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Quadruplets of exceptional points and bound states in the continuum in dielectric rings
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The photonic properties of a narrow dielectric ring with a rectangular cross section are studied analytically
and numerically. It is shown that exceptional points in such a resonator exist in pairs, with each point adjacent
in parametric space to a bound state in the continuum, resulting in the formation of quadruplets of singular
photonic states. The appearance of quadruplets is determined by the interaction of two photonic branches, which
can anticross or intersect in parametric space during the transition from the strong to weak coupling regime,
which is described by the Friedrich-Wintgen model. A dielectric ring is an ideal object for modeling quadruplets
due to the ability to arbitrarily change the shape of a rectangular cross section, that is, to accurately scan the areas
of intersection of axial and radial Fabry-Pérot-like resonances along the height or width of the ring. The key role
is played by the internal hole as an additional degree of freedom, which allows one to change the mode coupling
coefficient and observe exceptional points. The regimes of electric field concentration inside a narrow dielectric
ring at the incidence of a plane electromagnetic wave are also demonstrated. The discovery of quadruplets of
singular photonic states is of fundamental importance for the development of the photonics of non-Hermitian
structures. The proximity of the exceptional point and the high-Q bound state in the continuum in parametric
space allows easy switching between gain and loss regimes and opens up new perspectives for applications.
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I. INTRODUCTION

Our world is arranged in such a way that most systems
are not closed, interact with each other, and are described
by non-Hermitian physics. The non-Hermiticity provides rich
topological properties that often have no analog in Hermitian
structures. As a rule, a non-Hermitian eigenvalue problem
does not have an orthogonal set of eigenvectors; moreover,
eigenvectors can be collinear. A point in the parameter space
at which non-Hermitian degeneracy is observed, i.e., at least
two eigenvalues and eigenvectors coalesce, is called the ex-
ceptional point (EP) [1,2]. At EPs, two energy levels are
connected by a square-root branch point; moreover, they are
the values of one analytic function on two different Riemann
eigenvalue sheets [3–13]. In this paper, we study the two-
level problem, which is the simplest case of a non-Hermitian
system. In general, EPs appear in various systems with spa-
tially discrete or continuous degrees of freedom of multiple
dimensionalities and also can be considered as a critical point,
near which there is a transition from strong coupling to weak
coupling [5]. If the system is described by more than two
eigenvalue surfaces, then it is possible that more than two
surfaces simultaneously collapse at the same point, creating
a higher-order EP [14,15]. In particular, a third-order EP oc-
curs when three eigenvalues simultaneously coalesce and the
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square-root dependence of the eigenvalues around the excep-
tional point is replaced by a cube root.

For a narrow dielectric ring resonator (RR) with a rectan-
gular cross section, the result of plotting the full dependence
of both eigenvalues of the non-Hermitian Hamiltonian on
structural parameters (Rout − Rin )/h, Rin/Rout demonstrates
paired EPs, Figs. 1(b) and 1(c). For generality, when demon-
strating the results we use the normalized size parameter
αx = kRout (1 − Rin/Rout ) where k is the wave number. Paired
EP generate a distinct double-Riemann-sheet topology in
the complex band structure, which leads to bulk Fermi
arcs [7].

EPs are observed in both quantum mechanical and classical
problems. EPs are involved in quantum chaos and quantum
phase transition, they produce impressive effects in a specific
time dependence and multichannel scattering [5,8,12,16]. In
various systems, isolated EPs in the parameter space [3,17–
19] and continuous rings of EPs in the momentum space
[20] were previously studied. In optics, active or passive
systems with EPs exhibit various exotic properties, such as
strong magnetoelectric response, being easily controlled by
symmetry-breaking perturbations [21], laser mode selection
[22], sensor sensitivity enhancement [23], electromagnetically
induced transparency at a chiral EP [24], mode switching [17],
directional omnipolarizer [25], directional total absorption
[26], and enhancement of Sagnac sensitivity [27] have been
proposed and/or demonstrated.

