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Majorana Fermi surface state in a network of quantum spin chains
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We use junctions of critical spin-1 chains as the basic elements to construct a honeycomb network that harbors
a gapless chiral spin liquid phase. The low-energy modes are described by spin-1 Majorana fermions that form
a two-dimensional Fermi surface when the interactions at the junctions are tuned to the vicinity of chiral fixed
points with staggered chirality. We discuss the physical properties and the stability of this chiral spin liquid
phase against perturbations from the point of view of the effective field theory for the network. We find clear
connections with the excitation spectrum obtained in parton constructions on the kagome lattice.
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I. INTRODUCTION

Mott insulators can display exotic quantum phases
in which spin fractionalization gives rise to low-energy
fermionic excitations [1]. In materials regarded as quantum
spin liquid candidates [2–4], the observation of a constant
magnetic susceptibility, linear specific heat and linear thermal
conductivity at low temperatures is often interpreted as evi-
dence for a Fermi surface of fractionalized excitations. Within
effective theory descriptions [5], these gapless fermionic
modes are strongly coupled to emergent gauge fields, and
one may question whether these phases remain stable when
interactions are treated beyond the mean-field level [6–8].

Quantum spin liquids with Fermi surfaces become more
stable when the gauge structure is discrete and time reversal
and inversion symmetries are broken [9]. As opposed to a
U(1) spin liquid, whose gapless photonlike modes mediate
long-range interactions between fermions, a Z2 spin liquid has
gapped vortexlike excitations known as visons [10]. Gauge-
field fluctuations can be safely neglected in the limit where
visons have a large gap and a small effective bandwidth. In
addition, breaking time reversal and inversion symmetries, as
in chiral spin liquids (CSLs) [11], protects the Fermi surface
against pairing instabilities [9,12]. In fact, gapless CSL phases
have been found in numerical studies of lattice models where
time reversal symmetry is broken either spontaneously or by
three-spin interactions [13–15]. In these cases, the formation
of the Fermi surface is associated with a staggered scalar spin
chirality on frustrated lattices. Moreover, there are examples
of exactly solvable models where spins fractionalize into Ma-
jorana fermions and static Z2 gauge fields, and the Majorana
fermions form a stable Fermi surface [16–20].

In this work we present an analytical approach that
employs quantum spin chains coupled by time-reversal-
symmetry-breaking interactions as building blocks of a
Majorana Fermi surface state. Arrays of one-dimensional
(1D) systems have been shown to realize both gapped
[21–26] and gapless [27,28] spin liquids. Such coupled-wire
constructions usually hinge on the assumption of a renor-
malization group (RG) flow of judiciously selected interchain

interactions to strong coupling. By contrast, here we start from
junctions of spin chains with boundary interactions tuned to a
chiral fixed point [29–32]. When the spin chains are coupled
to form a network with uniform spin chirality at the junctions,
this approach leads to gapped CSLs with Abelian [33] or
non-Abelian [34] topological order. Our goal here is to show
that the same approach applied to a network with staggered
spin chirality describes a gapless CSL with a Fermi surface
descended from the chiral 1D modes.

To construct a Z2 CSL with a Majorana Fermi surface,
we consider a network of critical spin-1 chains described by
the SU(2)2 Wess-Zumino-Novikov-Witten (WZNW) model
[35]. The latter is a conformal field theory (CFT) with central
charge c = 3/2 and admits a representation in terms of three
Majorana fermions for each chain [36,37]. The conditions for
reaching the chiral fixed point of a junction of three spin-1
chains were discussed in Ref. [32]. Imposing a staggered chi-
rality pattern on the junctions forming a honeycomb network,
we show that the low-energy excitations of the system are
chiral Majorana modes that run along three zigzag directions
in the network. We then consider the leading perturbations
allowed by symmetry when the model parameters deviate
from the chiral fixed point. The theory contains a marginal
operator that introduces backscattering of Majorana fermions
at the junctions and can be treated exactly. This operator
turns the fermionic spectrum into an authentic 2D dispersion
with a line Fermi surface, closely related to that obtained in
parton mean-field theories with Majorana fermions on the
kagome and triangular lattices [14,38]. We then analyze the
effects of the operator associated with the spin-1/2 primary
field of the SU(2)2 WZNW model. While this perturbation is
highly relevant at the 1D fixed point, we show that deep in
the 2D regime this operator governs the dynamics of gapped
vison excitations, thus becoming irrelevant at low energies.
Therefore this network approach provides a path to tame
the gauge-field fluctuations and stabilize an SU(2)-invariant
gapless CSL without resorting to mean-field approximations.

This paper is organized as follows. In Sec. II, we review
the basic aspects of the critical spin chains that constitute the
Y junction. In Sec. III, we show how to obtain the network
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model by suitably coupling the junctions tuned to chiral fixed
points. In Sec. IV, we discuss the stability of the CSL phase
against perturbations that modify the Majorana fermion spec-
trum and create visons. In Sec. V, we examine the effects of
turning on a magnetic field in the gapless CSL phase. Final
remarks and possible directions for future work are presented
in Sec. VI.

II. JUNCTION OF SPIN-1 CHAINS

Let us briefly review the theory for a single Y junction of
three critical spin-1 chains [32]. The lattice model is given by
HY = Hc + HB, where Hc contains the intrachain interactions:

Hc = J
3∑

α=1

L∑
j=1

[S j,α · S j+1,α − (S j,α · S j+1,α )2], (1)

with S j,α being the spin-1 operator at site j of chain α. Here
J > 0 is such that the first term represents an antiferromag-
netic exchange coupling, while the second term corresponds
to a biquadratic interaction tuned to a critical point at which
the model is exactly solvable by the Bethe ansatz [39,40]. The
chains are coupled at their end sites j = 1 by the boundary
interactions

HB = JχS1,1 · (S1,2 × S1,3) + J ′
3∑

α=1

S1,α · S1,α+1. (2)

These interactions preserve SU(2) symmetry in addition to a
Z3 symmetry under a cyclic permutation of the chain index α,
i.e., α �→ α + 1 (mod 3). Note that the Jχ interaction involves
the scalar spin chirality for the boundary spins. This three-
spin interaction breaks reflection (P) and time reversal (T )
symmetries,

P : α �→ −α (mod 3), T : S j,α → −S j,α, (3)

but preserves the product PT .
The low-energy excitations of each spin chain with length

L � 1 are described by an SU(2)2 WZNW model [35,41].
Before imposing boundary conditions, we can write the effec-
tive Hamiltonian in the Sugawara form

Hc =
3∑

α=1

πv

2

∫ L

0
dx

(
J2

α + J̄2
α

)
. (4)

Here v ∼ J is the spin velocity and Jα and J̄α are left- and
right-moving currents, respectively, that obey the SU(2)2 Kac-
Moody algebra.

