antiferromagnetic sublattices are only decou-
pled in the absence of fluctuations, i.e., at zero temperature
and for purely classical spins. Finite quantum or thermal fluc-
tuations couple the two sublattices and select out the collinear
states from the classically degenerate ground-state manifold
via the order by disorder mechanism [1–3,5,73]. As noted
above, the selection of one of the two collinear states breaks
the fourfold rotation symmetry of the square lattice down
to a twofold rotation symmetry. The transition occurs at a
finite transition temperature Tc via a continuous phase tran-
sition in the 2D Ising universality class [5,7,28]. Heuristically,
the phase transition occurs when the Heisenberg correlation
length becomes comparable to the domain wall thickness sep-
arating the Z2 domains.

To investigate order by disorder in (1 + 1)D, the simplest
modification to the square lattice model is to wrap it around
a cylinder to make a spin nanotube. To avoid breaking the Z2

diagonal mirror symmetry between the two J1 bond directions,
it is important to rotate the strip by 45◦ and wrap it along the
direction of the J2 bonds (x direction), as shown in Fig. 1(a).
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On the nanotube, this symmetry corresponds to a longitudinal
mirror symmetry of the lattice along the infinite direction my

that sends y → −y. To avoid extra frustration around the tube
in the J2 > J1 limit, we constrain the number of spins Nx along
the x direction to be even. The model is expected to be gapped
for even Nx. Since long-range order is absent at any finite
temperature in 1D, we here focus on the ground state at T = 0.
The strength of quantum fluctuations is controlled by the spin
length S and we investigate the ground-state phase diagram
for different values of S and frustration ratios η. As we will
show below, there exists a range of frustration ratios η where
the ground state exhibits Z2-helical order although there is no
long-range antiferromagnetic order. The emergent Z2-helical
order breaks my mirror symmetry and corresponds to a differ-
ent chirality of the helix that follows the bonds where spins
have the same relative orientation around the nanotube. This
is depicted in Fig. 1(b) for the (triplet) bonds, where spins
point parallel. Equivalently, one also obtains a helix if one
follows the (singlet) bonds where spins point antiparallel to
each other. This Z2-helical order is characterized by a local
plaquette order parameter σ [defined in Eq. (11) below] that
takes the two values σ = ±1 for the two configurations in
Fig. 1(b) that are related by the longitudinal mirror symmetry
y → −y.

We here focus on narrow nanotubes with Nx = 2, 4 sites
along the short direction, as shown in Fig. 1, even though
our analytical theory can be straightforwardly extended to any
Nx. For the minimal length nanotubes with Nx = 2, we con-
trast the situation of a spin nanotube, which exhibits periodic
boundary conditions along the short direction, with that of a
nanostrip, which exhibits open boundary conditions (OBC).
We thus consider two cases: (i) J2x = J2y and (ii) J2x = 2J2y.
Case (i) can be regarded as a nanostrip and case (ii) as a
nanotube, where the transverse bond along the short direction
is counted twice due to the wrapping around the cylinder [see
Figs. 1(b) and 1(c)]. This makes the total J2 coupling of a site
along x and y bonds equal and corresponds to the situation
encountered for Nx > 2 and the 2D square lattice, where every
site has two J2 neighbors along short and long directions.
Importantly, we obtain qualitatively identical results for the
nanostrip and nanotube geometries at Nx = 2.

III. SCHWINGER BOSON THEORY

A. General formalism

Solving spin models is a formidable task and exact so-
lutions are rare. A useful analytic method represents the
quantum spins using Schwinger bosons, an approach which
permits a natural generalization in the number of boson
flavors from 2 to N . As N becomes large, the Schwinger
boson path integral is dominated by its saddle point and the
problem becomes exactly solvable in the large-N limit. At
finite N this approach provides a controlled expansion of
the small parameter 1/N using diagrammatic methods [74].
The natural extension of the Schwinger boson symmetry
group from SU(2) to SU(N) group originally introduced by
Arovas and Auerbach is limited to ferromagnets and bipartite
antiferromagnets [75]. To treat frustrated antiferromagnets,
Sachdev and Read developed the SP(N) approach [76], which,

however, tends to underestimate the ferromagnetic correla-
tions between the frustrated spins. In this work, we follow
the symplectic-N approach formalized by Flint and Coleman
[68], which treats antiferromagnetic and ferromagnetic corre-
lations on an equal footing.

In the symplectic-N formalism, the SU(2) spin genera-
tors Sα are generalized to the generators T α of SP(N) (N =
2, 4, . . . ), and the general Hamiltonian takes the form

H =
∑
i, j

Ji j

N
Ti · T j . (3)

The SP(N) generators can be represented with Schwinger
bosons T α = b†

σ (T α )σσ ′bσ ′ , where the spin index takes the
values σ = ±1,±2, . . . ,±N

2 . Using the completeness re-
lation

∑
α (T α )ab(T α )cd = 1

4 (δadδbc − εacεbd ), where εab =
sgn(a)δa,−b, the Hamiltonian becomes

H =
∑
i, j

Ji j

N
[A†

i jAi j − B†
i jBi j], (4)

where A†
i j = 1

2

∑
σ b†

iσ b j,σ describe normal bosonic bilinears

and B†
i j = 1

2

∑
σ sgn(σ )b†

iσ b†
j,−σ describe anomalous ones.

One can express the partition function using path integrals
with the constraint

∑
σ b†

i,σ bi,σ = NS enforced by adding a

Lagrange multiplier term exp[−λi(
∑

σ b†
i,σ bi,σ − NS)]. After

making the Hubbard-Stratonovich transformation, one obtains
the saddle-point solution, which becomes exact in the large-N
limit. This procedure is in fact equivalent to a mean-field
treatment of Eq. (4), which becomes

HMF =
∑
i, j

[
h̄i jAi j + A†

i jhi j − �̄i jBi j − B†
i j�i j

− N

Ji j
h̄i jhi j + N

Ji j
�̄i j�i j

]
+

∑
i,σ

λi(b
†
i,σ bi,σ −S) (5)

with self-consistent conditions
∑

σ 〈b†
i,σ bi,σ 〉 = NS, hi j =

Ji j

N 〈Ai j〉, and �i j = Ji j

N 〈Bi j〉. Alternatively, one could also de-
termine the mean-field parameters by requiring ∂Eg/∂h =
∂Eg/∂� = ∂Eg/∂λ = 0, where Eg is the ground-state energy.
Since the Hamiltonian HMF contains N/2 equivalent copies
of Kramers’s doublets, it is only necessary to focus on the
Hamiltonian H̃ of a single copy. This can be written in a
compact form as

H̃ =
∑
i, j



†
i Hi j
 j + λi(


†
i 
i − 2S − 1)

+
∑
i, j

[
2

Ji j
�̄i j�i j − 2

Ji j
h̄i jhi j

]
, (6)

where we defined the Nambu spinor 

†
i = (b†

i↑, bi↓) and

Hi j =
(

hi j −�i j

�̄i j h̄i j

)
. (7)

B. Mean-field phase diagrams

In principle, the mean-field states of Eq. (1) can be obtained
by minimizing the ground-state energy of Eq. (7) with re-
spect to all possible mean-field parameters, which is generally
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FIG. 2. Schwinger boson mean-field ansätze used in this work,
where � defines the strength of the (antiferromagnetic) pairing and h
the strength of the (ferromagnetic) particle-hole hybridization. Since
�i j = −� ji along the antiferromagnetic bonds, to avoid ambiguity
the arrow points to the designated “i” site on the bond. (a) Z2-helical
ansatz and (b) Néel ansatz.

rather difficult. Here we only consider translationally invariant
mean-field ansätze that are connected via second-order phase
transitions to either the Z2 ansatz or the Néel ansatz, which
are shown in Fig. 2. The first-order phase transition is then
determined by directly comparing the ground-state energy of
different states, while the continuous phase transition is deter-
mined by analyzing the instability of the ground-state energy
through the calculation of its second derivatives. Below we
show our final results and the detailed calculations can be
found in Appendix A.

