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Electrostatically coupled tunable topological phononic metamaterials for angular velocity sensing
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We propose an electrostatically coupled phononic metamaterial for angular velocity sensing, whose sensitivity
is immune to external damping and local material defects; furthermore, the coupling strength and frequency
range of bands are tunable by the voltages applied to the lattices. The induced Coriolis force could open up
the topologically nontrivial band gaps, and the edge band bandwidths increase gradually with respect to the
angular velocity. Hence, according to the dispersion relation of edge modes and the difference between edge
states and bulk states, an angular velocity sensing method based on the band structure variation of the tunable
phononic metamaterial is proposed by using the phase difference and amplitude ratio of edge states. In contrast
to traditional amplitude-dependent microelectromechanical system gyroscopes, such a frequency-dependent
angular velocity sensing method makes the sensitivity independent of the external damping coefficient. In
addition, the topological properties ensure the robustness of the proposed angular velocity sensing method
against local defects. The tunable metamaterial-based angular velocity sensing mechanism provides a bridge
between physics and engineering applications.
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I. INTRODUCTION

Metamaterials, as new artificial materials with novel prop-
erties, have attracted wide attention in recent years [1].
While conventional materials derive their mechanical and
electrical characteristics from their attributed natural prop-
erties, metamaterials enable us to access new functionalities
based on artificially designed unit structures. The road map
of metamaterials applications has revealed the potential of
metamaterials in sensing technology [2]. Due to the ex-
otic properties of metamaterials, the interdisciplinary field
between metamaterials science and sensing technology has
become a new frontier [3], and considerable research for
metamaterials-based sensors has been conducted in the fields
of biosensing [4], thin-film sensing [5], wireless strain sens-
ing [6], and inertial sensing [7]

In recent years, the theories of topological states in elec-
tronic systems, such as the quantum Hall effect (QHE) [8],
quantum spin Hall effect [9], and topological insulators [10],
have inspired the development of analogs in photonic [11,12],
mechanical [13], and phononic metamaterials [14–20]. For
the particular case of QHE, researchers have proposed several
methods, including gyroscopic metamaterials [14,15], acous-
tic resonators with circulating airflow [16], and a rotating
lattice with a Coriolis force [17], to break the time-reversal
symmetry in phononic analogs and realize one-way edge
states, which have the features of unidirectional propagation,
confined to the boundary, robust to local defects and immune
to backscattering.
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Among these, particular attention is paid to a rotating lat-
tice with a Coriolis force [17], which is a two-dimensional
system formed by the periodic arrangement of springs and
masses in a noninertial reference frame. The key to realizing
the unique phenomenon of QHE in the classical system is by
introducing the Coriolis force, which will break time-reversal
symmetry and open up topologically nontrivial band gaps
with one-way edge states. The intriguing phenomenon that
the band structure varies with external angular velocity pro-
vides the possibility to design and manufacture a new angular
velocity sensing system based on similar metamaterials. In
addition, traditional microelectromechanical system (MEMS)
gyroscopes, such as disk, bulk acoustic wave, quad mass,
and wineglass gyroscopes [21], mainly adopt the amplitude
signal as the output to sense angular velocity, however, this
signal is susceptible to the external damping coefficient vari-
ation relating to air pressure [22,23]. In contrast to these
typical amplitude-dependent MEMS gyroscopes, metamate-
rials whose band structure is sensitive to angular velocity
open new degrees of freedom to design frequency-dependent
gyroscopes.

Indeed, previous theoretical and experimental research on
topological phononic metamaterials was mainly concerned
with the intrinsic topological properties [14–20] and few
studies have investigated the possibility of extending the
metamaterials to the field of sensing [7]. In this paper, we
designed a tunable phononic metamaterial (TPM) consisting
of electrostatically coupled masses for angular velocity sens-
ing. Compared with the existing phononic metamaterials with
fixed coupling coefficients, electrostatic coupling provides
convenience for its manufacture based on MEMS technology
and high tunability for the coupling strength. When the TPM
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FIG. 1. (a) Schematic of the TPM. The dashed box shows the detailed structure of the lattice and the shadowed region is a unit cell of
the lattice, where the blue and red parts correspond to the applied voltage of V1 and V2, respectively. (b) The band structures of TPM in the
irreducible Brillouin zone with different angular velocities of � = 0, � = 0.09�0, � = 0.18�0, � = 0.27�0, and � = 0.36�0. The inset is
the Brillouin zone. (c)–(f) Berry curvatures of the first, second, third, and fourth bands, respectively, with an angular velocity of � = 0.09�0.