All local operators in the SU(2)2 WZNW model can be
represented in terms of three critical Ising models [36,37].
In particular, the currents are written as bilinears of chiral
Majorana fermions ξ a

α and ξ̄ a
α :

Ja
α (x) = − i

2
εabcξ b

α (x)ξ c
α (x),

J̄a
α (x) = − i

2
εabcξ̄ b

α (x)ξ̄ c
α (x), (5)

where a, b, c ∈ {x, y, z} ≡ {1, 2, 3} and εabc is the Levi-Civita
symbol. For each chain, the chiral Majorana fermions trans-
form as a vector ξα = (ξ 1

α, ξ 2
α , ξ 3

α )t under spin rotations.

Combining right and left movers, we define the components
of the spin-1 primary matrix field

�
(1)
α,ab(x) = iξ a

α (x) ξ̄ b
α (x), (6)

which has scaling dimension 1. The diagonal elements of the
spin-1 field can be identified with the energy operators in the
Ising CFT, εa

α = iξ a
α ξ̄ a

α . In this representation, the Hamilto-
nian in Eq. (4) becomes

Hc =
∑
α,a

∫ L

0
dx

iv

2

(
ξ a
α∂xξ

a
α − ξ̄ a

α∂x ξ̄
a
α

)
. (7)

The critical point is perturbed by one relevant bulk opera-
tor, which can be written as a mass term for the Majorana
fermions:

δHm = im
∑
a,α

∫ L

0
dx ξ a

α ξ̄ a
α . (8)

Tuning the strength of the biquadratic interaction in Eq. (1) is
equivalent to setting m = 0 in the effective field theory. The
Haldane phase and the dimerized phase correspond to m > 0
and m < 0, respectively; see Refs. [32,37].

The theory also contains a spin-1/2 primary matrix field
�( 1

2 ) with scaling dimension 3/8. The components of �( 1
2 )

can be expressed using the order (σ ) and disorder (μ) Ising
operators:

tr
[
�

( 1
2 )

α (x)
] ∼ σ 1

ασ 2
ασ 3

α , (9)

tr
[
τ a�

( 1
2 )

α (x)
] ∼ σ a

αμa+1
α μa+2

α , (10)

where τ a are Pauli matrices. For each chain, these operators
satisfy the relations

σ a
α (x)μa

α (y) = μa
α (y)σ a

α (x)sgn(x − y), (11)

σ a
α (x)ξ a

α (y) = ξ a
α (y)σ a

α (x)sgn(x − y), (12)

μa
α (x)ξ a

α (y) = −ξ a
α (y)μa

α (x)sgn(x − y). (13)

The spin-1/2 field appears, for instance, in the staggered part
of the spin operator in the continuum:

S j,α ∼ Jα (x) + J̄α (x) + (−1) jnα (x), (14)

where nα (x) = A tr[τ�
( 1

2 )
α (x)] with a nonuniversal prefactor

A. Besides the specific model in Eq. (1), the SU(2)2 WZNW
universality class can also be realized at the dimerization tran-
sition of antiferromagnetic Heisenberg chains with three-site
interactions [42,43].

The microscopic interactions in Eq. (2) can be tuned to
control the boundary conditions for the low-energy modes at
the junction. Two chiral fixed points with opposite chirality,
denoted as C+ and C−, occur at intermediate values of Jχ and
J ′ [32]. They are characterized by the boundary conditions

C± : Jα (0) = J̄α±1(0). (15)

At the C± points, the Y junction behaves as an ideal spin cir-
culator [30], in which incoming spin currents are completely
transmitted from one chain to the next in rotation, either
clockwise or counterclockwise; see Fig. 1. The direction of
circulation is controlled by the sign of Jχ at the corresponding
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FIG. 1. Schematic representation of a junction of spin-1 chains.
In the continuum limit, the low-energy modes in each chain α are
described by SU(2)2 currents Jα (x) and J̄α (x). At the chiral fixed
points, denoted by C− and C+, the currents are perfectly transmitted
in the directions represented by the clockwise or counterclockwise
loops.

chiral fixed point. The chiral boundary conditions can be
implemented in terms of Majorana fermions as

C± : ξ a
α (0) = pαξ̄ a

α±1(0), (16)

where pα ∈ {+1,−1} can be chosen arbitrarily, manifesting a
Z2 gauge freedom in the fermionic representation of Eq. (5).
Fixing pα = +1, we can glue the fermionic modes in different
chains as

C± : ξ a
α (x) = ξ̄ a

α±1(−x). (17)

Thus we regard the left-moving Majorana fermions as the
analytic continuation of the right-moving ones to the domain
x < 0. With this convention, the effective Hamiltonian for a
single junction tuned to a chiral fixed point can be cast in the
form

HCFP
Y = − iv

2

∑
α,a

∫ L

−L
dx ξ̄ a

α∂x ξ̄
a
α . (18)

The chiral-fixed-point Hamiltonian is perturbed by one
relevant and one marginal boundary operator. These operators
are written in terms of the trace of the primary fields at x = 0:

δH = γ
∑

α

tr
[
�

( 1
2 )

α (0)
] + λ

∑
α

tr
[
�(1)

α (0)
]
. (19)

The coupling constants γ and λ vanish when the microscopic
parameters Jχ and J ′ are fine tuned to one of the chiral fixed
points. The relevant γ interaction drives the system towards
low-energy fixed points with vanishing spin conductance [32].
The marginal λ interaction can be written in terms of Majo-
rana fermions and corresponds to a backscattering process at
the junction. These perturbations render the chiral fixed points
unstable in the limit L → ∞. However, if the crossover to
stable fixed points happens to be slow, as verified numerically
for the junction of spin-1/2 chains [30,31], the chiral fixed
point can still govern the physical properties of a junction
with finite but very long chains over a wide range of parame-
ters. Moreover, we can cut off the infrared divergence of the
relevant perturbation by keeping the chain length finite and
imposing boundary conditions at x = L that correspond to
constructing a 2D network, as we will discuss in the following.