Figure 3 shows the mean-field phase diagram of the Nx = 4
spin nanotube. For 0 < η < 1, the classical ground state of the
system contains two decoupled antiferromagnetic sublattices
(DAS). When S is large but finite, the quantum fluctua-
tions remove the classical degeneracy and lead to Z2-helical

0 0.2 0.4 0.6 0.8 1 1.2
0

3

6

9

12

15

FIG. 3. The phase diagram of Nx = 4 spin nanotube predicted by
Schwinger boson theory. The black solid (dashed) line represents the
second(first)-order phase transition, while the the red solid (dotted)
line represents the Z2 critical line in the one(two)-dimensional limit.
Also shown are the valence bond structures of the corresponding
mean-field ansätze, where blue lines represent antiferromagnetic
bonds while the violet-red lines denote ferromagnetic bonds (same
for Figs. 4 and 5). Here DAS and DAC refer to decoupled antiferro-
magnetic sublattices and chains, respectively.

long-range order, which corresponds to a different handedness
of the spin texture around the nanotube [see Fig. 1(b)]. When
either η or S decrease, quantum fluctuations are enhanced and
the order melts such that the system continuously transitions
to the DAS phase. At intermediate η, there exists a “decoupled
antiferromagnetic chain” (DAC) phase, which exists at unre-
alistically small S < 1/2 and may be unstable when finite N
fluctuations are considered. We note that this regime can be
reached when considering SU(N) spins with N > 2 for which
quantum fluctuations are enhanced and small spin S ∼ 1/N
is possible [68,75,76]. For sufficiently large η, antiferromag-
netic alignment of nearest-neighbor spins is favored, and the
system enters Néel short-range order (SRO) phase through a
first-order transition.

For general Nx � 4, the phase diagram is expected to be
similar to the Nx = 4 case. Near the Z2 phase transition,
the system may be regarded as one dimensional if the spin
correlation length is much larger than the circumference of
the nanotube (η → 0), or two dimensional if in the opposite
limit (η → 1/2). The asymptotic solution of the second-order
phase transition in the 1D regime is given by

SZ2 exp

[
−Nxπ (SZ2 + 1/2)√

2

]
=

√
γNη

16Nxπ
, (8)

where SZ2 is the critical spin for entry into the Z2-helical
phase and γN is a Nx-dependent constant (see Appendix A). In
the 2D regime, the critical line for the spin nanotube becomes
asymptotically equal to the result in exactly two dimensions.
From Fig. 3 one can see that when η gets closer to zero,
the analytic solution in Eq. (8) agrees better with the exact
numerical result; while when η is close to 1/2, the difference
of SZ2 between the two-dimensional system (Nx = ∞) and
one-dimensional nanotube (finite Nx) vanishes. One expects
that when Nx increases, a larger range of Z2 transition line
will coincide with that of the two-dimensional system, while
a narrower range of Z2 transition can be described by the
Eq. (8), and the system makes the crossover from 1D to 2D
at a smaller value of η.

We now demonstrate the special case Nx = 2 where the
system may be regarded as a two-leg ladder. For the spin
nanostrip (J2x = J2y), the phase diagram shares many simi-
larities with that of the Nx = 4 case, as shown in Fig. 4. The
critical line when η → 0 is given by the asymptotic solution

SZ2 exp

[
−2

√
6π (SZ2 + 1/2)

3

]
=

√
γ ′

2η

32π
, (9)

where γ ′
2 = 8[ 2

3 −
√

2
3 ln (

√
2 + √

3)] ≈ 2.15. For S = 1/2
the Z2 order phase exists when 0.22 < η < 0.65, while for
S = 1 the Z2 order phase exists when 0.03 < η < 0.7.

The phase diagram of the Nx = 2 spin nanotube (J2x =
2J2y) is somewhat distinct from that of the other cases, as
seen from Fig. 5. The main difference is that there also exists
a valence bond solid (VBS) phase, which occurs only for
unrealistically small spin length S < 0.21. The emergence of
this phase can be understood by noting that, the J2 coupling
between two sites in the x direction is twice larger than those
in the y direction, which hence favors the formation of trans-
verse valence bonds. Nevertheless, the asymptotic solution of
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FIG. 4. The phase diagram of Nx = 2 spin nanostrip, i.e., case
(i) J2x = J2y, predicted by Schwinger boson theory. The black solid
(dashed) line represents the second-(first-) order phase transition,
while the red solid line is the analytic solution Eq. (9).

Z2 critical line has a similar form

SZ2 e−√
2π (SZ2

+1/2) =
√

γ2η

32π
, (10)

where γ2 = 8[
√

2 ln (
√

2 + 1) − 1] ≈ 1.97. The Z2 order
phase exists when 0.53 < η < 0.91 for spin-1/2 system,
while it exists when 0.12 < η < 0.96 for spin-1 system.

Our results in Eqs. (8)–(10) may be understood in a similar
fashion to Chandra et al. for the Z2 transition driven by
thermal fluctuation in two dimensions [5]: the Z2 order exists
when the 1D Heisenberg correlation length ξ is larger than
the Z2 domain wall width wDW, and a simple estimate gives
ξ ∼ exp[Nxπ (S + 1/2)/

√
2], wDW ∼ J2/J1. Therefore, the

Z2 phase transition occurs when exp[−Nxπ (S + 1/2)/
√

2] ∼
η. In contrast with this estimate, our results (See Eq. (8))
contain a spin-dependent pre-factor SZ2 to the exponential,
which leads to exp(−Nxπ (S + 1/2)/

√
2) ∼ η/SZ2 . Similar

FIG. 5. The phase diagram of Nx = 2 spin nanotube, i.e., case
(ii) J2x = 2J2y, predicted by Schwinger boson theory. The black solid
(dashed) line represents the second-(first-) order phase transition,
while the red solid line is the analytic solution Eq. (10). Here VBS
refers to a valence bond solid phase.

(a) (b)

1 2

34

5 6

78
(c)

FIG. 6. (a) Site labeling used in DMRG calculations. Order pa-
rameter σi of the Z2-helical phase explicitly reads for the first double
plaquette σ1 = (S3 − S4) · (S1 − S2 + S6 − S5). Thick green bonds
follow parallel spins. We use the unit cell vector ay such that there
are four spins per unit cell. The total number of spins in the model
is given by N = 4Ly, where Ly is the total number of plaquettes.
(b) Pairing of spins-1/2 in the odd string order parameter Oz

odd in
Eq. (18) (c) Pairing of spins in the even string order parameter Oz

even

in Eq. (19).

discreprancies between the Schwinger boson and physical es-
timate were also encountered in a previous Schwinger boson
calculation of a finite temperature 2D Z2 phase transition [68].
We speculate that such a difference is due to the negligence
of finite N fluctuation in the mean-field approach and expect
such a difference to be eliminated when the fluctuations are
taken into account.

