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The effects of optical bond phonons coupled to electrons in two-dimensional lattices have attracted much
interest recently, with the hope to explore unconventional superconducting mechanism and pairing symmetries.
Here we conduct a systematic investigation of such phonon modes in the kagome lattice at and around the
upper van Hove filling to unravel new effects of the bond phonons in the presence of the unique sublattice
frustration. We combine the singular-mode functional renormalization group and the projector determinant
quantum Monte Carlo methods. At the upper van Hove filling and in the absence of the Hubbard interaction
U , we find there exists an s-wave superconducting state at weaker electron-phonon coupling constant λ and
higher phonon frequency ω, and a charge bond order (or the valence bond solid) state at larger λ and lower ω.
The Hubbard interaction U suppresses drastically the s-wave pairing, so that only the charge bond order survives.
On the other hand, upon slight doping away from the van Hove filling, we observe that the charge bond order
is suppressed due to the breakdown of the perfect Fermi surface nesting, while the superconductivity persists.
The s-wave superconductivity and charge bond order may be relevant in the layered kagome superconductors
AV3Sb5 (A = K, Rb, Cs).

DOI: 10.1103/PhysRevB.109.075130

I. INTRODUCTION

The two-dimensional optical Su-Schrieffer-Heeger (SSH)
electron-phonon interaction has attracted much attention in re-
cent years [1–16]. On the square lattice, this electron-phonon
coupling was found to induce the typical antiferromagnetic
(AFM) order [3] whose fluctuations are believed to be
strongly related to the unconventional pairing mechanism in
high-temperature superconductors like cuprates and iron pnic-
tides [17]. At half-filling and in the absence of the Hubbard
interaction, the AFM state in the SSH model on a bipartite
lattice is actually exactly degenerate with the charge-density-
wave (CDW) and s-wave superconductivity (sSC) due to an
enlarged SU(4) symmetry in the presence of particle-hole
symmetry [1,5]. Upon doping away from half-filling, the
spin and charge density waves are suppressed in favor of
either sSC for small U or d-wave superconductivity for large
U [5,9,10,13–15]. These studies suggest new avenues for un-
conventional superconductivity. The bipartite lattice studied
so far enjoys (at half-filling) (i) the particle-hole symmetry
and (ii) the van Hove singularity and perfect nesting. While
the second type of features are rather common in various types
of lattices, the particle-hole symmetry relies on the lattice
structure. We ask how the physics changes if the particle-hole
symmetry is absent.

Here we focus on the two-dimensional kagome lattice
which does not have particle-hole symmetry in the band
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structure. It is particularly interesting because of its many in-
triguing properties [18]. The inherent lattice frustration leads
to the emergence of spin-disordered phases, such as quantum
spin liquid or valence bond solid (VBS), as obtained from ex-
tensive studies on the underlying quantum spin model [19–27]
in the Mott limit. On the other hand, in the itinerant limit,
its electronic band structure exhibits three appealing ingre-
dients simultaneously: Dirac cones, flat band, and van Hove
singularities, as shown in Fig. 1. The Dirac cones at the K-
and K ′-points have attracted much attention in view of var-
ious topological properties such as strongly correlated Dirac
metal [28], nontrivial Chern bands [29,30], and the intrinsic
quantum anomalous Hall effect [31,32]. The flat band at the
band top has been customarily taken to study the intriguing
emergent phenomena like magnetism [33–37] and the high-
temperature fractional quantum Hall effect [38,39]. Besides,
by tuning the electron filling level to 2/3 ± 1/6 per site, the
Fermi surface touches the van Hove points M and exhibits per-
fect nesting. At the upper van Hove filling level 5/6, the Fermi
surface is plotted in Fig. 1(d) as the middle hexagon-shaped
contour. The colors encode the sublattice components, which
vary significantly on the contour. This can lead to the matrix
element effect in the quasiparticle scattering [40–44]. The
combination of the van Hove singularity, the perfect nesting,
and the matrix element effect could lead to various electronic
instabilities under the Coulomb interactions [40–44].

In comparison to square lattices with particle-hole symme-
try, here we conduct a systematic investigation of the effects of
the SSH phonon in the kagome lattice at and around the upper
van Hove filling by combining the singular-mode functional
renormalization group (SM-FRG) [5,42,45] and the projector
determinant quantum Monte Carlo (DQMC) [46] methods. At
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FIG. 1. (a) Lattice structure of the kagome lattice, where a1 =
(1, 0), a2 = (1/2,

√
3/2) denote two primitive translation vectors,

and indices 1, 2, and 3 denote different sublattices. (b) Band dis-
persion along a high symmetry path � − K − M − �. The black,
red, and blue dashed lines are Fermi levels for μ = +0.2, 0, −0.2t ,
respectively. (c) Density of states with the two van Hove filling levels
indicated by two dashed lines. (d) Fermi surfaces for μ = 0, ±0.2t
with color-scaled sublattice components. The arrow indicates the
nesting vector at the van Hove filling.

the upper van Hove filling, we find sSC exists for smaller
the electron-phonon coupling constant λ and higher phonon
frequency ω, while increasing λ or lowering ω drives the
system into a charge bond order (or the VBS) state, with
the ordering momenta corresponding to the nesting vectors.
These results are summarized as a phase diagram shown in
Fig. 2. Moreover, we further study the effect of the repulsive
Hubbard-U and the effect of doping away from the van Hove
filling using SM-FRG. We discover that a small Hubbard U
drastically suppresses the SC and drives the system into the
VBS state at half-filling, and in the doped system only the
sSC state survives.