III. NETWORK MODEL WITH STAGGERED CHIRALITY

Consider a honeycomb network constructed by putting to-
gether Y junctions of spin-1 chains. To obtain a translationally

FIG. 2. Network of junctions at the chiral fixed point. Inside the
box, we represent the unit cell specifying the direction of propagation
of the three Majoranas chiral modes. The origin of the unit cell is
represented by the yellow dots, where we have s = 0.

invariant system, we impose chiral boundary conditions with
the same chirality, say the C− fixed point, on all the junctions
marked by yellow dots in Fig. 2. These positions correspond
to the x = 0 end of the spin chains. The choice of the boundary
conditions at x = L is crucial. If we impose the same chi-
rality as at x = 0, we obtain the non-Abelian CSL discussed
in Ref. [34]. By contrast, here we assemble a network with
staggered chirality in order to obtain a gapless phase. This can
be accomplished by tuning the interactions in Eq. (2) among
the chains that meet at x = L to the C+ fixed point. We can
write the boundary conditions as

J̄a
α,R(0) = Ja

α+1,R(0),

J̄a
α,R(L) = Ja

α−1,R−δα−1
(L), (20)

where the lattice vector R specifies the positions represented
as yellow dots in Fig. 2, which form a triangular lattice, and
δα are the next-nearest-neighbor vectors

δ1 =
√

3L(1, 0),

δ2 =
√

3L(−1/2,
√

3/2),

δ3 =
√

3L(−1/2,−
√

3/2). (21)

In terms of the Majorana fermions, the chiral boundary condi-
tions in Eq. (20) can be expressed as

ξ̄ a
α,R(0) = pα,R ξ a

α+1,R(0),

ξ̄ a
α,R(L) = pα,R ξ a

α−1,R−δα−1
(L), (22)

with pα,R ∈ {+1,−1}. Here we will fix a uniform sign pα,R =
+1 ∀α, R, but will reexamine this choice later when we
discuss the Z2 gauge structure of the resulting 2D phase.

With this choice of boundary conditions, the network
model describes three sets of decoupled chiral 1D modes
running along the zigzags of the honeycomb lattice. The three
directions of propagation are schematically represented by
red, green and blue lines in Fig. 2. These modes are related
to each other by the Z3 symmetry that combines a C3 lattice
rotation with α �→ α + 1. To specify positions in this network,
we use the coordinates (ν, R, s), where ν = 1, 2, 3 labels the
direction of propagation (red, green and blue, respectively), R
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is the center of the unit cell shown in the inset in Fig. 2, and
s ∈ [−L, L] is a continuous coordinate within the unit cell,
with s = 0 at the center of the unit cell and s = ±L at the far
ends of the chains. In this notation, the Majorana fields obey
the relation

ξ̄ a
ν,R−δν

(s + 2L) = ξ̄ a
ν,R(s). (23)

The chiral fixed point Hamiltonian can be written as

H0 = v

2

∑
a,ν

∑
R

∫ L

−L
ds ξ̄ a

ν,R(s)(−i∂s)ξ̄ a
ν,R(s). (24)

As a consequence of the SU(2) symmetry, the Majorana
fermions are degenerate with respect to the spin index a. It
is convenient to single out the z spin direction and define a
complex fermion by combining two Majoranas:

ψ̄ν,R(s) = 1√
2

[
ξ̄ x
ν,R(s) + iξ̄ y

ν,R(s)
]
, (25)

with {ψ̄
ν,R(s), ψ̄†

ν ′,R′ (s′)} = δνν ′δR,R′δ(s − s′). We can then
write H0 = Hxy

0 + Hz
0 , with

Hxy
0 = v

∑
ν,R

∫ L

−L
ds ψ̄

†
ν,R(s)(−i∂s)ψ̄ν,R(s), (26)

Hz
0 = v

2

∑
ν,R

∫ L

−L
ds ξ̄ z

ν,R(s)(−i∂s)ξ̄ z
ν,R(s). (27)

Hereafter we focus on the spectrum of the complex fermion,
but we should keep in mind that the theory also contains the
Majorana fermion ξ̄ z with the same dispersion relation but
half the number of modes.

The quadratic Hamiltonian in Eq. (26) can be diagonalized
straightforwardly. We use the mode expansion

ψ̄ν,R(s) = 1√
2NL

∑
k∈BZ

∑
n∈Z

ei[k·R+Qν,n (k)s]ψ̄ν,n(k), (28)

where N is the number of unit cells and BZ stands for the first
Brillouin zone. The auxiliary function Qν,n(k) is defined as

Qν,n(k) = k · δν + 2πn

2L
, n ∈ Z, (29)

and obeys Qν,−n(−k) = −Qν, n(k). This function is important
to ensure the relation ψ̄ν, R−δν

(s + 2L) = ψ̄ν, R(s). The Hamil-
tonian can be written in momentum space as

Hxy
0 =

3∑
ν=1

∑
k∈BZ

∑
n∈Z

Eν,n(k)ψ̄†
ν,n(k)ψ̄ν,n(k), (30)

where

Eν,n(k) = vQν,n(k) (31)

is the fermion dispersion relation with n ∈ Z denoting a band
index. It follows from the definition of Qν,n(k) that shifting
the momentum by a reciprocal lattice vector, k �→ k + G with
G · δν = 2π� and � ∈ Z, corresponds to shifting the band
index n �→ n + �. Due to the continuum of states inside the
unit cell, the spectrum of Hxy

0 exhibits an infinite number of
positive- and negative-energy bands. The ground state is a
Fermi sea in which all negative-energy state states are oc-
cupied. We stress that this field theory approach is aimed

at describing the low-energy properties of the network. The
low-energy bands correspond to n = 0 and have the dispersion
relation

Eν,0(k) =
√

3

2
vk · êν, (32)

where êν = δν/(
√

3L) are unit vectors. There are three low-
energy bands that disperse along the directions of propagation
of the chiral 1D modes. The spectrum is gapless along
three intersecting straight lines in reciprocal space given by
k · êν = 0.