IV. DMRG RESULTS

A. Model and simulation parameters

In this section we present DMRG simulation results for the
spin-1/2 nanotube. We focus on nanotubes with the minimal
length Nx = 2 along the short direction, as shown in Figs. 1(b)
and 1(c). In a different parameter regime, this model has
been investigated in Refs. [65,66], where symmetry-breaking
columnar dimer (CD) and staggered dimer (SD) phases were
reported to exist between the rung-singlet and the Haldane
phase. We here show that a Z2-helical phase emerges when
the coupling across the nearest-neighbor bonds is equal to the
diagonal bond coupling. This parameter choice arises natu-
rally in our construction of wrapping the J1-J2 square lattice
model around a cylinder, since both are J1 bonds then.

We choose a unit cell vector ay such that the 1D model
contains four basis sites per unit cell, two “blue” and two
“red” sites [see Fig. 6(a)]. As mentioned before, blue and red
sites correspond to the two interpenetrating second-neighbor
square sublattices coupled by J2. We denote the total number
of unit cells by Ly, and the model thus contains N = 4Ly

spins. We consider two values for the ratio J2x/J2y, where
J2x describes the coupling along the rungs, and J2y is the
second-neighbor coupling along the chains. We refer to case
(i) J2x = J2y as the nanostrip, and to case (ii) J2x = 2J2y as the
nanotube, where the transverse bond along the short direction
is counted twice due to the wrapping around the cylinder.

We use the Julia simulation library iTensor [72,77] to per-
form the DMRG calculations in this work. For each DMRG
run we allow for up to 30 sweeps, with only the final sweep
being truncated at a discarded weight of maximally 10−10.
The maximum bond dimension m is doubled after every three
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sweeps, and we set a final value of m = 3840 for the final trun-
cated sweep. We consider open BCs along the long direction
with a total number of Ly unit cells. The labeling of the sites
follows a snakelike pattern, as shown in Fig. 6(a).

The DMRG simulations are set to be quantum-number
conserving, which reduces the simulation time. For spin
chains the conserved quantum number corresponds to the z
component of the total spin Sz

tot. When computing the spin
gap, we perform two DMRG runs for each system size Ly, one
in the sector with Sz

tot = 0, and another one in the sector with
|Sz

tot| = 1. After determining the ground state in each total spin
sector, we also find the corresponding first-excited state from
a second DMRG run, where we add a penalty term to the
Hamiltonian that is the weighted projection to the previously
determined ground state.

To directly observe the emergence of Z2-helical order we
measure a suitable plaquette bond order parameter σ . For the
site labeling in Fig. 6(a), we define the order parameter as

σ (Ly) = 1

8(Ly − 1)S(S + 1)

Ly−1∑
i=1

σi, (11)

where the bond order parameter at plaquette i reads

σi = (S4i−1 − S4i ) · (S4i−3 + S4i+2 − S4i−2 − S4i+1). (12)

Here the spin operators can be expressed in terms of Pauli
matrices as Si = 1

2 (Xi,Yi, Zi ). We choose a convenient nor-
malization in Eq. (11) such that σ = 1/3 in the Z basis Néel
product state |↑↓↑↓↓↑↓↑ · · ·〉, where the sites are increasing
from left to right starting from i = 1 and Z |↑〉 = |↑〉, Z |↓〉 =
− |↓〉. Also note that the summation in Eq. (11) only runs until
i = Ly − 1, because we use a lattice geometry with an equal
number of “blue” and “red” sites, and the top row of spins
is thus “blue.” It can be shown straightforwardly that this or-
der parameter σ ∼ (�2

+ − �2
− + h2

− − h2
+) in the Schwinger

boson theory (see Sec. III), thus a nonzero σ indicates the
Z2-helical phase identified in the previous section.

The initial state of the DMRG simulations is chosen to
be a Z basis Néel product state for each sublattice. If the
first site of the “blue” sublattice (site i = 3) has the same
spin direction as the first site of the “red” sublattice (site
i = 1), i.e., |↑↓↑↓↓↑↓↑ · · ·〉, then the initial state has σ =
1/3. In contrast, if they are in antiparallel directions, i.e.,
|↑↓↓↑↓↑↑↓ · · ·〉, then we find σ = −1/3. In cases where
σ = 0, we have verified that the final converged state at the
end of the DMRG simulation shares the same σ sign as
the initial state. By preparing different Néel product initial
states, we have also explicitly checked that the two states with
opposite σ signs are energetically degenerate. However, the
DMRG method can still return a state that is a superposition of
the two possible symmetry breaking states. In order to avoid
converging into a superposition of symmetry-broken states,
we added an external symmetry-breaking pinning field at the
top and bottom boundary plaquettes

Hλ = λ[σ1 + (SN−3 − SN−2)

· (SN−5 + SN − SN−4 − SN−1)]. (13)

In the following, we use a pinning field of strength λ = 1,
except where explicitly noted. To still be able to observe the

behavior free of the pinning field, one can apply the subtrac-
tion method as described in Ref. [71].

B. Phase diagram and energy gap

In this section, we determine the Z2-helical order parame-
ter and the energy gap above the (possibly degenerate) ground
state as a function of J1/(2J2y). This directly establishes the
presence of a Z2-helical phase with a nonzero local order
parameter in the system. In Figs. 7(a) and 7(b), we show
the order parameter σ in the converged DMRG ground state
for different η = J1/(2J2y) and system sizes up to Ly = 128.
Figure 7(a) corresponds to the nanostrip case J2x = J2y and
Fig. 7(b) to the nanotube J2x = 2J2y. We obtain our results
starting from an initial Néel product state |↑↓ · · ·〉 with σ =
1/3 and in the presence of a boundary pinning field λ = 1.
The inset displays the order parameter in the thermodynamic
limit, which is obtained by extrapolating the results σ (Ly)
to 1/Ly → 0. The blue shaded area thus represents the Z2-
helical phase, which is characterized by a nonzero local order
parameter σ∞. We note that we are using the “subtraction
method” formula [71], which reads

σ∞
(
L(1)

y , L(2)
y

) = 1

L(2)
y − L(1)

y

[(
L(2)

y − 1
)
σ
(
L(2)

y

)
− (

L(1)
y − 1

)
σ
(
L(1)

y

)]
, (14)

to remove boundary effects from finite Ly. Comparing
Figs. 7(a) and 7(b), we observe that the Z2-helical phase is
wider and centered at a smaller value of η for the nanostrip
case J2x = J2y [Fig. 7(a)]. This is consistent with our results
using Schwinger boson theory (cf. Figs. 4 and 5).

The Z2-helical phase extends over a range ηc,1 � η � ηc,2.
We find the phase boundary on the left to be at η1,c = 0.540(5)
for the nanostrip and ηc,1 = 0.902(5) for the nanotube. The
boundary on the right occurs at ηc,2 = 0.650(5) for the nanos-
trip and at ηc,2 = 0.940(5) for the nanotube. While the order
parameter smoothly vanishes at ηc,1, it abruptly drops to zero
at ηc,2. This suggests the presence of a continuous phase
transition at ηc,1 and a first-order transition at ηc,2. This will
be confirmed by our detailed numerical study below, where
we also show that the continuous phase transition at ηc,1 lies
in the universality class of the 2D Ising model (see Sec. IV E).

In Figs. 7(c) and 7(d), we present the energy gap above the
ground state as a function of η. Figure 7(c) is for the nanostrip
and Fig. 7(d) is for the nanotube. Before discussing the results,
it is important to note that the degeneracy of the ground state
changes as we vary η. While the ground state is singly degen-
erate for η < ηc,1, we find it to be twofold degenerate within
the Z2-helical phase for ηc,1 < η < ηc,2. In both cases the
ground state lies in the sector Sz

tot = 0. Finally, it is fourfold
degenerate for η > ηc,2 with two ground states lying in the
Sz

tot = 0 sector and the other two in the |Sz
tot| = 1 sectors.