II. MODEL

We consider the optical SSH phonon on each nearest-
neighbor bond in the kagome lattice. The total Hamiltonian
reads H = H0 + Hph + Heph with the three terms describing
electrons (H0), phonons (Hph), and electron-phonon coupling
(Heph), respectively. These three terms are explicitly given by

H0 = −t
∑
〈i j〉σ

(c†
iσ c jσ + H.c.) − μ

∑
i

ni, (1)

Hph = ω
∑
〈i j〉

(
b†

i jbi j + 1

2

)
, (2)

Heph = g√
2Mω

∑
〈i j〉σ

(bi j + b†
i j )(c

†
iσ c jσ + H.c.), (3)

where t is the hopping integral on each nearest-neighbor (NN)
bond 〈i j〉, c†

iσ creates an electron at site i with spin σ (↑ or ↓),
μ is the chemical potential, and ni = ∑

σ c†
iσ ciσ is the local
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FIG. 2. The phase diagram of the SSH model on the kagome
lattice at upper van Hove filling obtained from SM-FRG and DQMC.
The dashed line is a schematic plot of the phase boundary between
sSC and VBS. The upper left inset shows the SC gap function on the
Fermi surface. The lower right inset shows the configuration of the
VBS state with red/blue colors representing strong/weak bonds.

electron density. b†
i j creates an optical phonon with single-

frequency ω on each NN bond 〈i j〉, which couples to the
electrons in the charge bond channel with the coupling
strength g and M is the mass of the vibrating atom. Note that
Mω2 = K is just the spring constant for the optical phonon
mode. In the following, we take t as the energy unit and
define the dimensionless electron-phonon coupling constant
λ = g2/(KW ) as usual.

After integrating out the phonon degrees of freedom, we
obtain a retarded electron-electron attraction Veff = 1

2 Bi j�Bi j

where Bi j = ∑
σ (c†

iσ c jσ + H.c.) and � = −λW ω2/(ω2 + ν2)
for each NN bond, with W = 6t is the bare bandwidth and
ν is the bosonic Matsubara frequency. (Strictly speaking, the
fields in Bi j should be understood as Grassmann fields in the
path-integral representation of the system.) Clearly, at ν = 0,
Veff becomes a direct attraction in the charge bond channel,
which hence, favors the VBS order. On the other hand, Veff

has an attractive component in the local sSC pairing channel
as well. These two effects compete with each other and lead
to the phase diagram shown in Fig. 2, as we will present in
details below.

III. RESULTS AND DISCUSSIONS

We combine SM-FRG [5,42,45] and projector DQMC [46]
to study the SSH model on the kagome lattice. In principle,
SM-FRG is reliable in weak and moderate coupling regimes,
while the projector DQMC is more suitable for moderate and
strong couplings. Therefore, combining these two methods
enables us to draw a convincing conclusion.

A. SM-FRG results

In SM-FRG, the one-particle-irreducible (1PI) four-point
interaction vertex is computed versus a running (lowering)
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FIG. 3. (a) FRG flows of the negative leading singular values S
in the SC and CDW channels at λ = 0.05 and ω = 0.6. The result
of the SDW channel is too weak to be seen. (b) plots S(q) in the
divergent SC channel, with the white line denoting the Brillouin
zone. (c) shows the FRG flows at λ = 0.05 and ω = 0.1, with the
corresponding S(q) in the divergent CDW channel plotted in (d).

infrared cutoff energy scale � (the smallest fermionic Mat-
subara frequency in our case). From the same 1PI vertex at a
given �, we can extract the effective interactions VSC, VSDW,
and VCDW, respectively. They may be understood as scattering
matrices between fermion bilinears in the respective channels.
In this way, the three channels are treated on equal footing,
which is crucial in strongly correlated systems where various
ordering tendencies compete closely. We trace the negative
leading eigenvalues S of these scattering matrices during the
FRG flow until the largest one diverges at a critical energy
scale �c. This divergence indicates an instability towards the
formation of a long-range order in the form of the associ-
ated eigen scattering mode and �c serves as a measure of
the transition temperature Tc ∼ �c. More technical details of
the SM-FRG algorithm can be found in the Appendix and
Refs. [5,42,45].

Figure 3(a) shows a typical FRG flow of the negative lead-
ing singular values S in the SC and CDW channels at λ = 0.05
and ω = 0.6. Note that t/S is plotted such that S diverges
as t/S grows up to zero. The value in the SDW channel is
too weak to be seen in the view window. At high-energy
scales, the CDW channel dominates, indicating strong charge
fluctuations. With decreasing �, both CDW and SC channels
grow up quickly, but the SC channel grows up faster, bypasses
the CDW channel, and finally diverges at first, indicating
the instability in the SC channel. In Fig. 3(b), we plot the
negative leading eigenvalue S(q) as a function of the Cooper
pair momentum at the critical energy scale �c. Clearly, S(q)
is maximal at zero momentum, corresponding to the Cooper
pairing. By examining the leading eigenscattering mode in the
SC channel at �c, we find the SC is dominated by on-site

pairing, hence, corresponding to s-wave pairing. To see that
explicitly, we plot the gap function on the Fermi surface in the
left inset of Fig. 2, where the s-wave symmetry is clear. The
mild variation in amplitude is because of sublattice mixing.
The s-wave SC symmetry is similar to the one obtained by
Holstein phonon [47] and first-principles calculations [48].
But our FRG result for the SSH phonon reveals its strong
competition with charge orders as shown below.

On the other hand, there is another possibility of the FRG
flow as plotted in Fig. 3(c) at λ = 0.05 and ω = 0.1, for which
the CDW channel always dominates and diverges at first,
indicating the instability in the CDW channel. The negative
leading eigenvalue S(q) as a function of the CDW momentum
is plotted in Fig. 3(d). The peaks are at M points, which are
exactly the nesting vectors Q = (0, 2π/

√
3), up to reciprocal

lattice vectors shown in Fig. 1(d). By further checking the
leading eigenscattering mode in the CDW channel, we find
the CDW is featured by fermion bilinears on the NN bonds
in the form of the VBS state. The bond strength depends
on the ordering momentum, as explicitly shown in the right
inset of Fig. 2, where the red and blue colors denote the
strong and weak bonds, respectively. In the ordered state, the
three degenerate patterns can combine into a star-of-David
pattern. Here, for the charge order, the onsite-component of
the fermion bilinears is found to be much smaller than the NN
bond-component. This is consistent with the matrix element
effect that the nesting vectors mainly connect different sub-
lattices as depicted in Fig. 1(d), hence, disfavoring the onsite
charge order.