The solution of the chiral-fixed-point Hamiltonian in terms
of decoupled 1D modes has a direct impact on the spin cor-
relation. Let S j,α,R denote the spin operator at site j of chain
α of the junction centered at R. Given the chain index α, the
two chiral modes that run through this chain propagate along
the directions labeled as ν = α and ν = α − 1; see Figs. 1
and 2. At the chiral fixed point, two spins separated by a
distance r > L are correlated only if there is a chiral mode
that connects them. This condition requires that the second
point be located at a unit cell given by R′ = R + mδα or R′ =
R + mδα−1 with m ∈ Z. We can then compute the correlation
using the representation of the spin operator in Eq. (14) and
the operator product expansion (OPE) of the SU(2)2 currents
[35,41]

J̄a(z̄)J̄b(z̄′) ∼ 1

4π2

δab

(z̄ − z̄′)2
+ iεabc J̄c

α (z̄′)
2π (z̄ − z̄′)

, (33)

where z̄ = vτ − ix is the antiholomorphic coordinate in Eu-
clidean space-time. We obtain

〈
Sz

j,α,RSz
j′,α′,R′

〉 ∼ −δR′,R+mδα
+ δR′,R+mδα−1

4π2(s′ − s + 2mL)2
, (34)

where on the right-hand side s, s′ ∈ [−L, L] are coordinates
within the unit cells corresponding to the sites ( j, α, R) and
( j′, α′, R′), respectively, for the chiral model that connects
these two points. Thus the correlation is spatially anisotropic
and decays as a power law with the distance along the special
directions set by the vectors δα . Remarkably, the staggered
part of the correlation vanishes because the spin-1/2 primary
field acts nontrivially on both chiral sectors of a given chain,
and two points separated by a distance r > L cannot share
both chiral modes. The same behavior was obtained within
a different coupled-wire construction for a model with stag-
gered chirality on the extended kagome lattice [27].

IV. PERTURBATIONS TO THE CHIRAL FIXED POINT

So far we have explored the physics of the network model
when the microscopic interactions are tuned to the chiral fixed
points. An immediate question concerns what happens in the
presence of perturbations associated with deviations from the
chiral fixed point. As discussed in Sec. II, for a single junction,
there are two non-irrelevant boundary interaction terms given
by Eq. (19). We now analyze the effects of these perturbations
on the excitation spectrum of the network. We start with the
marginal operator, which involves the spin-1 field and can
be treated exactly, and then proceed to the analysis of the
operator that involves the spin-1/2 field. We also consider
the effect of the relevant mass term in Eq. (8). We will see
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(a) (b) (c) (d)

FIG. 3. Dispersion relation of fermionic excitations in the network model, see Eq. (38), for two values of the coupling constant of
the backscattering operator: (a) λ/v = 0.2 and (b) 0.8. (c) shows the Fermi surface of the middle band (red lines), with occupied states
corresponding to the shaded regions. The primitive reciprocal lattice vectors are b1 = ( 2π√

3L
, 2π

3L ) and b2 = (0,− 4π

3L ). In (d), the dispersion for
λ/v = 0.8 (solid lines) is compared with the tight-binding model of Eq. (41) with t1 = 0.78v/L and t3 = 1.09v/L (dashed lines). Here we set
Emax = v/L as the energy cutoff for the fitted data.

that the chiral fixed point is unstable against the operators that
are relevant at the 1D fixed point, but a finite strength of the
marginal coupling can stabilize a 2D gapless phase.

A. Spin-1 boundary perturbation: Backscattering
of Majorana fermions

Let us consider the second term in Eq. (19). Using the
fermionic representation and imposing either C+ or C− chiral
boundary conditions, we can write this term as

δH (C± )
λ = iλ

∑
a,α

ξ̄ a
α±1(0)ξ̄ a

α (0). (35)

This operator corresponds to a backscattering process that
hybridizes the chiral modes at x = 0. For a single junction,
this marginal perturbation defines a critical line in the bound-
ary phase diagram where the spin conductance tensor can be
calculated exactly [32]. When transported to the network with
staggered chirality, the perturbation becomes

Hλ = −iλ
∑
η=0,1

∑
a,ν

∑
R

(−1)ηξ̄ a
ν+1,R(ηL)ξ̄ a

ν,R−ηδν
(ηL). (36)

Importantly, the sign of the backscattering amplitude al-
ternates between s = 0 and s = L. This property is related
to a mirror symmetry of the network model with staggered
chirality. Consider the reflection with respect to a horizontal
line that runs through the center of a hexagon in Fig. 2. We
define the vectors w1 = L(

√
3

2 , 1
2 ), w2 = L(

√
3

2 ,− 1
2 ) and w3 =

L(0,−1), such that δα = wα − wα+1. The mirror symmetry is
implemented as

ξ̄1,R(s) �→
{
ξ̄1,R̃−w2

(s − L) if s ∈ (0, L),
ξ̄1,R̃−w1

(s + L) if s ∈ (−L, 0),

ξ̄2,R(s) �→
{
ξ̄3,R̃−w1

(s − L) if s ∈ (0, L),
ξ̄3,R̃−w3

(s + L) if s ∈ (−L, 0),

ξ̄3,R(s) �→
{
ξ̄2,R̃−w3

(s − L) if s ∈ (0, L),
ξ̄2,R̃−w2

(s + L) if s ∈ (−L, 0),
(37)

where R̃ stands for the unit cell position after the reflection.
It is straightforward to check that the operator in Eq. (36) is
invariant under this transformation, but only if the relative
minus sign is properly taken into account. This symmetry

should not be confused with P defined in Eq. (3), which refers
to a reflection about a vertical line through the center of a
hexagon. The latter inverts the direction of propagation of all
chiral modes, but it can be combined with time reversal to
yield the PT symmetry of the network model.

