
PHYSICAL REVIEW B 109, 075126 (2024)

Nonperturbative Floquet engineering of the toric-code Hamiltonian and its ground state
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We theoretically propose a quantum simulation scheme for the toric-code Hamiltonian, the paradigmatic
model of a quantum spin liquid, based on time-periodic driving. We develop a hybrid continuous-digital strategy
that exploits the commutativity of different terms in the target Hamiltonian. It allows one to realize the required
four-body interactions in a nonperturbative way, attaining strong coupling and the suppression of undesired
processes. In addition, we design an optimal protocol for preparing the topologically ordered ground states with
high fidelity. A proof-of-principle implementation of a topological device and its use to simulate the topological
phase transition are also discussed. The proposed scheme finds natural implementation in architectures of
superconducting qubits with tunable couplings.
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I. INTRODUCTION

The discovery of the fractional quantum Hall effect
[1], together with later theoretical formulations of quantum
spin liquids [2], unraveled the existence of phases of mat-
ter, eluding traditional classifications based on symmetry
breaking and local order parameters, which can be under-
stood instead through the notion of topological order [3,4].
Topologically ordered states are characterized by properties
such as long-range entanglement, ground-state degeneracy
on topologically nontrivial manifolds, intrinsic robustness
to perturbations, and they support quasiparticles with any-
onic quantum statistics [5,6]. Such features, alongside their
importance from a fundamental condensed-matter physics
perspective, make topologically ordered states promising can-
didates for scalable quantum information processing [7–9].

The paradigmatic model in the understanding of topolog-
ical order and of its potential for quantum computation is
Kitaev’s toric-code Hamiltonian [10]. This model describes
spin- 1

2 systems in a two-dimensional (2D) square lattice, ex-
periencing purely four-spin interactions. It underpins surface
codes for fault-tolerant quantum computing [7,11,12] and is
tightly bound to Z2 lattice gauge theory [13–16] and string-net
condensation [6,17]. The development of quantum simulators
and quantum processors has enabled to probe signatures of
Z2 topological order in experiments [18–23]. For example,
the toric-code ground state has been recently prepared in
a superconducting quantum processor [23] and in neutral
atom arrays [24] via a quantum-circuit-based approach [25],
without implementing the background Hamiltonian. However,
due to the difficulty to attain clean four-spin interactions in
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synthetic systems [26–30], the realization of the full Kitaev’s
model is still a challenge. Realizing the toric-code Hamilto-
nian, beyond its ground state, is appealing for several reasons,
both from the perspective of quantum information processing
and to study topological quantum matter. First, it can pro-
vide the simplest self-correction mechanism since the ground
space becomes energetically favored and protected against
perturbations by the presence of a gap. Second, it makes the
concept of anyonic quasiparticles well defined [31], as long-
lived and localized collective excitations of the system. In
a quantum computation, where excitations are errors, imple-
menting a toric-code Hamiltonian with disordered couplings
can localize them [32,33], preventing them to disperse in
response to perturbations and thus facilitating their removal.
Third, the Hamiltonian gives access to time evolution, thus
enabling the investigation, for instance, of quench dynamics
and related phenomena, such as entanglement growth and
dynamical phase transitions [34,35]. Fourth, it allows for
the quantum simulation of the topological phase transition
[36–41], and potentially of the confinement-deconfinement
transition of the associated Z2 lattice gauge theory [16]. In
this work, we propose a scheme for the accurate quantum
simulation of the toric-code Hamiltonian via periodic driving
(sketched in Fig. 1). Adopting the perspective of recently
proposed hybrid approaches [42,43], we exploit the inter-
play of techniques from continuous-drive Floquet engineering
[44–47] and Trotterization [48] to minimize undesired terms
in the quantum simulated Hamiltonian, achieving clean four-
spin interactions. By taking advantage of the commutativity of
different four-spin terms characterizing the Hamiltonian, we
can reduce the problem of finding suitable control functions
to individual four-spin subsystems, which can be optimized
based on numerically exact methods, thus circumventing per-
turbative treatments. Moreover, this approach provides, by
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FIG. 1. Sketch of the spin lattice and of the quantum simulation
approach, which will be detailed in the following. Square symbols
indicate spins, solid lines represent tunable pairwise couplings, and
wavy purple lines represent couplings that are driven in a given
time substep τ , with associated angular frequency ω = 2π/τ . In
each substep τ , different subsystems are decoupled from each other
and driven to produce effective four-spin interactions (light-blue
squares). At the end of the sequence (which is periodic with period
T = 4τ ), a complete toric-code Hamiltonian is achieved with high
accuracy. The proposed scheme further allows one to prepare its
ground state(s) and to study anyonic quasiparticles (“e” and “m”).

construction, a method that can be applied straightforwardly
to arbitrary lattice size. Thanks to the fact that the proposed
scheme exploits the integrability of the target model, the level
of accuracy attained for the single plaquette is maintained
when addressing the whole lattice: the leading error terms in
the single plaquette remain the leading error terms also when
considering the whole lattice, rather than being superseded
by Trotter errors. It is further shown how the scheme can be
adapted to implement four-spin entangling gates, which, in
turn, allow us to design systematic ground-state-preparation
protocols applicable in arbitrarily large systems. The achieve-
ment of topologically ordered states in these protocols is
verified by probing long-range entanglement, detected via
topological entanglement entropy, and through explicit cre-
ation and braiding of anyons. A minimal, proof-of-concept
implementation is then proposed, which can be used either
to study the transition to the ordered phase, through Floquet-
adiabatic passage, or as a prototypical topological qubit.