EPs are closely related to the phenomenon of level repul-
sion [2], which has been originally explored in the context
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FIG. 1. Exceptional points and bound states in the continuum
in dielectric ring. (a) Ring parameters are (Rout − Rin )/h = 0.472,
Rin/Rout = 0.8005, ε1 = 80, the ring is placed in a vacuum, (ε2 = 1).
(b), (c) Perspective view of the complex square-root topology of
calculated eigenvalue surfaces Re(αx) and Im(αx) with a branch
point singularity at two EP in the parameter space (Rout − Rin )/h,
Rin/Rout. In (b) two EPs are connected by a Fermi arc (green line).
In (c) one of the EPs is hidden in this perspective by the bend of the
Riemann sheet and depicted by a ring.

of quantum chaos [28]. In photonics, level repulsion is of
interest because it indicates strong coupling and hybridiza-
tion between states and typically occurs near an exceptional
point in the real or complex parameter space [8]. One of
the manifestations of level repulsion is associated with bound
states in the continuum (BIC) that arise in accordance with
the Friedrich-Wintgen model [29]. The history of BICs begins
with the work of von Neumann and Wigner [30], who math-
ematically modeled a quantum system that has bound states
above the continuum threshold. After almost 60 years, it was
demonstrated that a similar phenomenon occurs in Maxwell’s
theory [31], after which the number of publications on this
topic has continuously increased. BIC with an infinite quality
factor is a mathematical model, and in real structures of finite
sizes, quasi-BIC (qBIC) with a large but finite Q factor is
studied both theoretically and experimentally. The Friedrich-
Wintgen’s qBIC occurs when two nonorthogonal modes are
coupled to the same radiation channel, interfere in the near
field, and the avoided crossing arises in the parametric space
[32–35]. Recently, the Friedrich-Wintgen model has been suc-
cessfully utilized to interpret qBIC in dielectric cylinders [36]
and rings [37,38]. For a single dielectric cylinder, qBIC occurs
when two eigenmodes with different polarizations, associated
with Mie-like resonances between the side walls and Fabry-
Pérot-like resonances between the top and bottom walls of
the cylinder, form an avoided crossing region in the strong
coupling regime. These modes are approximately orthogonal
inside the cylinder and interfere mainly in the near-field zone
of the cylinder [15], realize qBIC, while the all-dielectric
resonator demonstrates extremely high values of the Q factor.
In many cases the appearance of qBIC was accompanied by

the presence of the Fano resonance [31,36–38]. In particular,
the link between the physics of Fano resonances [39,40] and
qBICs excited in individual high-index dielectric nanoparti-
cles has been experimentally demonstrated in Ref. [41].

Previously, we studied in detail the properties of qBIC
during the transition from a homogeneous dielectric cylinder
to a RR with a gradual increase in the diameter of the internal
air cylinder to a value of Rin/Rout = 0.6 for ε1 = 80 [37]. In
that work, we analyzed the interaction of the TE1,1,0 Mie-type
mode and the TM1,1,1 Fabry-Pérot-type mode. At Rin/Rout ∼
0.53, we found a crossover from the region of avoided cross-
ing to the region of intersection of branches in the parametric
space. In the region of intersection, the quasi-BIC is preserved
and is observed in the spectra exclusively on the Mie-type
TE1,1,0 line, which is much narrower than the TM1,1,1 line.
Thus, in this case we do not observe an EP, since when the
frequencies coincide, the half-widths of the lines differ.

The goal of the present work was to study the resonance
properties of the RR by further expanding the internal hole
to very thin rings. We were interested in the question of
whether there are EPs in dielectric RRs and how they relate
to qBICs. The behavior of a pair of resonant modes TE0,2,0

and TE0,1,2 in dielectric RRs forming qBIC according to the
Friedrich-Wintgen model [29] was investigated, with the main
attention being paid to the study of very narrow rings up
to Rin/Rout = 0.95. As a result, we discovered that isolated
clusters of singular photonic states exist in coordinate space.
Such a cluster, which we called a quadruplet 2(EP + qBIC), is
formed by two EPs connected by a Fermi arc and two qBICs,
each of which is literally glued to one of the EP in coordi-
nate space. We discovered two quadruplets in the parameter
regions Rin/Rout = 0.80–0.84 and 0.9253–0.9308.