For a series of λ < 0.1, we vary ω to determine the phase
boundary ωc between the VBS and sSC. The results are shown
(red dots) in the phase diagram Fig. 2. The phase boundary
is roughly linear, ωc ∝ λ. The VBS lives in the larger-λ and
smaller-ω side, while the sSC lives in the other side. This
can be roughly understood as follows. Since ω provides an
electron energy cutoff to feel the attractive pairing interaction
as in the BCS theory, a higher ω is expected to favor SC,
known as the isotope effect. On the other hand, the retarded
electron-electron interaction always contributes an attractive
component directly for the VBS without any constraint to the
fermion energy scale, hence, would always favor the VBS
unless SC emerges first.

The same calculation could be performed for stranger cou-
pling. However, the divergence appears too soon and this
invalidates the FRG based on the truncation at the level of
four-point vertices. For this reason, in the following, we resort
to DQMC for larger λ.

B. DQMC results

For the SSH bond phonon model, there is no sign problem
since spin-up and -down electrons contribute the same real
determinant in the projector DQMC. By using the projec-
tion e−
H on a trial state, we obtain the ground state. To
investigate various possible electronic instabilities, we calcu-
late the structure factor (equal-time correlation) SÔ(Q, L) =
(1/L4)

∑
r,r′ eiQ·(r−r′ )(〈ÔrÔ

†
r′〉 − 〈Ôr〉〈Ô†

r′〉) for different lat-
tice sizes with L×L unit cells, where r, r′ run over the whole
lattice, and Ô is a fermion bilinear operator serving as the
candidate of a long-range order with ordering momentum

075130-3



YANG, YAO, WANG, AND WANG PHYSICAL REVIEW B 109, 075130 (2024)

0.2 0.4 0.6 0.8

/t

0.00

0.10

0.20

0.30

R
sS

C

L=8

L=10

L=12

0.2 0.4 0.6 0.8

/t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
V

B
S

L=8

L=10

L=12

0.7 0.9 1.1 1.3 1.5

/t

0.00

0.10

0.20

0.30

R
sS

C

L=8

L=10

L=12

0 4000 8000

dt (MC sweeps)

0

1000

2000

V
B

S

L =4
L =6
L =8

0.083

(a)

0.083

(c)

0.17

(b)

0.083, =0.5

(d)

FIG. 4. The dimensionless correlation ratios for sSC obtained by DQMC at L = 8, 10, 12 are plotted with respect to ω for λ = 1/12
(≈0.083) in (a) and λ = 1/6 (≈0.17) in (b), respectively. The results for VBS at λ = 1/12 are plotted in (c). The poor data quality is attributed
to the long autocorrelation time as depicted in (d) (see further discussions in main text).

Q. After obtaining SÔ(Q, L), we calculate the dimensionless
correlation ratio RÔ(Q, L) = 1 − [SÔ(Q + δq, L)/SÔ(Q, L)],
where δq = b1,2/L is the minimal momentum discretization
(b1,2 are two reciprocal lattice vectors). As usual, RÔ → 1 for
L → ∞ implies the formation of a long-range order, while
RÔ → 0 gives the opposite case. Motivated by the above SM-
FRG results, we study both sSC and VBS. For sSC, Q = 0
and Ôr = cα

r↑cα
r↓ with α = 1, 2, 3. For VBS, Q = (0, 2π/

√
3)

and Ôr = 1
2

∑
σ (c2†

rσ c3
rσ − c3†

rσ c2
r+a1σ

+ H.c.). In practice, after
carefully checking, we choose the projection time 
 propor-
tional to L [49], namely, 
 = 8 (16)×L for λ = 1/6 (1/12),
and the Trotter decomposition time slice 
τ = 0.1 (0.2) for
λ = 1/6 (1/12).

For sSC, our results of the dimensionless correlation ratio
RsSC versus ω are plotted in Fig. 4(a) for λ = 1/12 and in
Fig. 4(b) for λ = 1/6. Both plots exhibit data crossings for
different lattice sizes L = 8, 10, 12, indicating the sSC long-
range order is developed for ω > ωc, with ωc ≈ 0.5, 1.05
for the two values of λ, respectively. In addition, we also
performed simulations at λ = 1/8, giving ωc ≈ 0.76 (not
shown). These DQMC data are added to the phase diagram
Fig. 2. We find they are in good agreement with the SM-FRG
results and broadly extend the linear phase boundary ωc ∝ λ

to the larger λ regime.

For VBS, in Fig. 4(c) we plot the correlation ratio RVBS

versus ω for L = 8, 10, 12. The data crossing can be roughly
seen, but seems to be a little higher than that of the sSC.
This may imply the coexistence between sSC and VBS near
the phase boundary. However, this may also be caused by
the severe ergodicity problem even though the global update
was efficiently implemented [50]. To see this more clearly,
in Fig. 4(d), we plot the integrated autocorrelation time [51]
of SVBS(Q), the saturation value versus the DQMC sweeps
gives a practical estimation of the autocorrelation time τVBS.
Clearly, τVBS is already ∼2000 DQMC sweeps for L = 6 and
grows up very rapidly (exponentially) with further increasing
L. With such long autocorrelation time (which is even much
longer for larger λ, say 1/6), it is hard for us to obtain
high-quality data, which may explain the poor data crossing
presented in Fig. 4(c). Instead, the autocorrelation time for
sSC is found to be quite small (tens to hundreds of DQMC
sweeps, not shown) such that the above sSC results are still
reliable.

C. Effect of Hubbard U

We now add the Hubbard interaction U
∑

i ni↑ni↓ into
the model, to see whether the sSC or VBS survives. Since
the DQMC suffers from the negative sign problem in the
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FIG. 5. SM-FRG results of the critical energy scales �c versus
the Hubbard U at λ = 0.05 for several values of ω with the red/blue
markers denoting sSC/VBS, respectively.

presence of a finite U , we limit ourselves in the SM-FRG
calculations. In Fig. 5, the SM-FRG results of the critical
energy scale �c are plotted versus the Hubbard U at λ = 0.05
for three values of ω = 0.6, 1, 2, respectively. For all these
cases, the Hubbard U is found to suppress the sSC quickly
and drives the system into the VBS state. This behavior is
because a repulsive U suppresses the onsite pairing. On the
other hand, a large U enhances the charge bond fluctua-
tions and thus favors the VBS state, which is consistent with
the previous study [42,52]. Within the regime in this study,
we find no SDW-like instability. The reason is well known:
the matrix element effect almost eliminates the effect of U
in the spin scattering involving the same sublattice. Interest-
ingly the same matrix element effect is absent in the VBS state
since it involves fermions on an unequal sublattice.