Figures 7(c) and 7(d) contain two energy gap curves: One
is the energy gap between the first-excited and the ground state
of sector Sz

tot = 0 (blue), and the other one is the usual spin
gap, which gives the energy difference between the ground
states of sectors |Sz

tot| = 1 and Sz
tot = 0 (orange). The shown

gap values are obtained by fitting the data for various cylinder
lengths Ly to the equation f (a, Ly) = ∑3

i=0 ai(Ly)−i. We show
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FIG. 7. [(a) and (b)] Z2-helical order parameter σ as a function of η = J1/2J2 for S = 1/2, Nx = 2 and various cylinders of length Ly. Here
Ly refers to the total number of unit cells such that the total number of spins equals N = 4Ly. The inset shows the value of σ extrapolated to
Ly → ∞. [(c) and (d)] Bulk system energy difference � between the ground and first-excited states in the sector Sz

tot = 0 (circles) and between
the ground states of sectors |Sz

tot| = 1 and Sz
tot = 0 (squares). Left- and right-hand side panels correspond to cases J2x = J2y and J2x = 2J2y,

respectively.

a scaling plot of the spin gap �(|Sz
tot| = 1) for several η values

in Appendix B.
We find a nonzero energy gap above the doubly degenerate

ground state in the Z2-helical phase. The gap to the first
excited state in the Sz

tot = 0 sector closes smoothly at ηc,1. The
insets show the (singlet) gap at ηc,1 versus system size, which
follows a power law �(Sz

tot = 0) ∝ L−z
y with exponent z = 1.

This is consistent with the 2D Ising universality class. The
gap reopens for η < ηc,1, where we find a singly degenerate
ground state. The gap to the triplet sector stays nonzero across
the critical point. We note that due to SU(2) symmetry, all
triplet energies are threefold degenerate, which explains the
degeneracy of the blue and orange curves inside the Z2-helical
phase in Fig. 7(c).

In contrast, at the first-order transition ηc,2 we find that
both the singlet and the triplet gap abruptly vanish and the
ground state becomes fourfold degenerate. We have checked
that it remains gapped above the ground state by calculating
the second excited state in the Sz

tot = 0 and |Sz
tot| = 1 sectors

(not shown).
To better understand the two phases that surround the

Z2-helical phase, let us investigate the limits η � 1 and
η � 1. For η = 0 (or equivalently J1 = 0), the J1-J2 spin-
1/2 nanotube model decomposes into two nearest-neighbor
Heisenberg two-leg ladders of length Ly. This model has been
studied extensively in the literature [56,57,59,78,79], and its

ground state is well known to be a resonating-valence-bond
(RVB) state. The RVB state consists of a a superposition of
singlet coverings with nearest-neighbor singlets having larger
weights. Nearest-neighbor singlets occur either along the leg
or across the rungs of the ladder, and this phase is usually
called the “rung singlet” (RS) phase.

As we start from the RS state at η = 0 and gradually
increase J1, the “red” and “blue” sublattices are reconnected,
and we expect that singlets on J1 bonds now become increas-
ingly important, i.e., diagonal singlets and nearest-neighbor
singlets along the chains. Since the gap remains open and the
ground state remains singly degenerate, we remain in the RS
phase for η < ηc,1. A similar behavior was reported, for exam-
ple, in Ref. [62] that studied the properties of a model similar
to ours (but without second-neighbor J2 coupling along the
chains) as a function of leg to diagonal coupling.

In the other limit, η � 1, singlets on J1 bonds are domi-
nant. For J2 = 0 the triplet sector of the nanotube model can
be mapped onto the S = 1 Haldane model [61,80,81] and this
limit thus corresponds to the Haldane phase [82–85]. This
phase exhibits a fourfold degenerate ground state for OBC due
to localized and protected spin-1/2 edge excitations. One can
notice this degeneracy in Figs. 7(c) and 7(d) for η � 0.65 and
η � 0.93, respectively. The Haldane phase is a well-known
example of a nontrivial symmetry-protected topological (SPT)
phase [84,85]. SPTs are gapped phases with a symmetry
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protecting the topology of the state. In contrast, the RS phase
is topologically trivial as it is adiabatically connected to a
product state [85]. In order to determine the topology of the
Z2-helical phase, we investigate the degeneracy of the entan-
glement spectrum as a function of η in Sec. IV D.

C. Symmetries and symmetry breaking

Let us now discuss in more detail how the Z2-helical phase
transforms under the different symmetries of the nanotube
model. This will also elucidate the relation to the previously
found CD ordered phase [64,66,67] and demonstrate that the
Z2-helical phase is different. We focus on the Nx = 2 nan-
otube model, which is depicted in Fig. 1(b), but our analysis
can easily be generalized to other even values of Nx. Note that
Fig. 1(c) shows how the Nx = 2 nanotube model continuously
transforms to a two-leg spin ladder. We place the nanotube
with its long axis along the y axis and choose the origin to lie
at the center of the circle containing blue sites. The unit cell
vector ay connects two blue sites along the chain, and the unit
cell thus contains four basis sites (two “blue” and two “red”
sites). The nanotube model is invariant under the following set
of generating symmetries:

G = {
(1|0), (1|1),

(
C4y| 1

2

)
, (C2y|0), (C2x|0), (P|0), (S4|0),

(mh,b|0), (mh,r |0), (mv,b|0), (mv,r |0)
}
. (15)

Here a general element (O|t ) combines a point group op-
eration O with a translation t along y, where t = 1 for the
translation between two adjacent unit cells. The element P
denotes inversion around the center of a blue circular pla-
quette, S4 includes a fourfold rotation and a mirror operation
with mirror between blue and red sites at ay/4. There are
two horizontal mirror planes mh,b and mh,r that are parallel
to the xz plane and cut through the blue (ay = 0) and red sites
(ay = 1/2), respectively. Finally, there are two vertical mirror
planes mv,b and mv,r that contain the y axis and cut through
blue or red sites, respectively. In the two-leg ladder descrip-
tion, the (C4y| 1

2 ) operation and the vertical mirror planes only
exist if nearest-neighbor (Jnn) and diagonal bond (J×) cou-
plings are equal (both are equal to J1 in our model). Previous
works [65,66], have not explored this parameter regime and
focused on Jnn = J×, where (C4y| 1

2 ), mv,b, and mv,r (and also
C2y,C2x, P, S4) are explicitly broken.