The effective Hamiltonian including the marginal pertur-
bation is quadratic in the Majorana fermions and can be
diagonalized exactly. Once again, we focus on the contribu-
tion from the complex fermion in Eq. (25) and use the mode
expansion in Eq. (28). The leading effect of the backscattering
term is to generate avoided level crossings of nearly degener-
ate states, opening gaps between bands in close analogy with
the band structure of electrons in a weak periodic potential
[44]. Truncating the spectrum to keep only the low-energy
bands with index n = 0, we can write

Hxy = Hxy
0 + Hxy

λ =
∑

k

�†(k)Heff (k)�(k), (38)

where �(k) = (ψ̄1,0(k), ψ̄2,0(k), ψ̄3,0(k))T. The Bloch
Hamiltonian reads

Heff(k) =
⎛
⎝E1,0(k) �12(k) �∗

31(k)
�∗

12(k) E2,0(k) �23(k)
�31(k) �∗

23(k) E3,0(k)

⎞
⎠, (39)

where the off-diagonal elements are given by

�ν,ν+1(k) = iλ

2L
(1 − e−ik·δν−1/2). (40)

Note that �ν,ν+1(k) vanishes for k → 0 as a result of the neg-
ative interference between the scattering processes at x = 0
and x = L.

Diagonalizing Heff(k), we obtain closed-form but lengthy
expression for the dispersion relations of the fermionic bands,
denroted as Er (k) with r = 1, 2, and 3. The result is shown
in Fig. 3. The bands have the property Er (−k) = −E4−r (k).
In particular, E2(k) transforms into itself under k �→ −k. The
gapless lines of this middle band are determined by the zeros
of the determinant of Heff(k). Using

∑
ν δν = 0, it is easy to

show that the gapless lines occur at k · êν = 0, which is the
same Fermi surface that we obtained for the chiral fixed point.
The bandwidth of E2(k) decreases as we increase the ratio
λ/v. In addition to the Fermi surface of the middle band, the
lower and upper bands touch zero energy with a Dirac cone at
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(a) (b)

FIG. 4. Mapping to a tight-binding model. (a) Each chiral mode
(ν = 1, 2, and 3 for red, green, and blue, respectively) of the n = 0
bands is mapped onto a single site. (b) The propagation of the chiral
modes can be represented on an extended kagome lattice. The red
line indicates the direction of free propagation of the ν = 1 mode;
cf. Fig. 2. Similarly, the modes ν = 2 and 3 run along the other
diagonals of the hexagons. The arrows in the black lines represent
the orientation of the links in the backscattering term; see Eq. (41).

the � point. This band touching can be understood by noting
that Heff(k) vanishes for k = 0.

A qualitatively similar spectrum has been obtained in par-
ton mean-field descriptions of gapless CSLs on the kagome
lattice [14,15,27]. Note, however, that the result obtained here
does not rely on mean-field approximations because the frac-
tionalization into Majorana fermions is established within the
building blocks, namely the critical spin-1 chains. To make the
connection with parton mean-field theory more explicit, we
can fit the low-energy spectrum of the effective Hamiltonian
to a tight-binding model. This approximation is better justified
when we increase the coupling constant of the marginal oper-
ator so that the band splitting, determined by the off-diagonal
matrix elements of order |λ|/L in Eq. (40), becomes compa-
rable to the bandwidth W ∼ v/L of the unperturbed model.

The mapping of the network model to a tight-binding
model can be visualized as shown in Fig. 4. We represent
the chiral modes in the low-energy bands as three sites form-
ing a triangle and assign three Wannier states |ν, R〉 to each
unit cell. Putting the unit cells together, we naturally obtain
a kagome lattice. The free propagation of the chiral modes
at the chiral fixed point, see Fig. 2, corresponds to hopping
along the diagonals of the hexagons, which connect sites that
belong to the same sublattice. The backscattering processes
at the junctions are mapped onto hoppings between nearest-
neighbor sites, which belong to different sublattices and form
the triangles of the kagome lattice. The minimal tight-binding
model compatible with the symmetries of the model is

Hxy
tb = it1

2

∑
ν,R

[( f †
ν+1,R−aν−1

− f †
ν+1,R ) fν,R − H.c.]

+ it3
2

∑
ν,R

( f †
ν,R+aν

f
ν,R − H.c.), (41)

where fν,R annihilates a fermion in the state |ν, R〉, t1 and t3
are the hopping parameters of order v/L, and we set aν =
δν/2 to match the off-diagonal matrix elements in Eq. (40).
As a result, the network model describes a staggered-flux
ansatz [11] with first- and third-neighbor links on a kagome
lattice. Note that a second-neighbor imaginary hopping it2
is forbidden because it would break the reflection symmetry

of the network model. We can fit the hopping parameters
to reproduce the low-energy spectrum by minimizing the
mean square deviation for the dispersion relation in the range
|Er (k)| < Emax with Emax ∼ v/L; see Fig. 3(d). Importantly,
the ratio t1/t3 increases with λ/v up to λ/v ∼ 1, at which point
the middle band becomes approximately flat.