D. Effect of doping

Besides the Hubbard interaction U , doping provides an-
other way to affect the competition between the sSC and VBS
orders. We consider μ = ±0.2 slight away from the upper
van Hove filling level as shown in Fig. 1(b). For these two
fillings, the Fermi surfaces are plotted in Fig. 1(d), where the
electron-like pocket around K corresponds to μ = −0.2 and
the hole-like pocket around � corresponds to μ = 0.2. It is
clear that the perfect nesting is no longer present for μ 
= 0.
Therefore, the VBS order is less favored, leaving room for
the Cooper instability which does not rely on nesting at all
(although nesting could enhance it). In Fig. 6, we present
the SM-FRG results of critical energy scale �c versus λ at
U = 0, ω = 0.1 for μ = 0,±0.2. At μ = 0, an increasing λ

drives the system from the sSC state to the VBS state. But for
both μ = ±0.2, the VBS is not present, while sSC survives,
although its �c is reduced by the decrease of the density of
states.

IV. SUMMARY AND DISCUSSIONS

In summary, we performed a systematic study of the
ground-state properties of the optical SSH model on the
kagome lattice at and around the upper van Hove filling. By

0 0.02 0.04 0.06 0.08 0.1

10-4

10-3

10-2

10-1

100

FIG. 6. SM-FRG results of the critical energy scales �c for sSC
(red) and VBS (blue) versus λ for μ = 0 (diamonds), 0.2 (triangles),
and −0.2 (circles), respectively. In the calculations, we set ω = 0.1
and U = 0.

combining the SM-FRG and projector DQMC methods, at
the upper van Hove filling, we find that, for a given electron-
phonon coupling, the higher-frequency bond phonon induces
the sSC state while the lower-frequency phonon favors the
VBS state. The transition frequency ωc is found to be roughly
linear in the electron-phonon coupling. After the Hubbard U is
turned on, our SM-FRG results show that the sSC is strongly
suppressed and the VBS is the dominating phase. On the other
hand, when the system is doped away from the van Hove
filing, the absence of the perfect nesting suppresses VBS in
favor of sSC state.

Finally, some remarks are given. (1) For the layered
kagome superconductors AV3Sb5 (A = K, Rb, Cs), the
SSH phonon can arise from the up-and-down vibration of
the out-of-plane Sb atoms, as shown in the first-principle
study [48]. (2) The CBO has been discovered near 90 K in
AV3Sb5 [53–57], although there is still a debate on whether it
is a time-reversal-invariant CBO, or a chiral CBO in the form
of loop currents. (3) Superconductivity in AV3Sb5 is found
at lower temperatures, and it is interesting to ask whether
and how SC (either uniform or pair density wave) and CBO
are intrinsically related there. Our results show competition
between VBS and sSC, which could be relevant in AV3Sb5.
(4) For both the kagome (at VHS filling) and square (at half-
filling) lattices, the low frequency SSH phonon favors CBO
(or VBS), reminiscent of dimerizations in one-dimensional
conducting polymers, while the high-frequency SSH phonon
favors sSC in both systems. It is the additional SU(4) sym-
metry for the square lattice to further cause the degeneracy
among sSC, CDW, and AF [5].
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APPENDIX: SMFRG WITH RETARDED INTERACTIONS

Functional renormalization group (FRG) is one of the
powerful methods used to study correlated electronic sys-
tems [58–61]. In this Appendix, we mainly focus on one of its
realizations, called singular-mode FRG (SM-FRG), in partic-
ular, with phonon-induced retarded interactions as employed
in this work.

1. Decomposition in Mandelstam channels
and FRG flow equations

In our SM-FRG, we study the FRG flows of the four-point
one-particle irreducible (1PI) vertices �1234 appearing in the
effective interaction H� = 1

2

∑
1,2,3,4 ψ

†
1 ψ

†
2 �1234ψ3ψ4, where

ψ is the fermion field with the subscripts 1,2,3,4 denoting the
one-particle degrees of freedom (such as frequency, momen-
tum, orbital, sublattice, spin, etc.). In the SU(2) symmetric
case under concern, the spins for 1 and 4 are the same and
similarly for 2 and 3.

We define fermion bilinears in the three Mandelstam chan-
nels as

α
†
12 = ψ

†
1 ψ

†
2 (pairing),

β
†
13 = ψ

†
1 ψ3 (crossing),

γ
†
14 = ψ

†
1 ψ4 (direct). (A1)

Then the general 1PI vertex can be rewritten as scattering
matrices P, C, and D in the three channels as

H� = 1

2

∑
12,43

α
†
12 P12;43 α43

= − 1

2

∑
13,42

β
†
13 C13;42 β42

= 1

2

∑
14,32

γ
†
14 D14;32 γ32, (A2)

as illustrated in Figs. 7(b) to 7(d). The collective four-
momentum (of the two fermions in a bilinear) is q = k1 + k2,
k1 − k3, k1 − k4, in the P, C, and D channels. If the subscripts
1,2,3,4 run over all sites, the three scattering matrices P, C,

and D are all equivalent to �, i.e., �1234 = P12;43 = C13;42 =
D14;32. But in practical calculations, the fermion bilinears
must be truncated. On physical grounds, the important bilin-
ears are those that join the singular scattering modes and such
eigenmodes determine the emerging order parameter. Since
order parameters are composed of short-ranged bilinears, only
such bilinears are important. These include onsite and on-
bond pairing in the pairing channel, and onsite and on-bond
particle-hole density in the C and D channels. The FRG based
on the decomposition of the interaction vertices into scattering
matrices in the truncated fermion bilinear basis, which are
sufficient to capture the most singular scattering modes, is
called the singular-mode FRG (SM-FRG) [42,62,63].