Our scheme applies to a lattice of driven two-level systems
and employs single-spin control and time-periodic modula-
tions of the nearest-neighbor hopping. While such spin lattices
are routinely realized in various quantum simulation plat-
forms, the necessity to modulate spin-spin hopping makes
architectures of superconducting qubits with tunable coupling
a natural framework for implementing our proposal [49–54].
Indeed, this type of control has been demonstrated and used
for the realization of efficient two-qubit gates [53,54] and
artificial gauge fields for microwave photons [51].

The presentation is organized as follows. In Sec. II, the
driven model and the target effective Hamiltonian are in-
troduced. In Sec. III, the driving sequence which Floquet
engineers the characteristic four-spin interactions of the toric
code is presented. The protocol to generate the target Hamilto-
nian on the full lattice is then described in Sec. IV. In Sec. V,
it is shown how the toolbox developed can be used to prepare
the toric-code ground state with high fidelity and, in Sec. VI,
signatures of topological order in the state prepared are

analyzed. In Sec. VII, we propose a minimal implementation
of a proof-of-principle topological device and an adiabatic
protocol to simulate the transition from a magnetically to the
topologically ordered phase.

II. DRIVEN AND TARGET SYSTEM HAMILTONIANS

The Hamiltonian of the driven system describes two-level
systems (spins) in a 2D lattice, and has the form Ĥ (t ) =
Ĥ1(t ) + Ĥ2(t ) with

Ĥ1(t ) =
∑
〈α,β〉

gαβ (t )(X̂αX̂β + ŶαŶβ ), (1)

where the summation runs over nearest-neighbor pairs and
{X̂α, Ŷα, Ẑα} denote Pauli matrices related to the αth spin.
The indices α and β indicate pairs of coordinates (i, j) in
the 2D lattice. The geometry and connectivity of the lattice
are sketched in Fig. 1, and will be specified more in detail
in the following (see Fig. 4). The interqubit hopping will
be periodically modulated in time, gαβ (t ) = gαβ (t + T ). The
Hamiltonian Ĥ2(t ) describes additional terms corresponding
to resonant single-qubit pulses, of the form �α (t )σ̂α for σ̂α =
X̂α, Ŷα , or Ẑα . The Hamiltonian (1) is written in the interaction
picture with respect to the qubit energies (see Appendix A)
and can describe a lattice of superconducting qubits with
controllable coupling, as has been realized with different
strategies and architectures [49–54]. Modulation of gαβ (t ) is
achieved, for example, by means of an intermediate coupler
and has been used to generate artificial magnetic fields [51].

The target of the quantum simulation is to realize dynamics
given by Wen’s plaquette model [55] on a square lattice:

Ĥw = −J
∑
i, j

P̂i, j,

P̂i, j = X̂i, j Ẑi, j+1Ẑi+1, j X̂i+1, j+1. (2)

Wen’s model directly maps to the more commonly stud-
ied Kitaev’s toric-code Hamiltonian [10] via a local basis
rotation for a subset of qubits. Indeed, Kitaev’s model is
recovered by transforming Eq. (2) through Hadamard gates
(X̂i, j + Ẑi, j )/

√
2 on all sites with i + j either even or odd

[56,57]. Besides, Wen’s formulation has recently found re-
newed attention as a promising surface code design against
biased noise [58,59]. Our goal is then to find control func-
tions gαβ (t ) and �α such that the dynamics produced by the
Hamiltonian (1), at times matching multiples of a fundamental
Floquet period T , reproduces as accurately as possible the
dynamics generated by Ĥw of Eq. (2).

III. FLOQUET ENGINEERING
FOUR-SPIN INTERACTIONS

The central difficulty in achieving the Hamiltonian Ĥw is
the realization of the four-spin interactions P̂i, j of Eq. (2),
and the effective cancellation of natural single- and two-spin
terms. This problem will now be addressed at the level of a
fundamental four-spin plaquette. Considering a time step τ

(which will be a submultiple of the overall Floquet period
T ), we analyze the effective Hamiltonian Ĥi, j generated at
time τ by the driven Hamiltonian Ĥ (t ) restricted to a single
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FIG. 2. (a) Sketch of the driving scheme for realizing a four-spin
term in a single four-spin plaquette, involving oscillating fields at
angular frequency ω and 2ω. (b) Components (larger than 10−7ω in
magnitude) of the effective plaquette Hamiltonian, confirming the
achievement of a clean four-spin interaction, in units of ω.

plaquette. The effective Hamiltonian is here defined by (h̄ =
1)

e−iĤi, jτ = T exp

(
−i

∫ τ

0
dt Ĥ (t )

)
. (3)

We then search for τ -periodic control functions gαβ (t ) yield-
ing Ĥi, j � −J P̂i, j for some four-body coupling parameter J .
In Sec. IV, it will then be discussed how the resulting scheme
can be used to engineer Ĥw on the full lattice, for an arbitrary
system size. The starting point is a plaquette with coupling
connectivity and spin labeling k = 1, 2, 3, 4 chosen as in
Fig. 2(a). The driven Hamiltonian of Eq. (1), in the absence of
single-spin drives (Ĥ2 = 0), conserves the total magnetization∑

k Ẑk in the whole plaquette, while the target four-body term
conserves only the total number of excitations residing on
sites 2 and 3 instead. This excitation conservation is broken
for Ĥ (t ) by introducing a strong resonant X̂ drive on spins
1 and 4, Ĥ2 = (�1X̂1 + �4X̂4) with amplitudes much larger
than that of the two-spin coupling gkk′ (t ). The intuition is that
this drive energetically penalizes processes induced by the
Ŷ Ŷ , as compared to X̂ X̂ , interaction. These extra drive terms
would not be needed if one is able to implement, separately,
tunable couplings of either X̂ X̂ or Ŷ Ŷ type. The Hamiltonian
becomes

Ĥ (t ) = �1X̂1 + �4X̂4 +
∑
〈k,k′〉

gkk′ (t )(X̂kX̂k′ + ŶkŶk′ ). (4)

In order to inspect the range of operators that can possibly
compose the effective Hamiltonian generated by Ĥ (t ), it is
useful to study the dynamical Lie algebra L of the control
system [60]. This is defined as the space spanned by all
possible nested commutators of the control operators X̂1, X̂4,
X̂kX̂k′ + ŶkŶk′ entering Ĥ (t ). It characterizes entirely the set

TABLE I. Basis of operators spanning the dynamical Lie algebra
of the single-plaquette system. The left column indicates the minimal
number of nested commutators of initial control operators needed to
produce the corresponding terms in the right column.