is placed on a rotational framework, the introduction of the
Coriolis force, as an external magneticlike bias, will open up
topologically nontrivial band gaps. The band structure and
topological properties of TPM are related to the value of
angular velocity. According to the dispersion relation in the
band gaps, we proposed a possible method using a phase-
locked loop [24,25] to track the variation of band structure
quickly and precisely. Based on that, a frequency-dependent
angular velocity sensing system based on TPM is proposed
and discussed in detail, which could offer different ideas and
avenues for the design of angular velocity sensors.

II. THE BAND STRUCTURE FOR A TUNABLE
PHONONIC METAMATERIAL

The TPM we propose here is constructed as a honeycomb
lattice, as depicted in Fig. 1(a). Unlike a typical mass-spring
crystal, adjacent lattice sites are coupled by the electrostatic
force between capacitive plates. In each unit cell, which con-
tains two masses M, one mass hangs from the roof plate and
another one is supported by the substrate plate, as shown in
the dashed box of Fig. 1(a). By applying different voltages V1

and V2 to the roof and substrate plates, electrostatic coupling
εbl (V1 − V2)2/2d2

0 is introduced between adjacent masses,
where ε is the dielectric constant of the gap medium, b and
l are the width and length of the electrode area, respectively,
and d0 is the original capacitor gap, which should be suffi-
ciently small compared to l and much larger than the in-plane
displacements of masses ψ . The cylinders connecting the
masses to the roof or substrate plates play the role of restoring
springs with a stiffness of k0, preventing the occurrence of
a pull-in phenomenon [26] under the working voltage. With
the condition ψ � d0 � l , linear components will dominate

the dynamics of the metamaterials, while the electrostatic
nonlinearity terms are negligible (detailed analyses of the lin-
earized dynamic equations and the nonlinear effects are found
in the Supplemental Material [27], with Refs. [17,26,28–32]
therein). The linearized dynamic equations for a unit cell can
be simplified to a frequency domain dynamic matrix [30],

ω

(
ψ

ψ̇

)
= i

(
0 I

−Dk �(�)

)(
ψ

ψ̇

)
, ψ =

(
ψu

ψv

)
,

(1)

where I is the identity matrix, Dk is the positive-definite
matrix containing restoring effects and electrostatic coupling
terms, �(�) is the skew-symmetric matrix arising from Cori-
olis forces associated with angular velocity � as [33]⎛

⎜⎜⎝
0 2� 0 0

−2� 0 0 0
0 0 0 2�

0 0 −2� 0

⎞
⎟⎟⎠, (2)

ψ is the in-plane displacement of mass u and v in a unit cell,
and (ψ ψ̇ )

T
is the extended displacement-velocity vector.

In order to solve Eq. (1) as a Hermitian eigenvalue problem, a
suitable transformation [30,33],

T =
( √

Dk 0
0 i

)
, (3)

can be applied to transform Eq. (1) into Hermitian form as

ω

( √
Dkψ

iψ̇

)
=

(
0

√
Dk√

Dk i�(�)

)( √
Dkψ

iψ̇

)
, (4)

where
√

Dk can be constructed by the positive eigenvalues and
eigenvectors of Dk .
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FIG. 2. Schematics of ribbon structures with (a) zigzag and (c) armchair boundaries, and the dashed boxes indicate the supercells for the
two kinds of ribbon structures. The one-dimensional band structures for the supercells of (b) a zigzag boundary ribbon and (d) an armchair
boundary ribbon with angular velocities of � = 0, � = 0.09�0, � = 0.18�0, � = 0.27�0, and � = 0.36�0. Blue lines represent the bulk
modes, and the yellow lines represent edge modes.