Starting from � = ∞ where the 1PI vertices P, C, and D
are given by the bare interactions, �1234 flows as

∂�1234

∂�
= [PχppP]12;43 + [CχphC]13;42

+ [DχphC + CχphD − 2DχphD]14;32, (A3)

FIG. 7. A generic four-point 1PI vertex (a) can be rearranged into
the pairing (P), crossing (C), and direct (D) channels as shown in
(b)–(d), respectively. The momentum k, q, p are explicitly shown for
clarity. The spins (σ and σ ′) are conserved during fermion propaga-
tion in the spin-SU(2) symmetric case. The labels m and n denote
fermion bilinears.

see Fig. 8 for illustration. The products within the square
brackets imply matrix convolutions, and χpp and χph are
single-scale (at �) susceptibilities given by, in real space,

[χpp]ab;cd = 1

2π
[Gac(i�)Gbd (−i�) + (� → −�)], (A4)

[χph]ab;cd = 1

2π
[Gac(i�)Gdb(i�) + (� → −�)], (A5)

where a, b, c, d are dummy fermion indices (that enter the
fermion bilinear labels), and Gab(i�) is the normal-state

FIG. 8. One-loop contributions to ∂�1234/∂�. The dashed and
wavy lines denote the contribution from � and �ν , respectively. They
are added up in the calculation. The slash denotes the single-scale
propagator and can be put on either one of the fermion lines within
the loop. Note that �ν enters at Matsubara frequency ν = � (blue
and red wavy lines) in P and C channels, while it does at ν = 0 (green
wavy lines) in the D channel.
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Matsubara Green’s function. (The expression in the momen-
tum space is slightly more complicated but is otherwise
straightforward, and is used in actual calculations.) As
usual [59], we neglect self-energy correction which could be
absorbed in the band dispersion, and we also neglect the sixth-
and higher-order vertices, which are RG irrelevant at low-
energy scales. The frequency dependence of the four-point
vertices is also RG irrelevant and ignored. In this spirit, all
external legs are set at zero frequency. The functional flow
equation is solved by numerical integration over �. Note that,
after �1234 is updated after an integration step, it is rewinded
as P, C, and D according to �1234 = P12;43 = C13;42 = D14;32.
In this way, SM-FRG can treat interactions in all channels
on equal footing. In fact, if we ignore the channel overlaps,
the flow equation reduces to the ladder equation in the P-
channel, and the random-phase-approximation in the C- and
D-channels. The SM-FRG combines the three channels co-
herently.

2. Including phonon-mediated interactions

The phonon-mediated interaction can be included as a part
of �1234. In principle, Eq. (A3) can be directly applied to
the total interaction, including the retarded one, by keeping
the full frequency dependence. However, the frequency de-
pendence in the FRG-generated correction to the four-point
vertices can be argued to be RG irrelevant [59,61]. In this
spirit, we separate the total vertex � into an instantaneous part
�I and a retarded one �R,

� = �I + �R. (A6)

Since we take the FRG-corrected part as instantaneous, the
retarded part is always given by �R = �ν for the associated
fermions. The initial value of �I at � = ∞ is given by the
Hubbard U . For brevity, we will keep using the notations �,
P, C, and D (without superscript “I”) for the instantaneous
part. The Feynman diagrams contributing to the flow of � is
illustrated in Fig. 8, where the dashed lines are the instanta-
neous vertices and the wavy lines are from the retarded kernel
suitably added to the instantaneous part. Explicitly, the flow
equation can be written as

∂�I
1234

∂�
= [PχppP]12;43 + [CχphC]13;42

+ [−2DχphD + DχphC + CχphD]14;32, (A7)

where P = P + [��]P, C = C + [��]C , D = D + [�0]D,
with [�ν]P,C,D the projection of the phonon-induced interac-
tion projected in the respective channels (or associated to the
desired fermion bilinears). Note that the Matsubara frequency
of �ν is � in P , C, and 0 in D, as a result of frequency
conservation when the external fermions are all set at zero
frequency in Fig. 8.

3. Singular scattering modes and order parameters

The scattering matrices in the SC, SDW, and CDW chan-
nels can be shown to be related to P, C, and D as follows:

V SC = P, V SDW = −C, V CDW = 2D − C. (A8)

In a given channel, the matrix can be decomposed by singular
value decomposition (SVD), in momentum space

Vmn(q) =
∑

α

φαm(q)Sα (q)φ∗
αn(q), (A9)

where m, n label the fermion bilinear and Sα and φαn are the
eigenvalue and eigenvector for the αth singular mode.

During the SM-FRG flow, we monitor the leading (most
negative) eigenvalue, which we abbreviate as S in each chan-
nel. As the energy scale � reduces, the first divergence of S
indicates a tendency towards an instability with order param-
eter described by the associated eigenmode φ(Q), where Q
is the associated collective momentum. In this case, one can
drop the nonsingular components to write the renormalized
interaction as

H� ∼ S

N
O†O + · · · , (A10)

where N is the number of unit cells, O is the mode operator
that is a combination of the fermion bilinears (see below), and
the dots represent symmetry-related terms. For example, if the
SC channel diverges first, we have

O†
SC =

∑
n

φn(Q)α†
n (Q)

→
∑

k,n=(a,b,δ)

ψ
†
k+Q,aφn(Q)eik·δψ†

−k,b, (A11)

where n labels a fermion bilinear, a and b denote the sublat-
tice, and 
ab

δ = φn(Q) is the element of the real-space pairing
matrix on the bond δ radiating from a. The spin indices do
not have to be specified, as the symmetry of the gap function
under inversion automatically determines whether the pair is
in the singlet or triplet state. Because of the eventual Cooper
mechanism, the divergence in the pairing channel always oc-
curs at momentum Q = 0.

Similarly, if the SDW channel diverges first, we obtain the
mode operator

O†
SDW =

∑
n

φn(Q)β†
n (Q)

→
∑

k,n=(a,b,δ)

ψ
†
k+Q,a,↑φn(Q)eik·δψk,b,↓, (A12)

where we assign the spin order in the transverse direction.
Finally, if the CDW channel diverges first, we obtain the

mode operator

O†
CDW =

∑
n

φn(Q)γ †
n (Q)

→
∑

k,σ,n=(a,b,δ)

ψ
†
k+Q,a,σ φn(Q)eik·δψk,b,σ . (A13)

Note that HSDW/CDW can capture both onsite and on-bond
density waves since the fermion bilinears contain both cases
of δ = 0 and δ 
= 0.