No. commutators Operators

0 X̂1, X̂4, X̂1X̂2 + Ŷ1Ŷ2,
X̂2X̂3 + Ŷ2Ŷ3, X̂3X̂4 + Ŷ3Ŷ4

1 Ẑ1Ŷ2, Ŷ3Ẑ4, X̂1Ẑ2Ŷ3 − Ŷ1Ẑ2X̂3,
X̂2Ẑ3Ŷ4 − Ŷ2Ẑ3X̂4

2 Ŷ1Ŷ2, Ŷ3Ŷ4, Ẑ1Ẑ2X̂3, X̂2Ẑ3Ẑ4,
X̂1Ẑ2Ẑ3X̂4, Ŷ1Ẑ2Ẑ3Ŷ4

3 Ẑ1Ẑ2Ẑ3Ŷ4, Ŷ1Ẑ2Ẑ3Ẑ4

4 Ẑ1Ẑ2Ẑ3Ẑ4

of evolution operators that can be produced by the driven
dynamics and the set of reachable states [60]. Hence, the
effective Hamiltonian Ĥi, j for a plaquette can be generically
expressed in the form

Ĥi, j =
∑

Ô	∈L
c	Ô	 (5)

for some (unknown) coefficients c	. A linearly independent set
of operators Ô	 spanning L is given in Table I. For each term,
the number of commutators of the control operators needed to
produce it is also reported.

Building on intuition derived from high-frequency expan-
sions for Floquet systems and explained in Appendix B, the
driving functions are chosen as follows [and sketched in
Fig. 2(a)]:

g13(t ) = g13 cos(ωt ),

g23(t ) = g23 cos(2ωt ), (6)

g24(t ) = g24 cos(2ωt ),

with angular frequency ω = 2π/τ . The choice of functions
which are time symmetric within one evolution period τ ,
gkk′ (t ) = gkk′ (τ − t ), together with the particular structure of
the dynamical Lie algebra, allows one to exclude from the
effective Hamiltonian some of the terms belonging to L, as
detailed in Appendix B 3. The remaining operators are linear
combinations of those corresponding to an even number of
commutators in Table I.

Although the high-frequency regime and related traditional
approaches based on high-frequency expansions are helpful
for finding a promising ansatz for the functions gkk′ (t ), tar-
geting the desired four-spin interactions directly with such
methods poses several challenges. The four-body processes
would appear at third order in a Floquet-Magnus expansion
and have strength bounded by g3/ω2 (Appendix B 1), where g
is the maximal driving amplitude, which must satisfy g � ω

for the expansion to converge. Then, on the one hand, the
frequency ω should be kept small for the four-body coupling
to be sizable, but, on the other hand, it should be large to sup-
press higher-order terms in the expansion (and, in any case, to
maintain g/ω � 1 to ensure convergence). Even when a com-
promise between four-body coupling strength and accuracy
has been accepted, the expansion up to third order will contain
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TABLE II. Example sets of optimal driving parameters in units
of ω (rounded to two significant figures). Row A corresponds to a
four-spin interaction strength J τ = π/8, while row B corresponds
to J τ = π/50. In row C, the parameters correspond to the three-spin
interaction protocol described in Sec. VII with |Jxzx|τ = π/50.

Four-spin interaction
�1 �4 g13 g23 g24

A 12 10 1.3 2.6 0.35
B 14 11 1.2 2.6 0.054

Three-spin interaction
�1 �3 g12 g23 [z1, z2, z3]

C 8.5 9.5 0.31 0.26 [−0.010, 0.83, 2.4]

multiple other terms, with strength depending nonlinearly on
the driving amplitudes, making it very hard to single out
the desired process only. To circumvent these limitations, we
take advantage of the fact that the single-plaquette dynamics
can be accessed in a numerically exact way [42], thanks to
the small system size. In particular, the driving amplitudes
gkk′ are numerically optimized together with � j to achieve a
four-spin interaction X̂1Ẑ2Ẑ3X̂4 with a desired strength J . This
approach is nonperturbative, in the sense that it does not rely
on high-frequency expansions to realize an effective Floquet
Hamiltonian. Even though the strength of effective four-spin
interaction is fundamentally limited by the strength of the ac-
tual two-body interactions [Eq. (1)], the present approach can
attain both strong and clean four-spin interactions at moderate
driving frequency since it combines effective processes to all
orders.

As will be shown in detail in Sec. IV, where we use the
single-plaquette engineering as part of the protocol to realize
the full Hamiltonian for large systems, the error for engi-
neering the Hamiltonian of the many-plaquette system will
still be determined by (and of the same order of magnitude
as) the single-plaquette error. This is a consequence of the
fact that the single-plaquette terms of the target Hamiltonian
commute with each other. Thus, the nonperturbative nature of
the single-plaquette treatment allows also for a scalable non-
perturbative engineering of the full toric-code Hamiltonian.
Details on the numerical optimization procedure are given in
Appendix B 4, and different optimizations can be performed
to have a set of different values of J available. Since the
Hamiltonian does not depend on t and ω separately, but only
on their product, in the following, ω is chosen as the unit of
energy.