It should be noted that the existence of qBIC and EP in
the same structure was noted earlier. The proximity of EP and
BIC was also observed in a dielectric waveguide comprising
a metal grating [42], in coupled polymer waveguides [43],
in mirror-symmetry-broken metasurface [44]. However, we
report 2(EP + qBIC) quadruplets, which may be of great
interest for the development of non-Hermitian photonics.

II. CALCULATION METHODS

Three methods were used to calculate the eigenvalues of
a dielectric RR with a rectangular cross section: COMSOL

MULTIPHYSICS, resonant state expansion (RSE), and temporal
coupled-mode theory (TCMT).

The COMSOL MULTIPHYSICS program allows using the op-
tical module to find eigenvalues (resonance frequencies) and
eigenfunctions (electromagnetic field distributions), as well as
the scattering cross section (SCS) σsca. In three-dimensional
(3D) RRs the eigenfunctions can be characterized by the az-
imuthal (m), radial (r), and axial (z) mode indices, forming
ordered triple (m, r, z). Since Maxwell’s equations are scaled
in the absence of dispersion, the defining geometric size (for
example, the outer radius Rout) can be chosen arbitrarily.
The inner radius of the RR varied over a wide range from
Rin/Rout = 0 (cylinder) to Rin/Rout = 0.95 (narrow ring). The
dielectric constant of the RR was chosen to be 80, when the
resonance effects are most pronounced, which corresponds,
for example, to high-index ceramics in the microwave range.
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To calculate the eigenvalues and eigenfunctions in COMSOL,
the eigenfrequency mode was used, while the resonator was
surrounded by perfectly matched layer (PML), and the in-
cident wave was absent. The scattering cross section was
calculated only for one partial harmonic of the corresponding
symmetry of the considered modes, m = 0. The scattering
cross section σsca,0 was normalized to S = 2Routh (see Ap-
pendix A for more details).

Another approach to find the eigenvalues of the dielectric
RR used in this work is RSE, which is an exact method of per-
turbation theory [45,46]. As a set of basis functions, we took
the eigenvectors of a dielectric sphere with the same permittiv-
ity ε(0)

α with frequencies kRout,sphere < 20 and orbital angular
momentum l < 60, which is sufficient for convergence of
99.5% of the real part of the frequency even for a narrow
ring, geometrically distant from the sphere. The problem of
finding the eigenvalues of the RR within the framework of
this method is reduced to a matrix equation (see Appendix B),
where the perturbation function changes the permittivity of
the sphere, turning it into a ring, and the perturbation coeffi-
cients are found using the eigenfunctions of the sphere. Note
that the problem is non-Hermitian due to the outgoing wave.
Consequently, the eigenvectors grow exponentially at large
distances, and their correct normalization deviates from the
standard [45,46] (see Appendix B for more details).

The mechanism of the appearance of the Friedrich-
Wintgen’s qBIC suggests that this effect is close to the
appearance of EP. Indeed, in this case, qBICs arise as a result
of the interaction of two eigenmodes of the structure, which
can lead to level anticrossing, but, under certain structure pa-
rameters, can also lead to level crossing Re1(αx) = Re2(αx),
which, in general, corresponds to a transition from a strong
coupling to a weak coupling regime [37]. However, an even
more intriguing case is possible, when both real and imaginary
parts of the eigenvalues coalesce, and an EP is achieved:
Re1(αx) = Re2(αx) and Im1(αx) = Im2(αx). Therefore, all
essential aspects of the Friedrich-Wintgen’s qBICs and EPs
can be illustrated on an elementary level with the same two-
level model. According to the temporal coupled-mode theory
[1], when two resonances are eigenmodes of one resonator
and are coupled to the same radiation channel, the amplitudes
evolve with the Hamiltonian [2–5]:

H =
(

ω1 κ

κ ω2

)
− i

(
γ1

√
γ1γ2√

γ1γ2 γ2

)
. (1)

We consider the case when the two uncoupled resonances
can have different resonance frequencies, ω1,2, and different
radiative damping rates, γ1,2. Here, κ is the internal (near-
field) coupling between the two resonators that radiate into
the same channel, and therefore the interference of radiation
gives rise to the via-the-continuum coupling term

√
γ1γ2. The

condition for the occurrence of qBIC according to Friedrich-
Wintgen’s model [29] has the form:

κqBIC = (ω1 − ω2)
√

γ1γ2

(γ1 − γ2)
. (2)

Satisfying this condition, one can achieve a significant sup-
pression of the total radiation losses of one of the modes. The
resulting mode will be qBIC since it is formed according to
the Friedrich-Wintgen’s mechanism, but some of the radiation

was not suppressed due to coupling with several radiation
channels, which can be taken into account as an additional
imaginary part to the coupling coefficient. As a result, the
radical expression is extracted and we obtain expressions for
two modes one of which is mostly real and becomes a qBIC.