075130-7



YANG, YAO, WANG, AND WANG PHYSICAL REVIEW B 109, 075130 (2024)

[1] M. Feldbacher, F. F. Assaad, F. Hebert, and G. G. Batrouni, Co-
existence of s-wave superconductivity and antiferromagnetism,
Phys. Rev. Lett. 91, 056401 (2003).

[2] B. Xing, W.-T. Chiu, D. Poletti, R. T. Scalettar, and G. Batrouni,
Quantum monte carlo simulations of the 2D Su-Schrieffer-
Heeger model, Phys. Rev. Lett. 126, 017601 (2021).

[3] X. Cai, Z.-X. Li, and H. Yao, Antiferromagnetism induced by
bond Su-Schrieffer-Heeger electron-phonon coupling: A quan-
tum monte carlo study, Phys. Rev. Lett. 127, 247203 (2021).

[4] X. Cai, Z.-X. Li, and H. Yao, Robustness of antiferromagnetism
in the Su-Schrieffer-Heeger Hubbard model, Phys. Rev. B 106,
L081115 (2022).

[5] Q.-G. Yang, D. Wang, and Q.-H. Wang, Functional renor-
malization group study of the two-dimensional Su-Schrieffer-
Heeger-Hubbard model, Phys. Rev. B 106, 245136 (2022).

[6] A. Götz, S. Beyl, M. Hohenadler, and F. F. Assaad, Valence-
bond solid to antiferromagnet transition in the two-dimensional
Su-Schrieffer-Heeger model by langevin dynamics, Phys. Rev.
B 105, 085151 (2022).

[7] C. Feng, B. Xing, D. Poletti, R. Scalettar, and G. Batrouni,
Phase diagram of the Su-Schrieffer-Heeger-Hubbard model on
a square lattice, Phys. Rev. B 106, L081114 (2022).

[8] F. Ferrari, F. Becca, and R. Valentí, Charge density waves in
kagome-lattice extended Hubbard models at the van Hove fill-
ing, Phys. Rev. B 106, L081107 (2022).

[9] H.-X. Wang, Y.-F. Jiang, and H. Yao, Robust d-wave
superconductivity from the Su-Schrieffer-Heeger-Hubbard
model: possible route to high-temperature superconductivity,
arXiv:2211.09143.

[10] C. Zhang, J. Sous, D. R. Reichman, M. Berciu, A. J.
Millis, N. V. Prokof’ev, and B. V. Svistunov, Bipolaronic
high-temperature superconductivity, Phys. Rev. X 13, 011010
(2023).

[11] Z.-Y. Han and S. A. Kivelson, Resonating valence bond states
in an electron-phonon system, Phys. Rev. Lett. 130, 186404
(2023).

[12] N. K. Yirga, K.-M. Tam, and D. K. Campbell, Phonon-induced
instabilities in correlated electron Hamiltonians, Phys. Rev. B
107, 235120 (2023).

[13] B. Xing, C. Feng, R. Scalettar, G. G. Batrouni, and D. Poletti,
Attractive Su-Schrieffer-Heeger-Hubbard model on a square
lattice away from half-filling, Phys. Rev. B 108, L161103
(2023).

[14] A. Tanjaroon Ly, B. Cohen-Stead, S. Malkaruge Costa, and S.
Johnston, Comparative study of the superconductivity in the
holstein and optical Su-Schrieffer-Heeger models, Phys. Rev.
B 108, 184501 (2023).

[15] X. Cai, Z.-X. Li, and H. Yao, High-temperature supercon-
ductivity induced by the Su-Schrieffer-Heeger electron-phonon
coupling, arXiv:2308.06222.

[16] M. Grundner, T. Blatz, J. Sous, U. Schollwöck, and S. Paeckel,
Cooper-paired bipolaronic superconductors, arXiv:2308.13427.

[17] D. J. Scalapino, A common thread: The pairing interaction
for unconventional superconductors, Rev. Mod. Phys. 84, 1383
(2012).

[18] J.-X. Yin, B. Lian, and M. Z. Hasan, Topological kagome mag-
nets and superconductors, Nature (London) 612, 647 (2022).

[19] C. Zeng and V. Elser, Numerical studies of antiferromagnetism
on a kagomé net, Phys. Rev. B 42, 8436 (1990).

[20] S. Sachdev, Kagome and triangular-lattice Heisenberg antifer-
romagnets: Ordering from quantum fluctuations and quantum-
disordered ground states with unconfined bosonic spinons,
Phys. Rev. B 45, 12377 (1992).

[21] A. V. Syromyatnikov and S. V. Maleyev, Hidden long-range
order in kagomé Heisenberg antiferromagnets, Phys. Rev. B 66,
132408 (2002).

[22] F. Wang and A. Vishwanath, Spin-liquid states on the triangular
and Kagomé lattices: A projective-symmetry-group analysis of
Schwinger boson states, Phys. Rev. B 74, 174423 (2006).

[23] Y. Ran, M. Hermele, P. A. Lee, and X.-G. Wen, Projected-wave-
function study of the spin-1/2 Heisenberg model on the kagomé
lattice, Phys. Rev. Lett. 98, 117205 (2007).

[24] R. R. P. Singh and D. A. Huse, Ground state of the spin-1/2
kagome-lattice Heisenberg antiferromagnet, Phys. Rev. B 76,
180407(R) (2007).

[25] S. Yan, D. A. Huse, and S. R. White, Spin-liquid ground state of
the S = 1/2 kagome Heisenberg antiferromagnet, Science 332,
1173 (2011).

[26] Y. Wan and O. Tchernyshyov, Phenomenological Z2 lattice
gauge theory of the spin-liquid state of the kagome Heisenberg
antiferromagnet, Phys. Rev. B 87, 104408 (2013).

[27] Y. Zhou, K. Kanoda, and T.-K. Ng, Quantum spin liquid states,
Rev. Mod. Phys. 89, 025003 (2017).