One can rewrite the Z2-helical bond order parameter σi in
Eq. (12) as σi = DDD,i − DCD,i, where

DDD,i = S4i−1 · (S4i−3 − S4i+1) + S4i · (S4i−2 − S4i+2),
(16)

DCD,i = S4i−1 · (S4i−2 − S4i+2) + S4i · (S4i−3 − S4i+1), (17)

are the local bond order parameters of diagonal dimer (DD)
and CD states, respectively. The CD phase is characterized by
a nonzero ground-state expectation value of 1

N
∑Ly−1

i=1 DCD,i

[67], and analogously for the DD phase. One can readily
observe that out of the set of symmetries G in Eq. (15),
the elements {P, S4, mh,b, mh,r, mv,b, mvr} are spontaneously
broken in the Z2-helical phase. Importantly, however, the
Z2-helical phase preserves (C4y| 1

2 ) symmetry. In contrast, the
application of (C4y| 1

2 ) transforms a state with homogeneous
CD order 〈DCD,i〉 = DCD into a state with homogeneous DD

FIG. 8. Local expectation value of the bond order parameters
DCD, DDD, their difference, and σi as a function of site i in the
Z2-helical phase at η = 0.91 in the nanotube geometry J2,x = 2J2,y.
The system size is set to Ly = 96. One observes that the Z2-helical
state exhibits 〈DDD,i〉 = −〈DCD,i〉1 away from the edges and is thus
distinct from pure CD or pure DD order (and also from a state with
DDD = DCD).

order 〈DDD,i〉 = DDD, where DCD = −DDD. The breaking of
(C4y| 1

2 ) in a state with pure CD or pure DD order thus distin-
guishes these orders from Z2-helical order. Note that a state
with both CD and DD order present but DCD = +DDD (such
that σ = 0) also breaks (C4y| 1

2 ) symmetry. While dimers are
aligned either along the chain (for CD order) or along the
diagonals (for DD order), the Z2-helical order is character-
ized by resonating singlets between configurations that fulfill
DCD,i = −DDD,i. In Fig. 8 we show the local expectation value
of DCD,i and DDD,i across the chain in the Z2-helical phase,
which indeed exhibits 〈DCD,i〉 = −〈DDD,i〉 in the bulk.

D. Entanglement spectrum and string order parameters

In order to show that the two phases surrounding the
Z2-helical phase are indeed the topologically trivial RS and
topologically nontrivial Haldane phases, we measure the en-
tanglement spectrum for a cylinder of length Ly = 256 for the
case J2x = 2J2y and without pinning field (λ = 0). It has been
shown that the lowest entanglement level for the RS and the
Haldane phase are singly and doubly degenerate, respectively
[84,85]. In Fig. 9(a) one can notice the same degeneracy of the
lowest level as expected for these two phases. The Z2-helical
phase displays degeneracies with the same parity as the RS
phase, thus suggesting that it is not a nontrivial SPT phase.

Another way of characterizing the RS and Haldane phases
is by measuring certain nonlocal string order parameters. We
consider the same definition as given in Ref. [62] for the odd
and even string order parameters: The former pairing near-
est neighbors across rungs, whereas the latter pairs diagonal
nearest neighbors. The notation of “even” and “odd” order
parameters arises from the parity of the number of singlet
bonds that are broken if one horizontally cuts the spin ladders
depicted in Figs. 6(b) and 6(c) [62]. In order to minimize
boundary effects, we select pairs formed by sites � = N/4
and N − �, where N = 4Ly is the total number of sites, as
the starting and end points of the string order parameters,
respectively. Therefore, given the site labeling of Fig. 6(a),
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FIG. 9. (a) Entanglement spectrum and (b) string order parameters Oz
odd and Oz

even as a function of η = J1/2J2 for a nanotube with J2x =
2J2y and length Ly = 256 and no pinning field (λ = 0). The dashed line in panel (b) denotes the Z2-helical phase boundary.

the equations for the string order parameters are

Oz
odd = −(

Sz
� + Sz

�−1

) N−�−2∏
j=�+1

exp
(
iπSz

j

)(
Sz

N−� + Sz
N−�−1

)
,

(18)

for the odd one, and

Oz
even = −(

Sz
� + Sz

�+2

)
eiπSz

�+1

N−�−1∏
j=�+3

exp
(
iπSz

j

)
× (

Sz
N−� + Sz

N−�+2

)
, (19)

for the even one. Here and in the following, we assume Ly to
be even. Hence, according to these definitions, Oz

odd → 0 if
the ground state has predominantly rung singlets (RS phase),
whereas Oz

even → 0 when the ground state has a majority of
diagonal singlets (Haldane phase).

In Fig. 9(b) we show the two string order parameters,
Oz

odd and Oz
even, as a function of η for a nanotube of length

Ly = 256. We focus on the nanotube case J2x = 2J2y, but we
expect the result to be the same for the nanostrip. As we show
in Appendix B, the data have already saturated for the chosen
cylinder length Ly and these results are thus representative of

the thermodynamic limit. Notice that Oz
odd = 0 only in the

Haldane phase, as expected. On the other hand, Oz
even remains

finite within both the RS and the Z2-helical phase. Its value in
the Z2-helical phase is about four times less than the value of
Oz

even at the RS phase.

E. Ising criticality

Finally, after having established the three different phases
within the J1-J2 nanotube model, let us return to the charac-
terization of the critical point and the universality class of the
transition at ηc,1. Using the results for the order parameter in
the upper panels of Fig. 7, we perform a finite-size scaling
analysis, which yields an estimate for the critical exponents β

and ν. In Fig. 10 we show the outcome of the scaling analysis
adopting the 2D Ising universality class critical parameters
β = 1/8 and ν = 1. We find a satisfactory collapse of the data
points for both nanostrip and nanotube geometries.

One can obtain another critical exponent by directly eval-
uating the correlation function of the order parameter 〈σiσ j〉.
In order to reduce the effects of the open boundaries, we start
from the plaquettes i and j in the middle of the cylinder and
increase the separation between plaquette pairs by moving

FIG. 10. Finite-size scaling data collapse of the Z2-helical order parameter σ for (a) nanostrip J2x = J2y and (b) nanotube J2x = 2J2y

geometries. The critical exponents are set to be those of the 2D Ising model universality class, i.e., β = 1/8 and ν = 1. The location of the
critical point ηc ≡ ηc,1 is set to the values shown in the figure.
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FIG. 11. Correlation function of the order parameter 〈σiσ j〉 ver-
sus the separation between sites |i − j| on a log-log scale for various
η = J1/2J2 values. The data correspond to a cylinder of length
Ly = 128 for the nanotube case J2x = 2J2y. The symmetry-breaking
pinning field is set to zero, λ = 0. We find that the correlations decay
algebraically with the expected 2D Ising exponent η = 0.25 for
J1/(2J2y ) = 0.9015. The algebraic decay is observed up to a separa-
tion of about |i − j| ≈ 30 when finite size effects set in. For J1/(2J2y )
smaller than the critical value, the correlations decay exponentially,
and they tend to saturate at a nonzero value for J1/(2J2y ) > 0.9015.

towards both ends of the nanotube. In Fig. 11 we show 〈σiσ j〉
as a function of |i − j| for a nanotube of length Ly = 128 and
three different η values close to the critical point. Notice that
we find an excellent agreement with the expected critical ex-
ponent value of the 2D Ising universality class for η = 0.9015,
as shown by the power-law fitted dashed line.

Finally, we comment on the the cost of the DMRG sim-
ulations for the nanostrip versus the nanotube setups. We
observed that the nanostrip case J2x = J2y requires a sig-
nificantly larger bond dimension than the nanotube case to
achieve the same accuracy. For instance, for a cylinder of
length Ly = 64 and choosing η = 0.64 and η = 0.92 for
nanostrip and nanotube, respectively, inside the Z2-helical
phase near the first-order phase transition, the DMRG run for
the nanostrip reaches the desired accuracy with a maximum
bond dimension m = 1322, whereas it requires only m = 414
for the nanotube. This indicates that the ground state in the
nanostrip case may be more complex and thus harder to con-
verge to, which may deserve further studies.

V. DISCUSSION

In summary, both analytic and computational methods in-
dicate that the Z2 nematic order of the two-dimensional J1-J2

latice model survives in the (1+1)-dimensional quantum limit
of spin nanotubes. Furthermore the disordered states on ei-
ther side of the Z2 ordered phase are distinct with different
string order parameters, a feature that emerges already in
the Schwinger boson treatment; from the two-dimensional
perspective these distinct spin liquids were not anticipated,
though they are qualitatively consistent with results for two-
leg ladders, equivalent to our Nx = 2 spin nanotubes. We
should note that we are not aware of any ladder calculations
performed with the frustrated coupling profile that we present
here so a detailed comparison is not possible.