The situation with the EP corresponds to the equality of
the real and imaginary parts of the frequency. In contrast to
the qBIC, the EP requires the setting of two parameters at
once instead of one. Specifically, in the case of a ring, the
parameters may be the height and radius of the inner hole. To
observe the EP, two conditions must be met:

(ω1 − ω2) = −4
√

γ1γ2 κEP

(γ1 − γ2)
(3)

|κEP| = ±(γ1 − γ2)/2. (4)

When |κ| < |γ1 − γ2|/2 corresponds to weak coupling and
the modes intersect, and |κ| > |γ1 − γ2|/2 represents strong
coupling and the modes anticross. Condition for κEP resem-
bles condition κqBIC for the qBIC, but with inverted terms of
the radiative damping rates, γ1,2 and have different signs, so
are observed on different sides with respect to the intersection
of the real parts of the uncoupling modes.

In the case of interaction of two modes in a single dielectric
resonator, described by Hamiltonian (1), EPs always appear
in pairs, which is demonstrated by formula (4). Paired EPs
[7,9,47] are connected in parameter space by an open arc,
known as a bulk Fermi arc, along which the resonant frequen-
cies of the two modes are degenerate [green line in Fig. 1(b)],
but have different radiative damping rates, Fig. 1(c). Be-
tween two EP, the coupling coefficient is |κ| < |γ1 − γ2|/2.
Using Hamiltonian (1) eigenvalue functions of COMSOL MUL-
TIPHYSICS can be fitted and coupling coefficients can be
defined (see Appendix C for more details).

When two noninteracting modes intersect, a qBIC can be
obtained even if the near-field coupling coefficient κ is zero,
which is not the case for EP. The EP is observed only when
conditions (3) and (4) are simultaneously satisfied and can
be found in the space of two parameters. In connection with
condition (4) for observing an EP, the near-field coupling
coefficient κ can have different signs, which forms a pair of
EPs connected by a Fermi arc. Each EP corresponds to the
neighboring qBIC, forming a quadruplet of singular points.

III. RESULTS AND DISCUSSION: TWO QUADRUPLEtS
OF SINGULAR POINTS

Figure 2, which shows the calculated normalized scattering
cross-section (SCS/S, S = 2Routh) spectra of dielectric RRs
in the spectral region of the TE0,1,2 and TE0,2,0 resonances.
The results obtained make it possible to trace the emergence
and transformation of both qBICs and EPs. For four fixed val-
ues of Rin/Rout, the SCS of the dielectric ring resonator ware
calculated as a function of its aspect ratio (Rout − Rin )/h upon
excitation by a plane TE-polarized wave. With this value, first,
the resonance scattering spectra have narrow peaks that are
convenient for treatment and interpretation.

We have previously demonstrated that in dielectric cylin-
ders and rings there are two types of modes with different
behavior depending on the aspect ratio Rout/h [36,37]. Modes
of the first type are formed mainly due to reflection from the
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FIG. 2. Calculated spectra of the normalized SCS for dielectric
RRs for two 2(EP + qBIC) quadruplets in yellow frames. The spectra
are presented on the aspect ratio (Rout − Rin )/h. The first quadruplet
is shown in the top row, the second quadruplet in the bottom row, the
Fabry-Perot-type TE0,2,0 and Mie-type TE0,1,2 modes interfere. SCS
spectra are given in the range of 0.36 � Rout/h � 0.54 with a step of
0.02. Curves are shifted vertically by 6 a.u. for Rin/Rout = 0.8005,
0.8450 and by 2 a.u. for Rin/Rout = 0.9253, 0.9308. The spectra
highlighted with a thick black line correspond to EP, and the spectra
highlighted with a thick purple line correspond to qBIC. Dotted lines
are only a guide for the eyes. TE-polarized incident wave. ε1 = 80,
ε2 = 1.