[28] I. I. Mazin, H. O. Jeschke, F. Lechermann, H. Lee, M. Fink, R.
Thomale, and R. Valentí, Theoretical prediction of a strongly
correlated dirac metal, Nat. Commun. 5, 4261 (2014).

[29] J.-X. Yin, W. Ma et al., Quantum-limit chern topological mag-
netism in TbMn6Sn6, Nature (London) 583, 533 (2020).

[30] S.-H. Do, K. Kaneko et al., Damped dirac magnon in the metal-
lic kagome antiferromagnet FeSn, Phys. Rev. B 105, L180403
(2022).

[31] G. Xu, B. Lian, and S.-C. Zhang, Intrinsic quantum anomalous
Hall effect in the kagome lattice cs2limn3f12, Phys. Rev. Lett.
115, 186802 (2015).

[32] M. Li, Q. Wang et al., Dirac cone, flat band and saddle point in
kagome magnet YMn6Sn6, Nat. Commun. 12, 3129 (2021).

[33] R. Chisnell, J. S. Helton, D. E. Freedman, D. K. Singh, R. I.
Bewley, D. G. Nocera, and Y. S. Lee, Topological magnon
bands in a kagome lattice ferromagnet, Phys. Rev. Lett. 115,
147201 (2015).

[34] T. Bilitewski and R. Moessner, Disordered flat bands on the
kagome lattice, Phys. Rev. B 98, 235109 (2018).

[35] Z. Lin, J.-H. Choi, Q. Zhang, W. Qin, S. Yi, P. Wang, L. Li,
Y. Wang, H. Zhang, Z. Sun, L. Wei, S. Zhang, T. Guo, Q.
Lu, J.-H. Cho, C. Zeng, and Z. Zhang, Flatbands and emergent
ferromagnetic ordering in Fe3Sn2 kagome lattices, Phys. Rev.
Lett. 121, 096401 (2018).

[36] J. Yin, S.-S. Zhang et al., Negative flat band magnetism in a
spin-orbit-coupled correlated kagome magnet, Nat. Phys. 15,
443 (2019).

[37] B. C. Sales, W. R. Meier et al., Chemical control of magnetism
in the kagome metal CoSn1−xInx: Magnetic order from nonmag-
netic substitutions, Chem. Mater. 34, 7069 (2022).

[38] E. Tang, J.-W. Mei, and X.-G. Wen, High-temperature fractional
quantum Hall states, Phys. Rev. Lett. 106, 236802 (2011).

[39] H. Liu, G. Sethi, D. N. Sheng, Y. Zhou, J.-T. Sun, S. Meng, and
F. Liu, High-temperature fractional quantum Hall state in the
floquet kagome flat band, Phys. Rev. B 105, L161108 (2022).

075130-8

https://doi.org/10.1103/PhysRevLett.91.056401
https://doi.org/10.1103/PhysRevLett.126.017601
https://doi.org/10.1103/PhysRevLett.127.247203
https://doi.org/10.1103/PhysRevB.106.L081115
https://doi.org/10.1103/PhysRevB.106.245136
https://doi.org/10.1103/PhysRevB.105.085151
https://doi.org/10.1103/PhysRevB.106.L081114
https://doi.org/10.1103/PhysRevB.106.L081107
https://arxiv.org/abs/2211.09143
https://doi.org/10.1103/PhysRevX.13.011010
https://doi.org/10.1103/PhysRevLett.130.186404
https://doi.org/10.1103/PhysRevB.107.235120
https://doi.org/10.1103/PhysRevB.108.L161103
https://doi.org/10.1103/PhysRevB.108.184501
https://arxiv.org/abs/2308.06222
https://arxiv.org/abs/2308.13427
https://doi.org/10.1103/RevModPhys.84.1383
https://doi.org/10.1038/s41586-022-05516-0
https://doi.org/10.1103/PhysRevB.42.8436
https://doi.org/10.1103/PhysRevB.45.12377
https://doi.org/10.1103/PhysRevB.66.132408
https://doi.org/10.1103/PhysRevB.74.174423
https://doi.org/10.1103/PhysRevLett.98.117205
https://doi.org/10.1103/PhysRevB.76.180407
https://doi.org/10.1126/science.1201080
https://doi.org/10.1103/PhysRevB.87.104408
https://doi.org/10.1103/RevModPhys.89.025003
https://doi.org/10.1038/ncomms5261
https://doi.org/10.1038/s41586-020-2482-7
https://doi.org/10.1103/PhysRevB.105.L180403
https://doi.org/10.1103/PhysRevLett.115.186802
https://doi.org/10.1038/s41467-021-23536-8
https://doi.org/10.1103/PhysRevLett.115.147201
https://doi.org/10.1103/PhysRevB.98.235109
https://doi.org/10.1103/PhysRevLett.121.096401
https://doi.org/10.1038/s41567-019-0426-7
https://doi.org/10.1021/acs.chemmater.2c01634
https://doi.org/10.1103/PhysRevLett.106.236802
https://doi.org/10.1103/PhysRevB.105.L161108


CHARGE BOND ORDER AND S-WAVE … PHYSICAL REVIEW B 109, 075130 (2024)

[40] S.-L. Yu and J.-X. Li, Chiral superconducting phase and chiral
spin-density-wave phase in a Hubbard model on the kagome
lattice, Phys. Rev. B 85, 144402 (2012).

[41] M. L. Kiesel and R. Thomale, Sublattice interference in the
kagome Hubbard model, Phys. Rev. B 86, 121105(R) (2012).

[42] W.-S. Wang, Z.-Z. Li, Y.-Y. Xiang, and Q.-H. Wang, Compet-
ing electronic orders on kagome lattices at van hove filling,
Phys. Rev. B 87, 115135 (2013).

[43] M. L. Kiesel, C. Platt, and R. Thomale, Unconventional fermi
surface instabilities in the kagome Hubbard model, Phys. Rev.
Lett. 110, 126405 (2013).

[44] J.-W. Dong, Z. Wang, and S. Zhou, Loop-current charge density
wave driven by long-range Coulomb repulsion on the kagomé
lattice, Phys. Rev. B 107, 045127 (2023).