The band structures of TPM in the irreducible Brillouin
zone with different angular velocities are shown in Fig. 1(b),
where ω2

0 = k0/M, ω2
e = εb(V1 − V2)2l/2Md3

0 , and for sim-

plicity we set �0 = ω2
e/

√
ω2

0 − 3ω2
e . With the condition ω2

0 �
ω2

e , which is necessary for the device to prevent the pull-in
phenomenon [26], the band structure is almost symmetric
with respect to frequency ω =

√
ω2

0 − 3ω2
e , and the frequency

range of the bands is tunable by adjusting the voltage V1 − V2.
In the case of � = 0, where time-reversal symmetry is pre-
served, the linear double degeneracy can be observed in the
vicinity of the K point (kx = 0 ky = 4π/3

√
3c), where c is

the distance between adjacent lattice sites. The introduction of
angular velocity � < 3ω2

e/4
√

ω2
0 − 3ω2

e = 0.75�0 will break
time-reversal symmetry and open three band gaps by lifting
the degeneracies of the four bands. As the angular velocity
increases, the band gaps are gradually widened (the angular
velocity range considered in this paper is mainly to ensure
the linearity and consistency of the bandwidth variation trend;
an investigation for the case of larger angular velocity can be
found in Ref. [17]).

The topological nature of the bands is characterized by
the Chern numbers, which can be obtained by integrating
Berry curvature over the entire first Brillouin zone. For the
case with nonzero angular velocity, the Berry curvatures for
all four bands are shown in Figs. 1(c)–1(f), and the corre-
sponding Chern numbers are calculated as {−1, 0, 0, 1} (the
calculations of Berry curvatures and Chern numbers are de-
tailed in the Supplemental Material [27], with Refs. [14,34–
37] therein). The sum of Chern numbers below the band gaps
is nonzero, which means that the band gaps are topologically
nontrivial and indicates the existence of gapless one-way edge
states in the band gaps. Thus, these bulk band gaps can be

labeled as edge bands. To further investigate the dispersion
relation of edge modes and effects of angular velocity in
detail, two kinds of ribbon structures with zigzag and arm-
chair boundaries in the y direction, respectively, and infinite
length in the x direction are considered, as shown in Figs. 2(a)
and 2(c). The band structures for the supercells of the ribbons
show that there are two edge modes, corresponding to the
modes confined to the top and bottom boundaries, within the
frequency range of each edge band, as illustrated in Figs. 2(b)
and 2(d). In agreement with the analysis of the band struc-
ture in the Brillouin zone, the bandwidths of the edge bands
increase gradually with respect to the angular velocity. In
addition, it is worth noting that a variation of the angular
velocity will change the slopes of the edge mode dispersion
curves (group velocity), but will not affect the intersection
point of the dispersion curves in the second edge band with the
line kx = 0, which is fixed at (0

√
ω2

0 − 3ω2
e ). These effects

of angular velocity on the band structure form the basis for the
potential application of TPM in the angular velocity sensing
field.

III. ANGULAR VELOCITY SENSING METHOD

To verify the difference between the edge states and bulk
states and then further promote the TPM for angular velocity
sensing by this difference, numerical simulations of a finite
TPM system consisting of 43 × 12 unit cells are performed.
This TPM system has both zigzag and armchair boundaries
and can be excited by the driving electrodes symmetrically
placed on the left and right boundaries. In the case of
� = 0.36�0, by applying a combination of coupling volt-
age (V1 or V2) and small harmonic voltage Vac cos(ωt ),
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FIG. 3. (a) Numerical simulation for the edge state of a finite TPM system. Only the masses near the boundary would vibrate. (b) Numerical
simulation for the bulk state of the system. Both inner and boundary masses vibrate. (c) The arrangement of the boundary electrode, inner
electrode, and phase electrodes. Numerical simulations for the ratios of current amplitudes for the inner electrode to the boundary electrode
with angular velocities of (d) � = 0, (e) � = 0.18�0, and (f) � = 0.36�0 at the frequencies over all bands. The light blue shaded regions
bounded by dashed lines correspond to the theoretical calculation results of edge band bandwidths.