side wall, are associated with the Mie resonances of an infinite
cylinder, and, accordingly, have a slight frequency shift with
a change in the length of the resonator. Modes of the second
type are formed mainly due to reflection from two parallel
faces of a cylinder or ring; they are similar to Fabry-Pérot
modes and demonstrate a significant shift in the spectra with a
change in the resonator length. Due to different spectral shifts,
the TE0,2,0 Mie-type and TE0,1,2 Fabry-Pérot-type modes can
have the same frequencies at some points in the parameter
space, Fig. 2. Since the modes have the same azimuthal in-
dices m = 0, they interact, and one of them turns into qBIC
(γ → 0), which is described by the Friedrich-Wintgen model
[29]. The qBIC line in the scattering spectra can sharply
narrow and, because of this, disappear both in the calculated
and experimental spectra. In particular, the qBIC line in the
calculated scattering spectra (COMSOL MULTIPHYSICS) on a
dielectric cylinder with a permittivity ε = 80 was traced only
up to a Q factor of 104 [48]. In the case of weak coupling, the
lines corresponding to the TE0,2,0 and TE0,1,2 modes intersect
in the scattering spectra, Fig. 2. At the same time, it turns
out that in narrow dielectric RRs near the point where the
qBIC appears, not only the real parts of the eigenvalues, but
also the imaginary parts can coalesce [Re1(αx) = Re2(αx),
Im1(αx) = Im2(αx)], which leads to EPs that are formed in
pairs, as follows from the analytical results (see Appendix C),
and from numerical calculations, Fig. 1.

Figure 3 presents the main result of this work: the obser-
vation of two pairs of EPs, with each EP located in close
proximity to another singular point, namely, to the qBIC.

FIG. 3. Eigenvalues Re(αx) and Im(αx) for two 2(EP + qBIC)
quadruplets, in yellow frames. Calculations for dielectric RRs with a
rectangular cross section depending on the aspect ratio (Rout − Rin )/h
and the parameter Rin/Rout, indicated at the top of (a), (c), (e), (g).
(a)–(d) refer to the resonances of the first quadruplet, (e)–(h) to the
resonances of the second quadruplet. (a), (c), (e), (g) Calculated real
part of frequencies of the Fabry-Pérot-type TE0,1,2 and the Mie-type
TE0,2,0 modes in qBIC and EP regimes as a function of the aspect
ratio. (b), (d), (f), (h) Imaginary part of frequencies evolution demon-
strating the presence of both qBIC and EP. The thin vertical dotted
line indicates the position of the qBIC, and the thick line indicates
the position of the EP. The green dashed lines indicate the symbolic
Fermi arcs that connect EPs in the parametric space. The results of
calculations by three methods: continuous curves, COMSOL; dotted
lines, TCMT; circles, RSE. The dielectric permittivity of RRs is
ε1 = 80. The RRs are placed in the vacuum, ε2 = 1.

Indeed, at this singular point, the modes intersect, which
means a weak coupling regime, however, in contrast to EP,
one of the modes has a local maximum of the Q factor, and
the other a local minimum of the Q factor. Thus, the pair
EPs and the pair qBICs form a quadruplet 2(EP + qBIC)
of connected singular points in the parametric space. In a
very narrow dielectric ring, we found two quadruplets, and
the singular points of the lower quadruplet in Figs. 3(e)–3(h)
are especially close to each other, differing in the normalized
width of the ring Rin/Rout by only 0.0055.

It should be noted that the results obtained by three dif-
ferent methods are in good agreement. In particular, in many
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FIG. 4. Dispersion of the photonic branches of a dielectric RR with a rectangular cross section in the EP region. Dependences on the
(a) height, (b) thickness, and (c) permittivity in the coordinate space Re(αx), Im(αx).

cases the results were so close that the lines in Fig. 3 com-
pletely coincided and the dotted line that represents the TCMT
results becomes indistinguishable against the background of
the solid lines representing the results of the calculations in
COMSOL.