We have focused on gapped spin nanotubes with even Nx

legs. The Schwinger boson (SB) mean-field theory predicts
two short-range spin liquid phases at small and large J1/J2 that
are separated by an emergent Z2 helical phase for all values of
S. This result is confirmed computationally for S = 1/2 and
Nx = 2 systems using DMRG. However, the DMRG results
indicate that the Z2-helical phase is narrower than what was
predicted by SB theory, though it is still present. Nevertheless,
both methods agree that the Z2-helical phase is larger for
the nanostrip geometry (J2x = J2y) compared to the nanotube
geometry (J2x = 2J2y).

The Z2-helical phase is characterized by a local order pa-
rameter. Adopting the language of the ladder literature, it lies
between RS and Haldane spin liquid phases that are identified
by distinct nonlocal even and odd string order parameters,
which are defined in Figs. 6(b) and 6(c). This raised the
interesting question of whether the local order parameter in
the Z2-helical phase coexists with any of the nonlocal string
orders and whether the phase is a topologically nontrivial SPT
phase. We find that the even string order parameter of the RS
phase is reduced but remains nonzero in the Z2-helical phase.
By computing the entanglement spectrum and finding that
it does not exhibit any degeneracies, however, we conclude
that the Z2-helical phase is topologically trivial, just like the
nearby RS phase. It interpolates between the RS and nontriv-
ial SPT Haldane phase, where the latter exhibits a twofold
degenerate entanglement spectrum and an odd string order
parameter that vanishes in the RS and Z2-helical phases.

There are many questions that may motivate future re-
search. First, we have here focused on gapped spin nanotubes
with an even number Nx of spins along the short direction.
Investigating half-integer spin chains with odd Nx, which are
gapless, opens the possibility to explore the emergence of dis-
crete symmetry breaking in models of algebraically correlated
spins. Second, DMRG studies for higher spins S > 1/2 chains
might explore the possible absence of the Haldane phase
for integer spin. Third, the identification and scaling of the
energy operator as well as other operators of the underlying
conformal field theory [86] would confirm the 2D Ising nature
of the quantum critical point. Similarly, the scaling of the
entanglement entropy with the bond dimension could be used
to extract the central charge of the theory. Building a multi-
scale entanglement renormalization ansatz of the state at the
quantum critical point would allow for further investigation of
this emergent phase transition driven by the condensation of a
composite spin order parameter [87,88].

Finally, these spin nanotube models could be studied us-
ing bosonization [65,78,89]. The J1 = 0 limit of our N = 2
model corresponds to two decoupled S = 1/2 spin ladders;
from previous bosonization studies [78], we know that the
low energy spectrum of these ladders involves massive S = 0
singlet and S = 1 triplet Majorana excitations. We expect this
description to adiabatically evolve as J1 becomes finite and
the ladders are coupled, which immediately suggests that the
Z2 transition can be described within a Majorana framework
[65,89]. Since the Z2 transition does not involve any broken
spin symmetry, the gapped triplet Majorana degrees of free-
dom will decouple from the transition, as supported by our
computational studies. By contrast, the two singlet Majoranas
together will form a gapped complex fermionic excitation
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whose mass will vanish and change sign at the transition, rem-
iniscent of the transverse-field Ising model [65]. These ideas
motivate future bosonization studies, exploring the interplay
of local order parameters, symmetry breaking and symmetry-
protected topological order.
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APPENDIX A: SCHWINGER BOSON THEORY
CALCULATIONS

1. Mean-field equations

When η � 1 and S is large, one expects that there are two
interpenetrating short-range-ordered antiferromagnetic sub-
lattices, which are locked together and form a collinear state
due to the order by disorder effect. In the collinear state, we
take the translationally invariant mean-field ansatz shown in
Fig. 2 (denoted as Z2 ansatz), which is consistent with the
correlation of the corresponding state. When S decreases, the
quantum fluctuation melts the collinear order and the two
sublattices become decoupled. In this state, the expectation
values �+ and h− should vanish simultaneously so that there
is no correlation between the two DASs [68]. With this ansatz,
the mean-field Hamiltonian can be diagonalized by Fourier
transform and Bogoliubov transformation.

For Nx � 4, the ground-state energy per Kramers pair (or
N = 2) per site is given by

EZ2

Ns
= 4

J1
�2

+ − 4

J1
h2

− + 4

J2
�2

x + 4

J2
�2

y − λ(2S + 1)

+ 1

Nx

∑
kx

∫ 2π

−2π

dky

4π
ωZ2 (kx, ky), (A1)

where the bosonic spectrum reads

ωZ2 =
√

s2 − t2, (A2)

and

s = λ + 2h− cos
kx − ky

2
, (A3)

FIG. 12. The choice of Brillouin zone (marked by blue region)
in the Schwinger boson approach.

t = 2

(
sin

kx + ky

2
�+ + sin kx�x + sin ky�y

)
. (A4)

For Nx = 2 case, the J2 associated with �y(�x ) in Eq. (A1)
should be replaced by J2y(J2x/2) while the rest of the equa-
tion remains unchanged (see our definition in Sec. IV). In
the following, we only show equations derived for the Nx = 4
case and their modification for Nx = 2 is straightforward. For
convenience we have set lattice constant a = 1 (see Fig. 2)
and choose the Brillouin zone to be 0 � kx < 2π,−2π �
ky < 2π (see Fig. 12). As will be discussed later, in the Z2

ansatz kx takes discrete value kx = 2πm/Nx + π/2, where
m = 0, 1, . . . , Nx − 1. By minimizing the ground-state energy
one obtains the set of mean-field equations:

2S + 1 = 1

Nx

∑
kx

∫ 2π

−2π

dky

4π

s

ωZ2

, (A5)

4

J1
h− = 1

Nx

∑
kx

∫ 2π

−2π

dky

4π

s

ωZ2

cos
kx − ky

2
, (A6)

4

J1
�+ = 1

Nx

∑
kx

∫ 2π

−2π

dky

4π

t

ωZ2

sin
kx + ky

2
, (A7)

4

J2
�x = 1

Nx

∑
kx

∫ 2π

−2π

dky

4π

t

ωZ2

sin kx, (A8)

4

J2
�y = 1

Nx

∑
kx

∫ 2π

−2π

dky

4π

t

ωZ2

sin ky. (A9)

To determine whether a continuous phase transition oc-
curs, we also need the Hessian matrix elements Q =
∂2EZ2/(Ns∂αi∂α j ), where

α = (λ,�x,�y, h−,�+) (A10)

is the shorthand for the mean-field parameters. It turns out
that when h− = �+ = 0 the 5 × 5 Hessian matrix Q is block
diagonal

Q =
(

X 0
0 Y

)
, (A11)
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where

X =

⎛
⎜⎜⎜⎝

−∫
k

t2

ω3 2
∫

k
sin kxst

ω3 2
∫

k
sin kyst

ω3

2
∫

k
sin kxst

ω3
8
J2

− 4
∫

k
sin2 kxs2

ω3 −4
∫

k
sin kx sin kys2

ω3

2
∫

k
sin kyst

ω3 −4
∫

k
sin kx sin kys2

ω3
8
J2

− 4
∫

k
sin2 kys2

ω3

⎞
⎟⎟⎟⎠, (A12)

Y =

⎛
⎜⎝− 8

J1
− 4

∫
k

cos2 kx−ky
2 t2

ω3 4
∫

k
cos

kx−ky
2 sin

kx+ky
2 st

ω3

4
∫

k
cos

kx−ky
2 sin

kx+ky
2 st

ω3
8
J1

− 4
∫

k
sin2 kx+ky

2 s2

ω3

⎞
⎟⎠, (A13)

and we have used shorthand
∫

k ≡ 1
Nx

∑
kx

∫ 2π

−2π

dky

4π
, ω ≡ ωZ2 .