The Majorana Fermi surface governs the low-energy prop-
erties of the CSL on the 2D network. For instance, the local
dynamical spin correlation behaves as

C(ω) =
∫ ∞

−∞
dt eiωt

〈
Sz

j,α,R(t )Sz
j,α,R(0)

〉 ∼ ω, (42)

analogous to the local density of states of particle-hole ex-
citations in a Fermi liquid. We can show that the power-law
decay of the equal-time spin correlation at distances r = |r ·
êν | � L predicted in Eq. (34) remains valid in the presence
of the backscattering operator because the Fermi surface still
has the form of straight lines [27]. This is a slower decay
than the 1/r3 behavior expected for a 2D Fermi surface with
nonzero curvature [45]. In addition, quantum spin liquids with
a Fermi surface of fractional excitations are characterized by
a logarithmic violation of the area law for the entaglement
entropy [46,47]. In two dimensions, the entanglement entropy
SE of a subsystem of linear size L in the gapless CSL scales
as SE ∼ L lnL. In this network construction, the logarithmic
correction of the 2D phase is directly connected to the entan-
glement entropy of the chiral 1D modes. The simple argument
[27] is that the number of 1D modes that crosses the boundary
of the subsystem with linear size L � L is proportional to L,
and each mode contributes to the entanglement entropy with
S1D

E ∼ c lnL, where c is the central charge of the CFT [48].
A remark about the nomenclature is in order. We refer

to this CSL state as “Majorana Fermi surface” rather than
“spinon Fermi surface” because we reserve the term “spinon”
for excitations that carry spin 1/2, whereas the gapless Ma-
jorana fermions carry spin 1 [49,50]. In the next section,
we will discuss the properties of the spin-1/2 excitations in
the network model and show that they are related to gapped
visons.

B. Spin-1/2 boundary perturbation: Visons

We now turn to the perturbation described by the first term
in Eq. (19). In the network model, we define

Hγ = γ
∑
η=0,1

∑
α

∑
R

σ 1
α,R(ηL)σ 2

α,R(ηL)σ 3
α,R(ηL), (43)

where we used the representation in Eq. (9). Unlike the other
terms of the effective Hamiltonian we have discussed so far,
Hγ cannot be written as a local operator in terms of Majorana
fermions. This operator is a relevant perturbation to the chiral
fixed point for a single junction in the limit L → ∞ [32].
Moreover, this perturbation destabilizes the chiral fixed point
of the network with staggered chirality depicted in Fig. 2
because the latter is described in terms of decoupled 1D
modes that extend to infinity. However, in the presence of the
marginal perturbation with λ ∼ v, the fermionic excitations
develop a 2D dispersion at low energies, see Fig. 3, and the
analysis based on the scaling dimension at the 1D fixed point
no longer applies. On the other hand, we can investigate the
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effect of Hγ in this regime using the effective tight-binding
model discussed in Sec. IV A.

First, we note that, if we come from the 1D limit and
integrate out high-energy modes, the Majorana fermions be-
come interacting in the presence of the γ perturbation. To see
this, we use the OPE of the order operator in the Ising CFT,
represented by the fusion rule [41]

σ × σ = 1 + ε, (44)

where 1 denotes the identity operator. We then treat Hλ

within second-order perturbation theory, applying the OPE to
the σ fields in the independent spin sectors labeled by a =
1, 2, and 3. Integrating out high-energy modes, we generate
a term linear in εa

α , which amounts to a renormalization of the
backscattering amplitude λ. In addition, we obtain a quadratic
term in the energy operator the form

Hint = g
∑

R

∑
η=0,1

∑
a,α

∑
R

εa
α,R(ηL)εa+1

α,R (ηL), (45)

which is a fermion-fermion interaction with coupling constant
g ∼ γ 2. Were this the only effect of the γ perturbation, we
would expect the Majorana Fermi surface in the network
model to be completely robust in the small-γ limit. The reason
is that chiral Fermi surfaces are generically stable against
weak short-range interactions [9,18,20]. In addition to the
absence of nesting, the conventional Cooper instability (with
zero-momentum pairing) is ruled out because states with op-
posite momentum are not degenerate when time reversal and
inversion symmetries are broken.

However, as mentioned above, the chiral fixed point with
λ = 0 must be destabilized by an arbitrarily small γ . It is
instructive to note that in the network with uniform chirality
the γ perturbation has been shown to create visons that bind
Majorana zero modes and behave as non-Abelian spinons
[34]. Thus we anticipate that this perturbation also creates
visons in the gapless CSL, and the stability of the phase
depends on whether visons become gapped excitations in the
2D regime λ ∼ v.

Beyond the approximation of integrating out the σ opera-
tors, the γ interaction must be related to an emergent Z2 gauge
field. Let us revisit the Z2 gauge degree of freedom alluded to
in Eq. (22). The variable pα,R ∈ {+1,−1} can be interpreted
in terms of the phase shift that the Majorana fermion picks
up when tunneling from one chain to the next according to
the chiral boundary conditions. At the chiral fixed point, a
sign change in pα,R at any junction can be gauged away
since the chiral modes are defined on open lines that extend
out to infinity. However, once we turn on the backscattering
operator, the Majorana fermions can move around in closed
paths and feel the physical effects of a gauge-invariant Z2 flux.

When we set pα,R = +1 ∀α, R in the effective Hamil-
tonian, we assumed that the uniform gauge configuration
describes the sector of the Hilbert space that contains the
ground state. For consistency, we must inquire about the en-
ergy cost of flipping the sign of pα,R. The action of the
operator in Eq. (43) has precisely this effect because σ acts
as a twist field that changes the boundary conditions for the
Majorana fermions [28,34,51]. In fact, Eq. (12) implies that

the fermions pick up a minus sign when they go around the
point where σ is applied.

To estimate the energy of the gauge-field excitations, we
turn to the effective tight-binding model in Eq. (41). We
implement the Z2 gauge degree of freedom by rewriting the
Hamiltonian as

Hxy
tb = i

2

∑
i j

ui jti j f †
i f j , (46)

where ti j = t1 for first-neighbor links, ti j = t3 for third-
neighbor links, and ti j = 0 otherwise. Here ui j ∈ {+1,−1}
denotes an Ising link variable obeying the relation uji = −ui j .
In the proposed ground state, we fix the positive orientation
of the links with nonzero ui j as represented by the arrows in
Fig. 4(b). The gauge-invariant Z2 flux can be defined from
the product of ui j around the plaquettes of the kagome lattice
[16–18]. The effect of the γ perturbation in Eq. (43) is mapped
onto flipping the sign of the variable ui j that corresponds to a
path on the network that contains the point where the order
operator σ is applied. As a result, the quantum fluctuations of
ui j create pairs of visons on neighboring plaquettes that share
the link (i, j). For γ �= 0, the Z2 gauge field becomes a dy-
namical degree of freedom. The situation here is analogous to
the effect of integrability-breaking interactions in the Kitaev
spin liquid [52,53].