Figure 3 shows a significant analogy between the two
quadruplets. In particular, a pair of singular points in quadru-
plets with a smaller Rin/Rout parameter (0.8005 and 0.9253)
is located in the qBIC-EP sequence in terms of aspect ratio
(Rout − Rin )/h, and a pair of singular points in quadruplets
with a large Rin/Rout (0.8450 and 0.9308) is located in the
opposite sequence EP-qBIC.

However, there is also a difference between quadruplets,
which is expressed in the form of a contour for the TE0,2,0

Mie-type resonance in the scattering spectra of two quadru-
plets. Figure 2 shows that in the spectra of the second
quadruplet this resonance has an inverted line shape in the
form of a dip, while the line of the first quadruplet is not in-
verted. The asymmetric line shape in such scattering spectra is
determined by the Fano interference between narrow resonant
lines and a broad background [39,40] (see Appendix D for
more details).

The final Fig. 4 shows the dispersion of the photonic
branches of a rectangular dielectric RR in the EP region
with a change in three main parameters: normalized height
[Fig. 4(a)], thickness [Fig. 4(b)], and permittivity [Fig. 4(c)]
in the coordinate space Re(αx), Im(αx). The projections of
branches are also shown on the plane Re(αx), Im(αx), which
give an idea of the dispersion of branches in three-dimensional
space. In particular, due to the projection in Fig. 4(a) it be-
comes clear that when the aspect ratio (Rout − Rin )/h changes
at EP, both branches rotate 90 degrees. In this case, the ro-
tation is not observed when the parameter Rin/Rout and the
permittivity ε change, so the change in the height of the ring
has the most dramatic effect on the character of the photonic
system behavior of the dielectric ring in the EP.

IV. CONCLUSIONS

In summary, in the spectra of dielectric rings, we theoret-
ically discovered quadruplets of singular points formed by
two EPs connected by a Fermi arc and two qBICs, each of
which is adjacent to one of the EPs. The two 2(EP + qBIC)
quadruplets were observed by three different methods, the re-
sults of which agree perfectly. The appearance of quadruplets

is determined by the interaction of two photonic branches,
which can anticross or intersect in the parametric space during
the transition from the strong to the weak coupling regime,
which is described by the Friedrich-Wintgen’s model. A di-
electric ring is an ideal object for modeling quadruplets due
to the ability to arbitrarily change the shape of a rectangular
cross section, that is, to precisely scan the areas of intersec-
tion of axial and radial Fabry-Pérot-like resonances along the
height or width of the ring. The key role is played by the
internal hole as an additional degree of freedom, which allows
one to change the mode-coupling coefficient and observe EPs.
An important part of the work was the study of the electro-
magnetic field distribution in the ring and inside it. For EP and
qBIC, the distributions have a characteristic form, which can
be considered as photonic fingerprints of the corresponding
resonances. We note the field in EPs, which corresponds to
two zero-intensity cords inside the ring. Moreover, we have
demonstrated the regimes of electric field concentration inside
a narrow dielectric ring at the incidence of a plane electromag-
netic wave.

The parity-time symmetry and non-Hermiticity opened up
new ways of using gain, loss, and their coupling to control
the light transport [9]. Our observation of pairs (EP + qBIC)
will reveal the topological physics of bound states in the
continuum in dielectric resonators in general, as well as create
new optoelectronic devices based on resonant topological ef-
fects in dielectric rings, expanding the possibilities of sensing,
filtering, switching, harmonic generation. The key point is the
proximity of the EP and the high-Q qBIC in the parametric
space, which determines the possibility of easy switching
between these resonances and resonantly increases the sensi-
tivity and amplification of the system. Such a trigger mode can
find application in further development of topological lasers
[49–52] and non-Hermitian topological sensors [53]. Note
that using the concept of parity-time symmetry to exploit the
interplay between gain and loss, a microring laser has been
demonstrated with resonant modes that can be controlled at
will [22].
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APPENDIX A: SCATTERING SPECTRUM
DECOMPOSITION IN TERMS OF AZIMUTHAL

HARMONICS AND COMSOL SIMULATIONS

Determination of azimuthal harmonics is possible due to
the decomposition of the total field E, H in terms of azimuthal
harmonics.