The magnitude of different terms in the effective Hamil-
tonian of a single plaquette resulting from this procedure is
shown in Fig. 2(b), for a set of optimal parameters yielding a
four-body term of chosen strength J τ = π/8. Approximated
values of these parameters are given in Table II. With this
choice of J , evolution for two Floquet periods produces an
entangling four-spin gate ei2J P̂i, jτ = (1 + iP̂i, j )/

√
2, which

will be employed in Sec. V for ground-state preparation.
As can be appreciated from Fig. 2(b), the four-body inter-

action is successfully achieved and it is by far the dominant
term in the effective Hamiltonian, with other terms almost

three orders of magnitude smaller. The effective Hamiltonian
for a plaquette can thus be written in the form

Ĥi, j = −J P̂i, j + εV̂i, j, (7)

with a quantum simulation error ε/J � 1.5 × 10−3 and with
V̂i, j containing the extra terms depicted in Fig. 2(b) with
dimensionless prefactors c	/ε < 1. From Table II one can ob-
serve that the value of the four-spin coupling considered J ≈
0.1ω is around one order of magnitude smaller than the ampli-
tudes of the oscillating drives gkk′ and two orders of magnitude
smaller than the maximal amplitude � j of the static single-
spin components X̂1 and X̂4. In a superconducting-circuit
implementation, the latter can be taken one order of magni-
tude smaller than the qubit nonlinearities to avoid excitations
outside of the qubit subspace. Considering that realistic dis-
sipation rates in such platforms can be four to five orders
of magnitudes smaller than such nonlinearities [61], the
four-spin interaction overcomes by one to two orders of mag-
nitudes the dissipation and decoherence rates, thus attaining
the strong-coupling regime. Let us remark that the bottle-
neck in the four-body coupling is given by the necessity to
implement the X̂k fields, which need to be larger than other
driving parameters to break the conservation of excitations
associated with the native flip-flop interactions X̂kX̂k′ + ŶkŶk′ .
If it is possible to directly oscillate either X̂kX̂k′ or ŶkŶk′ , such
terms would not be needed, and an order-of-magnitude gain
in the four-spin interactions could be potentially achieved by
increasing the driving frequency ω and amplitudes gkk′ .

Importantly, considering these parameter regimes, the pres-
ence of the Floquet drive is expected not to significantly
alter decoherence and dissipation rates. Intuitively, this can be
understood as follows. The Floquet protocol is defined in the
interaction picture with respect to the bare spin transition en-
ergies ωα (Sec. II and Appendix A) and the Floquet frequency
ω is a small quantity as compared to ωα . The environment
couples to the spins inducing their relaxation (or, excitation),
namely, processes with an energy cost of ωα 
 ω. The Flo-
quet drive is thus not able to provide or absorb sufficient
energy to assist such processes and to significantly impact
decay rates. To quantitatively verify this intuition, we compare
the open-system dynamics of the single-plaquette system in
the absence and in the presence of the drive. In Appendix C,
Markovian quantum master equations are derived for the two
scenarios, modeling the environment generically as a collec-
tion of bosonic thermal baths at realistic temperature, each
coupling individually to one spin with coupling strength λ.
For the driven system, the Floquet-Born-Markov formalism
[62–64] is employed, which captures potential transitions be-
tween Floquet states of the system assisted by the Floquet
drive through the absorption or emission of integer multiples
of driving quanta mω. The stroboscopic decay dynamics is
depicted in Fig. 3(b) for different values of the system-baths
coupling strength λ, taken to reproduce realistic relaxation
times Tr for undriven superconducting qubits Trωα ∼ 106

[61]. The figure of merit shown is the probability 〈G| ρ̂(t ) |G〉
of remaining in the initial state |G〉 (Loschmidt echo) during
the evolution, where |G〉 is taken as a toric ground state for
mixed boundary conditions [depicted in Fig. 3(a)],

|G〉 = 1
2 (1 + Ẑ1X̂2)(1 + X̂3Ẑ4) |−11−〉 , (8)
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FIG. 3. (a) 2 × 2 toric-code Hamiltonian with mixed boundary
conditions. (b) Time evolution of the probability of remaining in the
initial state |G〉, where |G〉 is a ground state of the toric-code Hamil-
tonian shown in (a), for the undriven (dashed) and driven (solid)
system in contact with thermal baths at temperature kBT = ωα/15,
for different system-bath coupling values λ and for ωα = 2 × 103ω.
(c) Sensitivity of the single-plaquette protocol to errors in the control
amplitudes. Different colors correspond to different maximal error
amplitude ηmax. The bars represent the operator with maximal magni-
tude at a given weight (number of nonidentity operators in the tensor
product), which is indicated on the top of the bar.

and where ρ̂(t ) is the time-evolved density matrix of the
system. The single-spin states |−〉 and |1〉 are eigenstates of
X̂ and Ẑ , respectively, with eigenvalue −1. The decay for
the undriven system (dashed lines) is practically unaltered
when introducing the Floquet protocol (solid lines), confirm-
ing that the latter does not induce any significant reduction
of relaxation and decoherence times. The almost impercepti-
ble increase of the decay time for the driven system can be
attributed to the fact that the time-dependent drive weakly
dresses the operators coupling to the baths, thus yielding a
slight renormalization of the effective system-bath coupling,
an effect exploited in the context of continuous dynami-
cal decoupling [65–67] as well as for reservoir engineering
and nonlinearity control in driven transmon-cavity systems
[68,69].