[45] D. Wang, W.-S. Wang, and Q.-H. Wang, Phonon enhancement
of electronic order and negative isotope effect in the Hubbard-
Holstein model on a square lattice, Phys. Rev. B 92, 195102
(2015).

[46] F. Assaad and H. Evertz, World-line and determinantal
quantum monte carlo methods for spins, phonons and elec-
trons, in Computational Many-Particle Physics, edited by H.
Fehske, R. Schneider, and A. Weiße (Springer, Berlin, 2008),
pp. 277–356.

[47] X. Wu, D. Chakraborty, A. P. Schnyder, and A. Greco,
Crossover between electron-electron and electron-phonon me-
diated pairing on the kagome lattice, Phys. Rev. B 109, 014517
(2024).

[48] C. Wang, Y. Jia, Z. Zhang, and J.-H. Cho, Phonon-mediated
s-wave superconductivity in the kagome metal csv3sb5 under
pressure, Phys. Rev. B 108, L060503 (2023).

[49] E. Berg, M. A. Metlitski, and S. Sachdev, Sign-problem-free
quantum monte carlo of the onset of antiferromagnetism in
metals, Science 338, 1606 (2012).

[50] R. T. Scalettar, R. M. Noack, and R. R. P. Singh, Ergodicity
at large couplings with the determinant Monte Carlo algorithm,
Phys. Rev. B 44, 10502 (1991).

[51] W. Janke, Monte Carlo methods in classical statistical
physics, in Computational Many-Particle Physics, edited by H.
Fehske, R. Schneider, and A. Weiße (Springer, Berlin, 2008),
pp. 79–140.

[52] L.-H. Chen, Z. Liu, and J.-T. Zheng, Matrix element interfer-
ence in n-patch functional renormalization group, Phys. Rev. B
99, 085119 (2019).

[53] B. R. Ortiz, L. C. Gomes, J. R. Morey, M. Winiarski, M.
Bordelon, J. S. Mangum, I. W. H. Oswald, J. A. Rodriguez-
Rivera, J. R. Neilson, S. D. Wilson, E. Ertekin, T. M. McQueen,
and E. S. Toberer, New kagome prototype materials: Discov-
ery of KV3Sb5, RbV3Sb5, and CsV3Sb5, Phys. Rev. Mater. 3,
094407 (2019).

[54] B. R. Ortiz, S. M. L. Teicher, Y. Hu, J. L. Zuo, P. M. Sarte,
E. C. Schueller, A. M. Milinda Abeykoon, M. J. Krogstad, S.
Rosenkranz, R. Osborn, R. Seshadri, L. Balents, J. He, and
S. D. Wilson, CsV3Sb5: A Z2 topological kagome metal with
a superconducting ground state, Phys. Rev. Lett. 125, 247002
(2020).

[55] B. R. Ortiz, P. M. Sarte, E. M. Kenney, M. J. Graf, S. M. L.
Teicher, R. Seshadri, and S. D. Wilson, Superconductivity in
the Z2 kagome metal KV3Sb5, Phys. Rev. Mater. 5, 034801
(2021).

[56] Q. Yin, Z. Tu, C. Gong, Y. Fu, S. Yan, and H. Lei,
Superconductivity and normal-state properties of kagome
metal RbV3Sb5 single crystals, Chin. Phys. Lett. 38, 037403
(2021).

[57] K. Jiang, T. Wu, J.-X. Yin, Z. Wang, M. Z. Hasan, S. D. Wilson,
X. Chen, and J. Hu, Kagome superconductors AV3Sb5 (A=K,
Rb, Cs), Natl. Sci. Rev. 10, nwac199 (2023).

[58] J. Berges, N. Tetradis, and C. Wetterich, Non-perturbative
renormalization flow in quantum field theory and statistical
physics, Phys. Rep. 363, 223 (2002).

[59] W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden, and
K. Schönhammer, Functional renormalization group approach
to correlated fermion systems, Rev. Mod. Phys. 84, 299
(2012).

[60] N. Dupuis, L. Canet, A. Eichhorn, W. Metzner, J. M.
Pawlowski, M. Tissier, and N. Wschebor, The nonpertur-
bative functional renormalization group and its applications,
Phys. Rep. 910, 1 (2021).

[61] P. Kopietz, L. Bartosch, and F. Schütz, Introduction to the
Functional Renormalization Group (Springer, Berlin, 2010).

[62] W.-S. Wang, Y.-Y. Xiang, Q.-H. Wang, F. Wang, F. Yang, and
D.-H. Lee, Functional renormalization group and variational
Monte Carlo studies of the electronic instabilities in graphene
near 1

4 doping, Phys. Rev. B 85, 035414 (2012).
[63] Y.-Y. Xiang, F. Wang, D. Wang, Q.-H. Wang, and D.-H. Lee,

High-temperature superconductivity at the FeSe/SrTiO3 inter-
face, Phys. Rev. B 86, 134508 (2012).

075130-9

https://doi.org/10.1103/PhysRevB.85.144402
https://doi.org/10.1103/PhysRevB.86.121105
https://doi.org/10.1103/PhysRevB.87.115135
https://doi.org/10.1103/PhysRevLett.110.126405
https://doi.org/10.1103/PhysRevB.107.045127
https://doi.org/10.1103/PhysRevB.92.195102
https://doi.org/10.1103/PhysRevB.109.014517
https://doi.org/10.1103/PhysRevB.108.L060503
https://doi.org/10.1126/science.1227769
https://doi.org/10.1103/PhysRevB.44.10502
https://doi.org/10.1103/PhysRevB.99.085119
https://doi.org/10.1103/PhysRevMaterials.3.094407
https://doi.org/10.1103/PhysRevLett.125.247002
https://doi.org/10.1103/PhysRevMaterials.5.034801
https://doi.org/10.1088/0256-307X/38/3/037403
https://doi.org/10.1093/nsr/nwac199
https://doi.org/10.1016/S0370-1573(01)00098-9
https://doi.org/10.1103/RevModPhys.84.299
https://doi.org/10.1016/j.physrep.2021.01.001
https://doi.org/10.1103/PhysRevB.85.035414
https://doi.org/10.1103/PhysRevB.86.134508