Vac � |V1 − V2| to the driving electrodes, the edge state (ω =√
ω2

0 − 3ω2
e ) and bulk state (ω =

√
ω2

0 − 3ω2
e/2) can be ex-

cited, respectively, as shown in Figs. 3(a) and 3(b).
It can be clearly seen that the mechanical wave of the edge

state propagates along the boundary unidirectionally so that
only the masses near the boundary would vibrate (Supple-
mental Movie 1 [27]), while the bulk state can scatter into the
bulk of the system, causing both inner and boundary masses to
vibrate (Supplemental Movie 2 [27]). Such a significant differ-
ence in mechanical wave propagation characteristics indicates
that the edge state and bulk state can be distinguished by
detecting the vibrations of the inner and boundary masses of
the TPM system. Thus, we can divide the inner and boundary
detection electrodes from the roof plate, as shown in Fig. 3(c).
The vibration of inner and boundary masses will cause vari-
ations of relevant capacitances and generate the currents on
the inner and boundary electrodes. By detecting the ratio
of current amplitudes on the two electrodes (Iin/Ibo) at the
frequencies over all bands, the frequency ranges of the edge
states can be measured. Then, the value of angular velocity,
which is related to the bandwidths of the edge bands, can be
sensed accurately. Figures 3(d)–3(f) show the ratios of current
amplitudes for the inner electrode to the boundary electrode.
The current amplitude ratio decreases significantly in the fre-
quency range of the edge bands, which can be used to confirm
the bandwidths of the edge bands. Moreover, the change
of edge band bandwidth with angular velocity is in good
agreement with the results of the theoretical calculation,
as shown in the light blue shaded regions of Figs. 3(e)

and 3(f). Furthermore, from a practical perspective, the di-
rect frequency sweeping over the range of all bands is time
consuming and the accuracy will be limited by the sweep
step. Therefore, the phase-locked loop [24,25], which is com-
monly used in frequency-dependent sensors [38,39], can be
adopted to track the variation of edge bands quickly and
accurately. According to the dispersion relation of edge modes
in Fig. 2, particularly in the second edge band, the dispersion
curves are nearly straight lines, and the absolute values of
the dispersion curve slopes (group velocity) increase with
the angular velocity. By detecting the change of phase dif-
ference between adjacent supercells

√
3kx1c − √

3kx2c at two
close excitation frequencies ω1 and ω2 in the second edge
band, this slope can be obtained in the form of slope =
(ω1 − ω2)/(

√
3kx1c − √

3kx2c). The intersection points of
dispersion curves with kx = 0 are fixed at (0

√
ω2

0 − 3ω2
e ),

and with the bulk bands are (±π/3 ωu/l ), where ωu and ωl

are the upper and lower boundaries of the second edge band,
respectively. Thus, the second edge band bandwidth ωu − ωl

can be derived as

ωu − ωl =
∣∣∣∣ 2π

3
√

3

ω1 − ω2

kx1c − kx2c

∣∣∣∣. (5)

Regarding the realization of edge band bandwidth variation
tracking, which is caused by angular velocity, two additional
phase electrodes are arranged in the TPM system to detect
the phase difference between adjacent lattices located at the
boundary, as shown in Fig. 3(c). The phase differences of the
current signals on the two phase electrodes at the excitation
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FIG. 4. (a) The phase differences of current signals on the two
phase electrodes at the frequencies over all bands (orange circles) and
the one-dimensional band structures for the supercells of the zigzag
boundary ribbon (blue and yellow lines) with angular velocities of
� = 0, � = 0.18�0, and � = 0.36�0. (b) The workflow for the
TPM-based angular velocity sensing method.

frequencies over all bands are shown in Fig. 4(a). It can be
seen that the variation of phase difference with frequency is in
good agreement with the dispersion relation in the edge bands.
However, due to the coupling of multiple bulk modes, there
is no obvious rule for the variation of the phase difference
in bulk bands. Therefore, based on the above analysis, the
workflow for the angular velocity sensing method is presented
in Fig. 4(b), which combines the current amplitude ratios and
the dispersion relations of edge modes in the second edge
band to detect angular velocity, ensuring the accuracy and
speed of detection.

The sensitivity of the proposed TPM-based angular veloc-
ity sensing method can be approximately expressed as

ωu − ωl

�
=

√
ω2

0 − 3ω2
e

/
2 −

√
ω2

0 − 9ω2
e

/
2

3ω2
e

/
4
√

ω2
0 − 3ω2

e

, (6)

which only depends on the restoring term ω2
0 and electrostatic

coupling term ω2
e , and is independent of the external damp-

ing coefficient. This feature enables the proposed TPM-based
angular velocity sensing method to eliminate the need for vac-
uum packaging, which facilitates its fabrication and long-term
storage.