In order to benchmark the robustness of the effective four-
spin Hamiltonian also against imperfections in the control
parameters, the leading effective terms in the presence of
errors are explored in Fig. 3(c). In particular, errors are in-
troduced in all parameters p in the first row of Table II
according to p −→ p + η, where η represents uniformly dis-
tributed numbers in the interval [−ηmax, ηmax). The effective

G
1

G
2

G
3

G
4

(a)

(b)

T = 4τ3τ2ττ

FIG. 4. (a) Lattice connectivity, equivalent to a distorted square
lattice. Some triangular cells appear when including links (dashed
lines) needed to implement mixed boundaries. (b) Trotter sequence
to realize the Hamiltonian on the whole lattice. In each of the four
steps of duration τ , a group Gk of disconnected plaquettes is driven
(blue color), while couplings connecting such plaquettes are turned
off. The full lattice Hamiltonian progressively builds up (light blue).

Hamiltonian is then averaged over 1000 realizations of errors
affecting all parameters simultaneously. The resulting aver-
aged effective Hamiltonian can be decomposed in the form
(5) with strings of Pauli operators Ô	 and coefficients c	.
Figure 3(c) depicts the maximal value of the magnitudes |c	|
of different terms for a given weight (number of nonidentity
terms in the Pauli string). One can appreciate that the ef-
fective four-body interaction persists even in the presence of
relatively strong imperfections. For example, from Fig. 3(c)
one can see that errors larger than 0.1ω must occur for the
four-body term to be masked by other effective terms.

IV. FULL LATTICE SEQUENCE

The continuous-driving protocol for the single plaquette
presented in Sec. III represents the fundamental building
block that is used, in the following, to construct the full
Hamiltonian on the whole lattice, by means of a Suzuki-
Trotter sequence [70,71], whose individual Trotter step will
involve the continuous-drive protocol producing the four-spin
interaction. Although the present scheme can be applied to
generic lattice topologies, for experimental practicality we
will focus on planar lattices. The connectivity, scaling up the
single-plaquette one, is shown in Fig. 4(a), and is equivalent
to a (distorted) square-lattice geometry. Some additional links
[dashed in Fig. 4(a)], making up triangular cells, are needed
for implementing the mixed boundary terms discussed in the
following.

A hybrid “Floquet-Trotter” quantum simulation strategy is
particularly suited for the problem treated in this work and can
attain a dramatic improvement as compared to straightforward
digitization or high-frequency perturbative Floquet engineer-
ing. This is related to the interplay of two ingredients, namely,
the fact that (i) at the single-plaquette level, continuous drives
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can be numerically optimized yielding very clean four-spin
interactions within one time substep τ , as shown in Sec. III,
and that (ii) such terms approximately commute on different
sites, due to the properties of the toric-code Hamiltonian,
thus yielding very small digitization errors when considering
multiple plaquettes [42]. Hence, once the driving parameters
for one plaquette are optimized, achieving the fundamental
four-spin interaction with a small error ε [see Eq. (7)], scaling
to arbitrary system size is immediate without dramatic error
amplification due to digitization errors and without needing
further parameter optimization. A direct Trotterization of the
four-body interaction in terms of static single and pairwise in-
teractions, by means of higher-order Trotter decompositions,
would involve instead a substantial overhead of circuit depth
since this is at least a third-order process (Appendix B). It
would then be plagued by similar limitations as in the case of
high-frequency expansions, discussed in Sec. III: a reduction
of the Trotter step would be needed to suppress undesired
terms, but at the price of reducing also the perturbative four-
body coupling.

A possible first-order Floquet-Trotter sequence features
four steps and is depicted in Fig. 4(b). In each step, cor-
responding to one driving substep τ , the couplings along
lattice links connecting different blue-colored plaquettes are
turned off by setting gαβ (t ) = 0, while the single-plaquette
protocol depicted in Fig. 2(a) is applied to each dark-blue
colored plaquette, engineering the desired four-body terms.
These terms add up progressively in the sequence, building
up the Hamiltonian of Eq. (2) at time T = 4τ . The propagator
resulting from the Trotter sequence can be written in the form

Û (T ) =
4∏

k=1

∏
(i, j)∈Gk

Ûi j (τ ), (9)

where Ûi j (τ ) = e−iτ Ĥi, j represent single-plaquette propaga-
tors, while Gk are the four groups of plaquettes involved in
the sequence and depicted in Fig. 4(b). Since each group Gk

contains disconnected plaquettes, the corresponding effective
Hamiltonian is simply the sum of the effective Hamiltonians
of the individual plaquettes involved,

Ĥk =
∑

(i, j)∈Gk

Ĥi, j . (10)

The product of propagators Ûk = e−iĤkτ belonging to two
different groups do not commute instead and can be estimated
by means of the exponential product formula

∏
k

Ûk = exp

⎛⎝−iτ
∑

k

Ĥk + τ 2

2

∑
j<k

[Ĥj, Ĥk] + · · ·
⎞⎠. (11)

Using the fact that the desired terms P̂i, j contained in Ĥk via
the Ĥi, j commute with each other, the unwanted sub-leading-
order terms in the exponential in Eq. (11) are of the order of
the error terms ∝ ε in Eq. (7). The effective Hamiltonian at
the end of the sequence can thus be estimated as

Ĥeff = Ĥw + Êrr, (12)

Z X

X Z

XZ

(a)

(b)

FIG. 5. (a) Weight vs magnitude |c	| of the operators composing
the effective Hamiltonian for a 5 × 5 system. The desired four-spin
and two-spin boundary terms (exemplified in the inset) are at least
two orders of magnitude larger than undesired terms. The red color
of markers has nonunit opacity, such that more color-intense markers
appear as a result of overlapping markers. (b) Floquet heating dy-
namics, quantified via Q(n) of Eq. (15), as a function of the number
of Floquet periods n, for different system sizes with mixed boundary
conditions as depicted in the inset.

where Êrr is at most of order ε:

Êrr = ε
∑
i, j

V̂i, j − iεJ τ

2

∑
k<k′

∑
(i, j)∈Gk

(i′, j′ )∈Gk′

([P̂i, j, V̂i′, j′ ]

+ [V̂i, j, P̂i′, j′ ]) + · · · . (13)

Thanks to the precision in the single-plaquette effective
Hamiltonian achieved through numerical optimization, the
Trotter error is very small. Thus, the integrability of the target
Hamiltonian is used here in order to reduce errors in our
hybrid Floquet-Trotter approach.