We consider a state with localized visons created by re-
versing the sign of a single link variable ui j on a triangle
of the kagome lattice. Since this gauge configuration breaks
translational invariance, we calculate the energy of this state
numerically by diagonalizing the tight-binding Hamiltonian
on a finite lattice with size L1 × L2 along the directions of
the vectors a1 and a2 with periodic boundary conditions. This
calculation is performed for system sizes up to L1 = L2 = 30.
By subtracting the energy of the vortex-free ground state and
extrapolating the result to L1 → ∞, we obtain an estimate
for the energy E2v of the two-vortex excitation. Since the γ

perturbation acts on the ξ̄ z Majorana fermion as well as on ξ̄ x

and ξ̄ y, we multiply the energy calculated from Hxy
tb by a factor

3/2 to account for the contribution from all three spin flavors.
The result is shown in Fig. 5. We find that the finite-size effects
are stronger for small t1/t3, but it is clear that the energy E2v

starts off negative and becomes positive for larger t1/t3. Since
the ratio t1/t3 increases with λ/v, see the effective hopping
parameters in Fig. 3, we conclude that visons become gapped
for sufficiently large λ. This result confirms that the stability
of the Majorana Fermi surface state against vison excitations
requires moving away from the chiral fixed point of decou-
pled 1D modes (with λ = 0) and towards a 2D regime with
a significant backscattering amplitude λ ∼ v. We have also
considered the case t1 < 0, which can accessed by reversing
the sign of λ, but found that E2v is always negative in this case.

Besides creating vison pairs, the γ interaction can make
the visons mobile, lowering their energy. At fixed λ ∼ v, we
expect a quantum phase transition out of the Majorana Fermi
surface state as we increase γ to the point where visons con-
dense. To understand the conditions on the critical γ , recall
that this operator is relevant and increases under the RG flow
in the 1D theory. Assuming that the RG flow is cut off at
the energy scale W ∼ v/L set by the bandwidth of the 2D

075135-7



OLIVIERO, FONTANA, AND PEREIRA PHYSICAL REVIEW B 109, 075135 (2024)

FIG. 5. Energy of a pair of adjacent vortices in the effective
tight-binding model of Eq. (46). The energy is calculated by extrap-
olating the result for finite-size systems to the thermodynamic limit,
as shown in the inset for t1/t3 = 0.35 (blue squares) and t1/t3 = 0.7
(red circles).

network model, we replace the bare coupling constant γ by
the effective coupling γ ∗(L) ∼ γ L1−�, where � = 3/8 is the
scaling dimension of the spin-1/2 matrix field. The transition
must happen when the effective vison bandwidth generated by
γ ∗ approaches the gap obtained for γ = 0. Thus we expect the
gapless CSL phase to extend over the regime

|γ ∗(L)|
L

� v

L
⇒ 1

L
�

( |γ |
v

)8/5

. (47)

For fixed γ �= 0, the gapless CSL becomes unstable in the
limit L → ∞, reflecting the instability of the chiral fixed point
for a single junction of infinitely long chains [32]. On the other
hand, this analysis suggests that, even though we started in the
limit of long chains with low-energy excitations described by
a CFT, the gapless CSL phase actually becomes more stable
if we push the result towards the physically relevant regime of
short chains, with fewer sites in the unit cell.

Let us also comment on the behavior of the staggered part
of the spin correlation in the network model. In contrast with
the result for the chiral fixed point discussed in Sec. III, the
staggered part of the correlation does not vanish in the generic
Majorana Fermi surface state with nonzero λ and γ . How-
ever, since the staggered magnetization involves the spin-1/2
primary field and creates visons, this correlation must decay
exponentially with a length scale set by the vison gap. The
same can be said about the correlation for the dimerization
operator, which is represented by the trace of the spin-1/2
field [32]. By contrast, recall that the uniform part of the spin
correlation, which only involves gapless fermion excitations,
decays as a power law according to Eq. (34).

C. Bulk perturbation: Mass term

Let us now consider the mass term in Eq. (8). As discussed
in Sec. II, this operator destabilizes the critical spin-1 chain,
driving the transition between Haldane and dimerized phases.

The corresponding term on the network can be written as

Hm = im
∑
ν,R

∫ L

0
ds ξ̄ a

ν+1,R(s)ξ̄ a
ν,R(−s). (48)

Focusing on the contribution from the complex fermion in
Eq. (25), we consider

Hxy
m = im

∑
ν,R

∫ L

0
ds ψ̄

†
ν+1,R(s)ψ̄

ν,R(−s) + H.c. (49)

Since this operator is quadratic in the Majorana fermions, we
can analyze its effect in the 2D regime with λ ∼ v by taking
the projection to the effective three-band model. Given that the
modes associated with the n = 0 bands vary smoothly inside
the unit cell, a reasonable approximation for the projection is
to replace ψ̄

ν,R(s) �→ 1√
2L

fν,R. As a result, we obtain

Hxy
m �→ im′ ∑

ν,R

f †
ν+1,R f

ν,R + H.c., (50)

with m′ ≈ m/2. This operator is similar to t1 in Eq. (41) in
the sense that it couples modes with different ν. However,
while the hopping parameters in Eq. (41) are of order v/L,
the projection of the mass term is independent of L. To justify
treating this operator as a small perturbation to the low-energy
theory governed by v and λ, with bandwidth W ∼ v/L, we
must impose |m|L � λ, v. Thus the relevance of the mass
term at the 1D fixed point translates into the fact that the ap-
proximation breaks down for any m �= 0 in the limit L → ∞.
As we discussed for the spin-1/2 operator, keeping a finite L
is important to stabilize the gapless spin liquid phase, even if
only in a narrow parameter regime.