Moreover, the inherent robustness against local defects is
one of the most conspicuous characteristics of the TPM-based
angular velocity sensing method. Numerical simulations are
performed for a defective TPM system, whose upper right
part is missing, as shown in Fig. 5(a). With angular veloc-
ities of � = 0.18�0 and � = 0.36�0, the ratios of current
amplitudes for the inner electrode to boundary electrode and

FIG. 5. (a) The defective TPM-based angular velocity sensing
system, whose upper right part is missing. (b) Numerical simulations
for the ratios of current amplitudes for the defective system with
angular velocities of � = 0.18�0 and � = 0.36�0 at the frequencies
over all bands. (c) The phase differences of current signals on the two
phase electrodes for the defective system with angular velocities of
� = 0.18�0 and � = 0.36�0 at the frequencies over all bands.

the phase differences of the current signals on the two phase
electrodes are shown in Figs. 5(b) and 5(c), respectively. What
can be clearly seen is that the results for the bandwidth vari-
ation of edge bands and the variation of the phase difference
with frequency remain unchanged, which proves that the per-
formance of this sensing method is not susceptible to local
defects.

IV. CONCLUSION

In summary, a tunable phononic metamaterial consisting
of electrostatically coupled masses is designed for angular
velocity sensing. The linearized motion equations of the TPM
subjected to angular velocity are derived. Based on the anal-
ysis of the band structure, the topologically nontrivial nature
of the TPM system is verified, and the edge band bandwidths
increase gradually with the increase of angular velocity. Ac-
cording to the significant difference between edge states and
bulk states in mechanical wave propagation characteristics,
an approach by detecting the current amplitude ratio of in-
ner electrode to boundary electrode is proposed to confirm
the edge band bandwidth variation due to angular velocity.
Furthermore, to improve the speed and accuracy of detection,
the phase-locked loop can be adopted to track the variation
of the second edge band bandwidth based on the dispersion
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relations of the edge modes. A comparison of the TPM-based
angular velocity sensing method with traditional amplitude-
dependent gyroscopes shows that the proposed method is
independent of the external damping coefficient. Moreover,
the robustness against the local defects for the TPM-based
angular velocity sensing method is numerically verified. This
frequency-dependent angular velocity sensing method based
on TPM provides a feasible scheme for the design of MEMS

gyroscopes robust to external damping coefficients and local
defects.

ACKNOWLEDGMENTS

We gratefully acknowledge financial support by National
Natural Science Foundation of China (Grant No. U1930206),
and EUR EIPHI program, Europe (Contract No. ANR 17-
EURE-0002).

[1] H. Huang, J. Chen, and S. Huo, Recent advances in topological
elastic metamaterials, J. Phys.: Condens. Matter 33, 503002
(2021).

[2] N. I. Zheludev, The road ahead for metamaterials, Science 328,
582 (2010).

[3] T. Chen, S. Li, and H. Sun, Metamaterials application in sens-
ing, Sensors 12, 2742 (2012).

[4] H.-J. Lee and J.-G. York, Biosensing using split-ring res-
onators at microwave regime, Appl. Phys. Lett. 92, 254103
(2008).

[5] I. A. I. Al-Naib, C. Jansen, and M. Koch, Thin-film sensing
with planar asymmetric metamaterial resonators, Appl. Phys.
Lett. 93, 083507 (2008).

[6] R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir,
Metamaterial based telemetric strain sensing in different mate-
rials, Opt. Express 18, 5000 (2010).

[7] X. Zheng, J. Zhao, N. Kacem, and P. Liu, Toward acceleration
sensing based on topological gyroscopic metamaterials, Phys.
Rev. B 106, 094307 (2022).

[8] K. V. Klitzing, The quantized Hall effect, Rev. Mod. Phys. 58,
519 (1986).

[9] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Quantum spin
Hall effect and topological phase transition in HgTe quantum
wells, Science 314, 1757 (2006).

[10] M. Z. Hasan and C. L. Kane, Colloquium: Topological insula-
tors, Rev. Mod. Phys. 82, 3045 (2010).

[11] F. D. M. Haldane and S. Raghu, Possible realization of di-
rectional optical waveguides in photonic crystals with broken
time-reversal symmetry, Phys. Rev. Lett. 100, 013904 (2008).

[12] Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačić,
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