To quantitatively inspect the magnitude of undesired terms
arising from the combination of Floquet engineering and
Trotterization in a larger system, we consider a 5 × 5 lattice
with mixed boundary conditions as depicted in the inset of
Fig. 5(a). Such a geometry is interesting since it features two
degenerate, topologically ordered ground states that can be
used to define a topologically protected qubit [23]. The bound-
ary terms, involving X̂αẐβ terms, are Floquet engineered with
the driving scheme

gαβ cos(ωt )(X̂αX̂β + ŶαŶβ ) + g̃ sin(ωt )Ŷβ, (14)
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where gαβ and g̃ are numerically optimized to give the same
coupling −J as that engineered for the plaquette interactions
in a time substep τ . The Floquet-Trotter realization of the
Hamiltonian also allows us to develop a practical route to
numerically compute the effective Hamiltonian for such a
large system. Once the effective Hamiltonian Ĥi, j for a sin-
gle plaquette (or boundary term) is determined numerically
by diagonalizing the corresponding end-of-period propagator
Ûi j (τ ) = e−iĤi, jτ , we compute the full lattice Hamiltonian via
Eq. (9) and iteratively using Baker-Campbell-Hausdorf for-
mula for estimating the Hamiltonian, where terms in the series
are included until convergence is reached. To avoid eval-
uating the commutators via explicit matrix multiplications,
we develop a semianalytic representation of the Hamiltonian
(Appendix D), which allows one to compute the commutators
analytically instead.

Considering a decomposition of the Hamiltonian into Pauli
strings with associated coefficients c	, the magnitude |c	| of
the different terms in the effective Hamiltonian is shown
in Fig. 5(a), where they are organized according to their
weight (namely, the number of nonidentity operators in the
tensor product). The desired terms (four-body and boundary
two-body) are almost three orders of magnitude larger than
unwanted terms. The leading error terms appear at order
|c	|/ω ∼ 10−4 and correspond to two-spin X̂ X̂ and Ŷ Ŷ terms
contained already in V̂i, j [first line of Eq. (13)]. The renowned
topological protection in the toric code is in general jeop-
ardized when strings of Pauli operators spanning the whole
system and connecting different boundaries are present [10].
From Fig. 5(a), one can further see that terms of such a weight
are very weak, as expected since they can be created only
via deeply nested commutators of single-plaquette effective
Hamiltonians Ĥi, j . For this reason, their magnitude will also
decay with the system size since more and more commutators
will be needed to create a similar string. The preservation of
the toric-code topological properties for the quantum simu-
lated model will be inspected more in detail Sec. VI.

Before moving on, we would like to stress that our hybrid
continuous-digital approach to Floquet engineering allows us
to realize four-body terms, which in the regime where stan-
dard high-frequencies expansions work, would correspond to
very small third-order contributions, as discussed in Sec. III.

Next, we analyze the accuracy of the quantum simulation
in terms of Floquet heating dynamics for the optimized pro-
tocol. Periodically driven many-body systems are predicted
to heat up to infinite temperature in the long-time limit, due
to the absorption of energy from the drive [72–74], and it
is thus interesting to characterize heating timescales induced
by the error terms in the present model. With few exceptions
[75,76], heating suppression requires large driving frequency
since heating processes are suppressed exponentially with
increasing driving frequency [77,78], which is the premise of
Floquet engineering in interacting many-body systems [79].
Here we show that, thanks to the nonperturbative approach
to the four-spin interactions and the integrability of Wen’s
Hamiltonian, heating is strongly suppressed for the optimized
driving parameters, without requiring very large driving fre-
quency. To quantify heating, and thus also deviations from
the ideal quantum simulation, we consider the long-time dy-
namics of the system initiated in the exact ground state |G〉 of

Wen’s Hamiltonian Ĥw [Eq. (2)] and subjected to the Floquet-
Trotter driving. We monitor stroboscopically the figure of
merit [80]

Q(n) = 〈Ĥw〉n − E0

E∞ − E0
, (15)

where 〈Ĥw〉n = 〈ψ (nT )| Ĥw |ψ (nT )〉 is the expectation value
of Wen’s Hamiltonian with respect to the stroboscopically
time-evolved state |ψ (t )〉, E∞ = tr[Ĥw]/d is the energy of
the infinite-temperature state with d the size of the Hilbert
space, E0 = 〈G| Ĥw |G〉 is the ground-state energy. The quan-
tity Q(n) monitors deviations from the exact ideal dynamics,
where Ĥw would be an exact constant of motion [80]. Since
Ĥw is traceless and its ground-state energy is equal to the total
number Ns of stabilizer operators entering the Hamiltonian in
units of −J , E0 = −JNs, Eq. (15) reduces to Q(n) = 1 +
〈Ĥw〉n/JNs. Long-time propagation is obtained via exact di-
agonalization of the one-period evolution operator Û (T ) and
its exponentiation, which we can diagonalize up to a maximal
size of 4 × 3 for the regular-rectangle geometries considered.
The growth of Q(n) as a function of the number of Floquet
periods is depicted in Fig. 5(b), for system sizes 3 × 3, which
is the minimum size necessitating all the four Trotter steps of
Fig. 4(b), and 4 × 3, with mixed boundary conditions depicted
in the inset of Fig. 5(b). The heating measure Q(n) remains
constant and oscillatory for more than five decades, i.e., well
beyond timescales of practical applications, after which the
system starts to heat up. This heating timescale can be asso-
ciated with the time it takes for error terms in the effective
Hamiltonian to make themselves felt on the dynamics: since
they have strength of the order of 10−4ω as visible in Fig. 5(a)
for the example of the 5 × 5 system, they require at least
∼105 periods to have an appreciable impact. As predicted,
the same behavior is found for both system sizes analyzed,
confirming that the single-plaquette error terms remain the
dominant imperfection also for larger systems.