We can now add the projection of the mass term to the
effective tight-binding model in Eq. (41). Since this operator
acts within the unit cell, the result is equivalent to adding
a constant matrix to the effective Bloch Hamiltonian [see
Eq. (39)]:

H̃eff (k) = Heff (k) + m′

⎛
⎝ 0 −i i

i 0 −i
−i i 0

⎞
⎠. (51)

Diagonalizing the new Hamiltonian, we find that the threefold
degeneracy at k = 0 is lifted because the Dirac cone formed
by the lower and upper bands is gapped out for m′ �= 0.
However, the Fermi surface of the middle band persists along
the lines k · êν = 0, as can be promptly verified by checking
that the determinant of H̃eff (k) still vanishes along these lines
for m′ �= 0. Remarkably, the 2D Fermi surface of the spin
liquid phase remains stable against the mass term in the limit
|m|L � λ, v. Note that gapping out the Dirac cone at the �

point does not modify the leading behavior of low-energy
properties of the gapless spin liquid, which are governed by
the Majorana Fermi surface.

V. MAGNETIC FIELD RESPONSE

In this section, we analyze the effects of an external mag-
netic field on the Majorana Fermi surface state. The Zeeman
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FIG. 6. Energy contour plots of the bands E2(k) (left) and E3(k)
(right) for λ/v = 0.8 and B = −0.1v/L. The red lines correspond to
the Fermi surface.

term for a magnetic field applied along the z spin direction is

HZ = −BSz
total = −B

∑
j,α,R

Sz
j,α,R. (52)

The total magnetization Sz
total can be written in terms of the

integral of the chiral currents in Eq. (14). Using the represen-
tation in Eq. (5), we obtain

HZ = iB
∑

R

∑
ν

∫ L

−L
ds ξ̄ x

ν,R(s)ξ̄ y
ν,R(s). (53)

Since the magnetic field only couples to ξ̄ x and ξ̄ y, the disper-
sion relation of the Majorana fermion ξ̄ z remains unchanged.
In terms of the complex fermion in Eq. (25), the Hamiltonian
reads (up to a constant)

HZ = B
∑

R

∑
ν

∫ L

−L
ds ψ̄

†
ν,R(s)ψ̄ν,R(s). (54)

Thus the Zeeman term is equivalent to a chemical potential for
the complex fermion. The analogous term in the tight-binding
model of Eq. (41) is

HZ = B
∑
ν,R

f †
ν,R f

ν,R. (55)

Since the Zeeman term only shifts the Fermi level for the
complex fermion, the spectrum remains gapless for B �= 0.
However, the symmetry Er (−k) = −E4−r (k) is broken and
the Fermi surface changes significantly; see Fig. 6. The Fermi
lines of the middle band E2(k) become curves and no longer
cross at the � point. In addition, for B < 0 the upper band
E3(k) crosses the Fermi level and contributes to the Fermi
surface with a small pocket around the � point. Due to the
nonzero curvature of the Fermi surface, in the presence of
the Zeeman field the equal-time spin correlation for the Sz

component decays as 1/r3 [45]. In addition, the magnetic
field affects the low-energy single-particle density of states
(DOS), ρ(E ) = 1

N
∑

k,r δ(Er (k) − E ). At zero field, we have
ρ(−E ) = ρ(E ), and the DOS has a peak at E = 0. Since the
Zeeman term shifts the Fermi level to EF = −B, the low-
energy DOS decreases when we turn on the magnetic field.
This results, in particular, in a suppression of the specific heat
cV (T ) ∝ ρ(EF )T .

VI. CONCLUSIONS

We presented an analytic approach to study a 2D gapless
phase in a network built out of junctions of spin-1 chains.

Gapless phases are hard to explore beyond the approxima-
tions of parton mean-field theory or even within coupled-wire
constructions that assume strong-coupling fixed points at low
energies. By imposing chiral boundary conditions with stag-
gered chirality on the network, we showed that our effective
model gives rise to a phase that shares several low-energy
properties with gapless CSLs found in mean-field approaches
on the kagome lattice [14,15,54]. For instance, this gapless
CSL is characterized by a power-law-decaying spin correla-
tions and a low-energy density of states dominated by a Fermi
surface of spin-1 Majorana fermion excitations.

The main advantage of this approach is that fraction-
alization arises naturally within the effective field theory
description of the spin chains. The challenge is to verify that
the resulting 2D phase remains stable against perturbations
that are formally relevant at the chiral fixed point of the 1D
theory. As a key ingredient, the marginal operator associated
with backscattering of Majorana fermions at the junctions
provides a way to tune the excitation spectrum along a line of
fixed points. Moving along this line to reach the 2D regime,
we were able to associate the spin-1/2 excitations with gapped
visons and to analyze the conditions for stabilizing the gapless
CSL phase.

Gapless quantum spin liquid states have been proposed
for spin-1 systems with bilinear and biquadratic interactions
on the triangular lattice, mainly motivated by the material
Ba3NiSb2O9 [55–57]. Extrapolating our results to the limit of
short chains, we expect that the gapless CSL identified here
should be found in spin-1 models on the kagome and star lat-
tices with three-spin interactions. This model could be studied
using the same numerical methods that have been applied to
the spin-1/2 case [14,15]. For instance, the effective three-
band model derived here can be used to generate a variational
state in a parton representation with spin-1 fermions [58].
Using variational Monte Carlo, one can compute the energy
of this state and compare it against other competing phases.

Among the directions to be explored in future work, it
would be interesting to numerically map out the boundary
phase diagram of the junction of spin-1 chains, as done for
spin-1/2 chains [30,31]. An accurate quantitative estimate of
the location of the chiral fixed point and the critical line de-
fined by the marginal operator would provide guidance for the
parameter regime where the CSL phase can be found. More-
over, a natural question is whether there are other SU(N )k

WZNW models that allow the construction of 2D gapless
phases. A lesson from this work is that a good starting point
is to search for marginal boundary operators in the operator
content of the CFT. Finally, the generalization to other trico-
ordinated networks and higher spatial dimensions can lead to
even more exotic states.
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