E =
∞∑

m=−∞
Em exp(−imφ),

H =
∞∑

m=−∞
Hm exp(−imφ). (A1)

The total field is represented as the sum of the incident
Eback and scattered Esc fields. In case of zero azimuth har-
monic, the incident field is a part of plane wave, the electric
vector of which is perpendicular to the RR axis (z axis), and
the vector is directed along the x axis (TE polarization). Such
a field can be represented by the following equations:

Eρ = −i
E0

2
[J1(kxρ) − J−1(kxρ)]

Eφ = −i
E0

2
[J1(kxρ) + J−1(kxρ)]

Ez = 0, (A2)

and the scattering cross section σsca,0 of the zero harmonic will
be the integral over the area of the remote sphere:

σsca,0 = c

8π

∫
S

Re(Esca,0 × Hsca,0)dS/I0. (A3)

To calculate the structure, COMSOL uses 2D axisymmetric
space, in which a geometric section of a ring surrounded by
a PML layer is projected (Fig. 5). By specifying the explicit
form of the incident field, one can solve the scattering prob-
lem. To calculate the scattering cross section, the energy of the
scattered field is collected at the inner boundary of the PML.
To calculate the eigenmodes, there was no annular incident
field.

APPENDIX B: RESONANT STATE EXPANSION

Another interesting and in this case theoretical method is
resonant state expansion (RSE), which is an exact method of
perturbation theory. RSE allows us to find the eigenvalues of
the dielectric RR by perturbing the sphere. As a set of basis
functions, we took the eigenvectors of a dielectric sphere with
the same permittivity ε(0)

α with frequencies kRout,sphere < 20
and orbital angular momentum l < 60, which is sufficient for
convergence of 99.5% of the real part of the frequency even
for a narrow ring, geometrically distant from the sphere. The
task of finding the eigenvalues of a RR within the framework

Axial Symmetry Ring cross-section

PML

Scattering 
Boundary Condition

Collection sphere

FIG. 5. Geometry of the problem for calculating the scattered
field and eigenmodes.

of this method is reduced to a matrix equation of the form:
1

ωα

∑
β

(δαβ + Vαβ )bj
β = 1

 j
b j

α, (B1)

where ωα are the eigenfrequencies of a dielectric sphere with
the same permittivity,  j are the eigenvalues of the RR, and
Vαβ are the perturbation matrix elements, which are calculated
by the formula:

Vαβ = 1

2

∫
drδε(r)Eα

rs(r)Eβ
rs(r). (B2)

Where δε is the perturbation function that changes the
sphere into a ring resonator, and the fields E (0)

α are the eigen-
vectors of the sphere. In general, V is the transformation
operator from a sphere to a ring. Note that the problem is
non-Hermitian due to the outgoing wave. Consequently, the
eigenvectors grow exponentially at large distances, and their
correct normalization deviates from the standard.

APPENDIX C: TEMPORAL COUPLED-MODE THEORY

In the general case, the Hamiltonian in the temporal
coupled-mode theory has the following form (1):

H =
(

ω1 κ

κ ω2

)
− i

(
γ1

√
γ1γ2√

γ1γ2 γ2

)
.

We consider the case when the two uncoupled resonances
can have different resonance frequencies, ω1,2, and different
radiative damping rates, γ1,2. Here, κ is the internal (near-
field) coupling between the two resonators that radiate into
the same channel, and therefore the interference of radiation
gives rise to the via-the-continuum coupling term

√
γ1γ2. The

solution of this Hamiltonian can be found using the equality
to zero of the determinant of this matrix. The solution can be
written as
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ω̃1,2 =
(

ω1 + ω2

2
+ i

γ1 + γ2

2

)
± 1

2

√
[(ω1 − ω2)2 + 4κ2 − (γ1 + γ2)2] + 2i[(ω1 − ω2)(γ1 − γ2) + 4κ

√
γ1γ2]. (C1)

By introducing additional notation

ω0 = ω1 + ω2

2
;  = ω1 − ω2; γs = γ1 + γ2; γd = γ1 − γ2; γ0 = √

γ1γ2, (C2)

we can write in a more compact form:

ω̃1,2 =
(
ω0 + i

γs

2

)
± 1

2

√(
2 + 4κ2 − γ 2

s

) + 2i(γd + 4κγ0) =
(
ω0 + i

γs

2

)
± 1

2

√
a + ib. (C3)

This equation can be divided into real and imaginary parts:

ω̃1,2 =
(

ω0 ± 1

2
√

2

√
a +

√
a2 + b2

)
+ i

1

2

(
γs ±

√
2 b√

a + √
a2 + b2

)
. (C4)

By examining the imaginary part of the roots as a func-
tion of , one can obtain the interaction parameter κqBIC =
(ω1 − ω2)γ0/(γ1 − γ2) at which qBIC is observed. It follows
from Eq. (C3) that when the real and imaginary parts of the
expression standing under the root are equal to zero, two
modes degenerate and form an EP. Equating the imaginary
part of the equation standing under the root to zero gives
condition (3). Substituting the obtained into the real part and
also equating it to zero gives the relationship between the
modulus of the interaction parameter and the modulus of the
difference in damping rates (4):

(ω1 − ω2) = −4
√

γ1γ2 κEP

(γ1 − γ2)

|κEP| = ±(γ1 − γ2)/2.

Condition for κEP resembles condition κqBIC for the qBIC, but
with inverted terms of the radiative damping rates, γ1,2.

κ(
R o

ut
- R

in
)/

c 
 x

10
-3

Rin/Rout

0.75 0.850.8
-4

-2

0

2

4

po
sit

ive
 co

up
lin

g

negative coupling

EP EP

FIG. 6. The values of the coupling constant obtained for the first
pair of EPs by fitting the eigenvalues by solving the Hamiltonian
(1) as a function of the hole size Rin/Rout. A pair of EPs are illus-
trated with vertical dashed lines at Rin/Rout = 0.8005 and 0.8450,
respectively.

Using the obtained solution of the Hamiltonian, the depen-
dences of the real Re(αx) and imaginary Im(αx) part of the
normalized frequency of eigenmodes obtained in the COMSOL

MULTIPHYSICS can be fitted. To do this, linear interpolations of
the first and last points of solving the problem for eigenvalues
with respect to the parameter (Rout − Rin )/h (COMSOL or RSE)
can be taken as noninteracting modes. Using, for example, the
least-squares method, one can obtain the interaction constant
κ , where the data are the COMSOL MULTIPHYSICS solutions,
and the function is the solution of the Hamiltonian (1). Fig-
ure 6 Shows that the EP pair is observed for different signs
of the coupling constant at Rin/Rout = 0.8005 and 0.8450,
respectively, which corresponds to the formula |κEP| = |γ1 −
γ2|/2. Since the formulas for κEP and κqBIC have different
signs, they are observed on different sides with respect to the
intersection of the real parts of the uncoupling modes.

APPENDIX D: FANO RESONANCE

The Fano interference is described by the universal for-
mula:

I (0) = D2 (q + )2

1 + 2
, (D1)

where q = cot δ is the Fano asymmetry parameter, that deter-
mines the coupling of a narrow resonance with a continuum,

0.8005

0.8450

0.9253

R /R = 0.9308

+1

+3

+4

FIG. 7. TE020 resonance scattering spectrum at ratios supporting
EPs. The spectra are shifted as indicated on the right.
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D2 = 4 sin2 δ, δ is the phase difference between a narrow
line and a broad line,  = (ω − ω0)/(γ0/2) is the dimen-
sionless frequency, γ0 and ω0 are the width and frequency
of the narrow line. In the general case, the Fano profile
has an asymmetric shape, which is determined by the pa-
rameter q, while we single out one limiting case of q = 0
when the Fano profile becomes a symmetric quasi-Lorentzian

antiresonance in the continuum spectrum I (ω) ∼ 2

1+2 , with
the intensity I (ω) = 0 at the eigenfrequency ω0. By chang-
ing the inner radius of the RR, one can change the Fano
parameter and the amplitude of the resonance, which is clearly
seen in Fig. 7. It can be seen that for (Rin/Rout )/h = 0.54
the Fano parameters for Rin/Rout = 0.8450 and 0.9308 are
similar.
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