V. GROUND-STATE PREPARATION

By exploiting the possibility to realize the plaquette oper-
ators P̂i, j with high precision and the related optimal driving
parameters found, an efficient ground-state preparation pro-
tocol can be formulated, which can be applied to systems
of arbitrary size. The realization of toric-code ground states,
beyond the prominent interest in such states per se, is also
emerging as a convenient preliminary step for addressing
the preparation of more complex topologically ordered states
[81–83].

The proposed protocol is optimal in the sense that the time
needed to prepare the target state scales linearly with N for an
N × N lattice, thus saturating Lieb-Robinson bounds on the
preparation of topological ordered states via local Hamiltoni-
ans [84]. It features a sequence in which different plaquette
operators P̂i, j are Floquet engineered in a way such that evo-
lution for two time steps τ implements a four-spin entangling
gate, with the help of additional single-qubit Ẑi, j rotations.
A ground state |G〉 of Ĥw satisfies the “stabilizer” constraint
〈P̂i, j〉 = 1 on all plaquette operators, and can be written as an
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equal superposition of closed strings [10],

|G〉 =
∏

i+ j even

(1 + P̂i, j )√
2

|ψ0〉 , (16)

where |ψ0〉 = H |0〉⊗N , with H the simultaneous Hadamard
gate (X̂i, j + Ẑi, j )/

√
2 on odd sites (i, j), namely, such that i +

j is odd [the bottom-left spin has coordinate (1,1)]. The sum
in Eq. (16) involves even plaquettes. Even (odd) plaquettes are
defined as those whose bottom-left site is an even (odd) site.
Note that the ordering of factors in the product does not matter
since all factors commute. The ground state obtained has the
same parity of noncontractible string operators along the x or
y direction as |ψ0〉. In this case, for example, 〈G| X̂L |G〉 =
〈ψ0| X̂L |ψ0〉 = 1, where X̂L is a string of alternating X̂i, j and
Ẑi, j operators spanning the whole system along the y direction,
which commutes with the Hamiltonian Ĥw.

The individual operators (1 + P̂i, j ) are not unitary, and thus
cannot be achieved by a Hamiltonian evolution. Nonetheless,
an equivalent result is obtained, starting from state |ψ0〉, by
employing a suitably ordered product of operators

ÛA
i, j = (1 − iÂi, j )/

√
2 = exp(−iπ Âi, j/4),

(17)
ÛB

i, j = (1 − iB̂i, j )/
√

2 = exp(−iπ B̂i, j/4),

where

Âi, j = X̂i, j Ẑi, j+1Ẑi+1, jŶi+1, j+1,

B̂i, j = Ŷi, j Ẑi, j+1Ẑi+1, j X̂i+1, j+1. (18)

The construction of this protocol is discussed in Appendix E.
The ground state |G〉 is obtained, for example, by applying
ordered products of Âi, j (or B̂i, j) operators along bottom-left
to top-right diagonals of the lattice involving even plaquettes,
which are ordered from bottom left to top right for Âi, j ,
and vice versa for B̂i, j . The choice between using operators
Âi, j or B̂i, j for a given diagonal depends on the boundary: a
boundary term must always contain one Ŷ operator, and hence
the right boundary (and thus the whole corresponding diag-
onal) necessitates operators B̂i, j , whereas the left boundary
needs Âi, j .

Exploiting the Floquet-engineered plaquette operators, the
gates ÛA

i, j and ÛB
i, j can be realized by combining the single-

plaquette Floquet protocol with two single-qubit rotations.
Indeed, introducing the notation ÛP

i, j = ei π
4 P̂i, j and Ẑπ/4

i, j =
e−i π

4 Ẑi, j , we find

ÛA
i, j = Ẑπ/4,†

i+1, j+1ÛP
i, jẐ

π/4
i+1, j+1,

ÛB
i, j = Ẑπ/4,†

i, j ÛP
i, jẐ

π/4
i, j . (19)

To obtain the π/4 rotation needed, the driving parameters
have been optimized to obtain |J |τ = π/8, such that evolu-
tion for two steps 2τ implements the desired gate with π/4
angle. The single-qubit gates will typically be much faster
than the time step τ , such that one can approximately consider
them to be instantaneous on the timescale of τ .

The sequence for a 5 × 4 lattice is shown in Fig. 6. The
state |Geff〉 approximating |G〉 prepared using the Floquet
gates for such a system has an energy reaching 99.999%
of the exact toric-code ground-state energy and a fidelity

FIG. 6. Ground-state preparation sequence for a 5 × 4 lattice.
Dark and light purple tiles indicate an operation ÛA

i, j and ÛB
i, j ,

respectively, each involving two time steps τ and two additional
single-qubit rotations according to Eq. (19).

| 〈Geff |G〉 |2 � 99.994%. Since different diagonals can be ad-
dressed in parallel, the overall number of four-spin gates
needed scales with the number of plaquettes tiling the longest
diagonal of the lattice. This, in turn, scales linearly in the
system size N , for a N × N system. Therefore, the ground-
state preparation protocol attains “quantum speed limits” on
the preparation of topologically ordered states [84], being in
this sense optimal.