When η � 1, the system is expected to have Néel SRO.
In the symplectic-N Schwinger boson theory, we consider the
mean-field ansatz (Néel ansatz) shown in Fig. 2. The ground-
state energy per site can be shown to be

EN

Ns
= 4

J1
�2

+ + 4

J1
�2

− − 4

J2
h2

x − 4

J2
h2

y − λ(2S + 1)

+ 1

Nx

∑
kx

∫ 2π

−2π

dky

4π
ωN (kx, ky), (A14)

where kx takes discrete values kx = 2πm/Nx, m =
0, 1, . . . , Nx − 1. The bosonic spectrum is

ωN =
√

u2 − v2, (A15)

where

u = λ + 2hx cos kx + 2hy cos ky, (A16)

and

v = 2 sin
kx − ky

2
�− − 2 sin

kx + ky

2
�+. (A17)

The self-consistent mean-field equations are

2S + 1 = 1

Nx

∑
kx

∫ 2π

−2π

dky

4π

u

ωN
, (A18)

4

J1
�− = 1

Nx

∑
kx

∫ 2π

−2π

dky

4π

v

ωN
sin

kx − ky

2
, (A19)

4

J1
�+ = − 1

Nx

∑
kx

∫ 2π

−2π

dky

4π

v

ωN
sin

kx + ky

2
, (A20)

4

J2
hx = 1

Nx

∑
kx

∫ 2π

−2π

dky

4π

u

ωN
cos kx, (A21)

4

J2
hy = 1

Nx

∑
kx

∫ 2π

−2π

dky

4π

u

ωN
cos ky. (A22)

By solving the above equations self-consistently and com-
paring the energies Eqs. (A1) and (A14), one can determine
the first-order phase transition lines shown in the main text
figures.

2. Z2 phase transition

In this section, we use Schwinger boson theory to ana-
lytically investigate the Z2 phase transition of spin nanotube
when η � 1.

a. Nx = 2 case

We first consider the case (ii) J2x = 2J2y = 2J , for which
we refer as the spin nanotube. In the Nx = 2 case, the bosons
have antiperiodic instead of periodic boundary condition
along the x direction, so kx takes value π

2 , 3π
2 . To see this,

one can consider a simpler case: a two-site antiferromagnetic
model on a ring shown in Fig. 13. Because �12 = −�21, to
make the bosonic Hamiltonian translationally invariant with
constant � around the ring, one has to apply a singular
gauge transformation leaving �10, b0, b1 invariant but b2 →
−b2,�12 → −�12, which makes the wave function antiperi-
odic. When h− = �+ = 0 Eqs. (A5)–(A9) can be simplified
to

2S + 1 =
∫ π

−π

dk′
y

2π

1√
1 − z2

, (A23)

4

J2
�x =

∫ π

−π

dk′
y

2π

z√
1 − z2

, (A24)

4

J2
�y =

∫ π

−π

dk′
y

2π

z cos k′
y√

1 − z2
, (A25)

where for convenience we have made substitution ky → k′
y +

π
2 and z = 2(�x + cos ky�y)/λ.

When S is small, the only two non-zero mean-field param-
eters are λ,�x or λ,�y, and we verify that the former one
is energetically favorable. Solving Eqs. (A23) and (A24) one
obtains

λ = J2

(
S + 1

2

)
, �x = J2

√
S(S + 1)

2
, (A26)

which means at small S, the ground state is a valence bond
solid in which every two sites connected by the J2 bond in
the x direction form singlets. This is because we are consid-
ering the case J2x = 2J2y where the J2 coupling along the x
direction is doubled and is twice as large as the one along the

0(2) 1 0 12

FIG. 13. The mean-field ansatz of a two-site Heisenberg model.
Left: Boson wave function is periodic and the mean-field ansatz is
not translationally invariant along the loop. Right: Wave function is
antiperiodic but the ansatz has translational symmetry.
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y direction, so the singlet state is favored due to large quan-
tum fluctuation. When S further increases and approaches a
lower critical value Scl, the system becomes unstable to being
antiferromagnetically short-range ordered, and �y acquires a
nonvanishing value. To see this, one could evaluate the Hes-

sian matrix element ∂2Eg

∂α2
3

(note that when �y = h− = �+ = 0

the Hessian matrix elements ∂2Eg

∂α3∂α j
all vanish for j = 3),

which vanishes at the transition point,

8

J2
− 4

∫
k

sin2 kys2

ω3
Z2

= 0. (A27)

With Eq. (A26), one obtains Scl = 1/
√

2 − 1/2 ≈ 0.21.
As S further increases, if J1 coupling is absent, then

λ,�x,�y all increase and at large S approaches �x/λ ∼
�y/λ ∼ 1/4. In this regime it is useful to define a small

parameter ε = 1 − 2 �x+�y

λ
and z = (1 − ε) cos2 k′

y

2 + O( 1
ln ε

)
when ε � 1. From Eqs. (A23)–(A25) one obtains

2S + 1 ≈ 1√
2π

[5 ln 2 − ln ε], λ ≈ − J2√
2π

ln ε. (A28)

Note there are four degenerate quasi-gapless modes at k =
(π/2, π/2), (π/2,−3π/2), (3π/2, 3π/2), (3π/2,−π/2)
with corresponding correlation length ξ ∼ 1/

√
ε, which

are reminiscent of the Goldstone modes of two uncoupled
antiferromagnets. When J1 is present, at some point the
system is unstable to the collinear order and �+, h− develops,
which hybridizes the four degenerate quasi-gapless modes and
gives rise to only two quasi-gapless modes. At the transition
point, the determinant of the Hessian in the (h−,�+) sector

det(Y ) = (A1 + A2 + 2B)(A1 + A2 − 2B)

−
(

A1 − A2 − 8

J1

)2

, (A29)

should vanish. In the above equation we define A1 =
−2

∫
k (cos2 kx−ky

2 t2)/ω3, A2 = −2
∫

k (sin2 kx+ky

2 s2)/ω3, and

B = 2
∫

k (cos kx−ky

2 sin kx+ky

2 st )/ω3. One can show that
|A1|, |A2|, |B| are identical to all divergent orders, and
the lowest order contribution is given by

A1 ∼ A2 ∼ −B ≈ 2

J2ε ln ε
. (A30)

Nevertheless, their differences are convergent in the limit ε →
0 and, particularly,

A1 + A2 + 2B = 1

2πλ

∫ π

−π

dk′
y

(z − 1)(1 + cos k′
y)

(z + 1)
√

1 − z2

= − γ2

2
√

2πλ
≈ γ2

2J2 ln ε
, (A31)

A1 − A2 = 1

2πλ

∫ π

−π

dk′
y

1 + cos k′
y√

1 − z2
≈ −

√
2 ln ε

πλ
≈ 2

J2
,

(A32)

where γ2 = 8(
√

2 ln (
√

2 + 1) − 1) ≈ 1.97. Insert Eqs. (A31)
and (A32) to Eq. (A29) one finds, to the lowest order, the

determinant of Hessian vanishes when

√
ε ln ε =

√
γ(

1 − 2
η

) . (A33)

At large S and small η, the critical spin SZ2 is hence given by
Eq. (10) in the main text.

For the J2x = J2y case (denoted as the spin nanostrip),
one could find that its phase diagram is similar to the spin
nanotube case, except for the absence of VBS phase. The
vanishing VBS phase can be understood by noting that,
for general J2x � J2y, �y becomes nonzero when S � Scl =
(
√

J2x/J2y − 1)/2, and when J2x = J2y Scl is exactly zero.
Through a similar calculation used to compute the J2x = 2J2y

case, one obtains Eq. (9) in the main text, and the derivation
is not shown here.

b. Nx � 4 case

For general Nx one can numerically confirm that when
Nx mod 4 = 0 the lowest energy bosonic state is the one
with periodic boundary condition (or translationally invariant
ansatz), while if Nx mod 4 = 2, then the lowest energy state
corresponds to the one with antiperiodic boundary condition
(or ansatz that lacks translational symmetry). Therefore kx

takes value 2π
Nx

m + π
2 , consistent with the special case Nx = 2.

This periodic boundary condition indicates that system can
lower its energy by having those quasi-gapless subbands at
transverse momentum kx = π/2, 3π/2. Similarly to the Nx =
2 case, one could first find the critical spin Scl where �y

develops and then look for the critical spin SZ2 where Z2

phase transition occurs. However, for Nx � 4, it turns out that
�x and �y are both present for any finite S if η is small,
as a consequence of that J2 along x direction is no longer
doubled. To see this, one can set S = 0+, solve the mean-field
equations (A5)–(A9) and obtain

λ0 = lim
S→0

λ = J2

2Nx

∑
kx

sin2 kx =
{

J2/2, Nx = 2
J2/4, Nx � 4 . (A34)

The Hessian at S = 0+ is diagonal and given by

1

Ns

∂2Eg

∂αiα j
=

⎛
⎜⎜⎜⎜⎜⎝

0
0

8
J2

− 2
λ0 − 8

J1
8
J1

− 2
λ0

⎞
⎟⎟⎟⎟⎟⎠

i j

. (A35)

Thus for Nx � 4, ∂2Eg

∂α2
2

= ∂2Eg

∂α2
3

= 0 when S = 0, which indi-
cates that �x and �y acquire expectation value simultaneously

at infinitesimal S when η < 1/2. When η > 1/2, note that ∂2Eg

∂α2
5

becomes negative, indicating that �+ will first develop while
other mean-field parameters except λ remain zero at small S.
We denote this phase as the DAC and show it in Fig. 3.

For our purpose we focus on the η < 1/2 case and solve for
the critical spin SZ2 where Z2 order phase transition occurs.
When η is close to 1/2, the Z2 phase transition is expected
to occur at small S where the bosonic gap is large compared
to 1/Nx. In the other words, the phase transition occurs when
the Heisenberg correlation length ξ is much smaller than the
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FIG. 14. (a) Scaling of the spin gap �(|Sz
tot = 1|) and (b) the

string order parameters Oz
odd and Oz

even (lower panel) with the nan-
otube length Ly for several values of η = J1/2J2. The data correspond
to the case where J2x = 2J2y.

width Nx of the nanotube, which corresponds to the two-
dimensional limit. In this case, all the sums over kx can be
converted to integrals as functions such as 1/ω are smooth,
which is equivalent to setting Nx = ∞. The critical SZ2 can
be solved numerically by letting the determinant of Hessian
Eq. (A13) be zero and the result is shown as the red dotted
line in Fig. 3.

At small η ≈ 0, the Z2 phase transition occurs at large S
as in the Nx = 2 case, corresponding to the one-dimensional
limit as ξ � Nx. The mean-field equations are similar to the
Nx = 2 case, except that there are also contributions from
gapped subbands:

2S + 1 = 1

Nx

[
2

∫ π

−π

dk′
y

2π

1√
1 − z2

+ IS

]
, (A36)

4

J2
�x = 1

Nx

[
2

∫ π

−π

dk′
y

2π

u√
1 − z2

+ Ix

]
, (A37)

4

J2
�y = 1

Nx

[
2

∫ π

−π

dk′
y

2π

u cos k′
y√

1 − z2
+ Iy

]
, (A38)

where at large S

Is ≈
∑

k′
x =0,π

∫ π

−π

dk′
y

2π

1√
1 − z̃2

, (A39)

Ix ≈
∑

k′
x =0,π

∫ π

−π

dk′
y

2π

ũ cos kx√
1 − z̃2

, (A40)

Iy ≈
∑

k′
x =0,π

∫ π

−π

dk′
y

2π

ũ cos k′
y√

1 − z̃2
, (A41)

where we define k′
x = kx − π/2 and z̃ = (cos k′

x + cos k′
y)/2.

Combine the above equations one obtains

2S + 1 ≈ 1

Nxπ
[
√

2(5 ln 2 − ln ε) + π IS],

λ ≈ −
√

2J2

Nxπ
ln ε. (A42)

The determinant of the Hessian can be determined in a manner
similar to the Nx = 2 case:

A1 + A2 − 2B ≈ 8

J2ε ln ε
, (A43)

A1 − A2 ≈ 2

J2
, (A44)

and

A1 + A2 + 2B

= − 1

Nx

[
2

λ

∫ π

−π

dk′
y

2π

(1 − u)(1 + cos k′
y)

(u + 1)
√

1 − u2
+ 2I−

λ

]

= −2
γ /2

√
2π + I−

Nxλ
, (A45)

where

I− ≈
∑

k′
x =0,π

∫ π

−π

dky

2π

(1 − ũ)(1 + cos k′
y)

2(ũ + 1)
√

1 − ũ2
. (A46)

Combine all the above equations with Eq. (A29) one obtains

SZ2 exp

[
−Nxπ (SZ2 + 1/2)√

2

]

= exp

(
− π

2
√

2
Is

)√
γ + 2

√
2π I−

16Nxπ
η. (A47)

APPENDIX B: SCALING OF THE SPIN GAP AND STRING
ORDER PARAMETERS

For the sake of completeness, we show here a few examples
of the scaling of the spin gap and string order parameters
with respect to the system size. In Fig. 14(a) we have selected
several η = J1/2J2 values, in order to cover all three phases, to
present the scaling of the spin gap �(|Sz

tot| = 1) as a function
of the inverse of the nanotube length Ly. Here we have focused
only on the nanotube setup, as we are able to reach larger
system sizes than the nanostrip case. Moreover, we should
point out that the scaling plot for the energy gap between
the first-excited and ground states of sector Sz

tot = 0 does not
behave as smoothly as the spin gap represented in Fig. 14(a).
The reason lies in a poor choice of the weight factor w of the
penalized Hamiltonian, which we have set in our preliminary
calculations as w = 10 regardless of system size and η value.
However, by tuning the parameter w, and also by adding noise
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to the initial sweeps of the DMRG method, we have verified
that one can obtain more consistent results for the energy
gap.

Similarly, Fig. 14(b) displays the scaling of the string order
parameters Oz

odd and Oz
even [Eqs. (18) and (19), respectively].

For each string order parameter, we have chosen two η values,

one within the Z2-helical phase and the other within the phase
where the corresponding parameter is finite. Notice that the
string order parameters saturate for relatively small system
sizes, thus indicating that the data for the largest system,
namely Ly = 128, is a good approximation to the thermody-
namic limit.
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