With respect to the protocol used in Ref. [23], the protocol
proposed here shares the strategy of preparing the ground state
by realizing a unitary analog of Eq. (16) starting from a trivial
product state (at net of the mapping between Kitaev’s and
Wen’s formulation of the model), though it uses a different
gate sequence building on the four-spin gate. While both se-
quences scale optimally, the present method has the advantage
that the realization of the Floquet gate can entangle four spins
in a single evolution step, thus overcoming the necessity of
multiple CNOT gates. For a comparison, a four-spin entangled
state (|0 + 0+〉 + |1 − 1−〉)/

√
2 is created from |0 + 0+〉 in

a single shot by the four-spin gate, but would require (at net
of single-spin rotations) three CNOT gates instead using the
method of Ref. [23]. Moreover, since the gate is based on
an analog Floquet-engineered four-spin coupling, it does not
require further recompilation in terms of native interactions.
These features may thus potentially yield a significant reduc-
tion of circuit depth for the ground-state preparation.

VI. PROBING ENTANGLEMENT AND ANYONS

The robustness of topological order in the toric-code
ground state against perturbations is the paradigmatic ex-
ample of topological protection [10,15,36,41,85,86]. Weak
local perturbations can in general only slightly deform the
ideal eigenstates, without spoiling their topological properties.
Moreover, the ground-state and anyonic excitations can still
be efficiently manipulated by means of unperturbed string
operators [85]. The goal of this section is to show that, de-
spite the fact that the quantum simulation procedure also
produces nonlocal higher-order contributions, approximate
ground states prepared with the procedure described in Sec. V
indeed feature and enable the detection of topological or-
der. To this end, typical signatures of topological order are
probed in a 5 × 4 lattice, namely, the presence of long-range
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FIG. 7. (a) Topological entanglement entropy for two different
partitions of the system, where the subsets A, B, C are depicted in
orange, purple, and blue, respectively. (b) von Neumann entropy of
the reduced state including the spins in red, which satisfies (n −
1) log(2) where n is the number of even plaquettes crossed (indicated
in dark blue). (c) Specific anyon creation and braiding procedures
and (d) dyon exchange, studied starting from the effective ground
state |Geff〉 prepared through the Floquet scheme of Sec. V.

entanglement and the existence of quasiparticles with nontriv-
ial mutual and exchange statistics.

To inspect the presence of entanglement as predicted in the
toric code, the topological entanglement entropy Stopo [87–89]
is reported in Fig. 7(a) for two different partitions of the
system. It is defined as [87]

Stopo = SA + SB + SC − SAB − SBC − SAC + SABC, (20)

where SX = trρX log ρX is the von Neumann entropy of the
system state reduced to subsystem X . The subsystems A, B,
and C are depicted in orange, purple, and blue color, respec-
tively, in Fig. 7(a). As indicated in the figure, Stopo is very
close to the value of the ideal toric code, − log 2, which
characterizes Z2 topological order, and differs only by ∼10−4

in all cases. Additionally, it is verified that, for a single sub-
system depicted in Fig. 7(b), the von Neumann entropy scales
like (n − 1) log(2), where n is the number of even plaquettes
crossed [23].

As a second signature, the possibility to create and manip-
ulate anyons in the same 5 × 4 system is probed, verifying
mutual and exchange statistics through explicit braiding and
exchange. The toric code possesses three types of gapped
quasiparticle excitations, that appear as violations of the
stabilizer constraint (〈P̂i, j〉 = −1) occurring at the end of
open strings of Pauli operators. These are so-called electric
charges (“‘e”) and magnetic vortices (“m”), associated to a

violation of even or odd plaquettes, respectively (the distinc-
tion is arbitrary [90]), and dyons (“ε”, a compound ε = e × m
quasiparticle). Concerning the exchange statistics, e and m
are bosons, while ε are fermions. However, if an e charge is
braided around a m charge or vice versa, the wave function
acquires a π phase, and thus these particles exhibit anyonic
(semionic) mutual statistics. In the presence of weak pertur-
bations, these quasiparticles are approximate eigenstates of
the system, and will propagate with an effective finite mass
[10]. Nonetheless, their characteristic properties are predicted
to persist, until the perturbation becomes strong enough to
disrupt the topological phase [10,16,36,41,85].

We verify these features through the processes depicted in
Fig. 7, where the creation and braiding of an electric charge
around a magnetic vortex [Fig. 7(c)], and the exchange of two
dyons ε [Fig. 7(d)], are depicted. These processes are realized
in the system by applying strings of single-spin operators
(shown in Fig. 7) on top of the ground state |Geff〉 prepared
with the protocol of Sec. V. In the exact toric code, both
operations result in the wave function acquiring a phase π due
to the semionic nature of e and m, in the first case, and to the
fermionic nature of ε, in the second. This is obtained almost
exactly in the system studied here, where the phases obtained
are π up to numerical precision (resulting in a sign change s
deviating from −1 by ∼10−4). The bosonic exchange statis-
tics of e and m was also verified (not shown).

These results give strong evidence that the state pre-
pared is topologically ordered and features the defining
properties of the Z2 topological phase very accurately. This
further confirms that higher-order contributions to the ef-
fective Hamiltonian have very little impact on the system
properties, providing an additional signature of successful
Floquet engineering.

VII. PROOF-OF-PRINCIPLE DEVICE
AND TOPOLOGICAL CROSSOVER

In the earlier sections, tools were developed for quantum
simulating a toric-code Hamiltonian, preparing its ground
state, and it has been verified that the prepared state indeed
exhibits clear signatures of topological order. Based on this
toolbox, we next propose a proof-of-principle realization, cor-
responding to a prototypical topological qubit, and show that
it can be used to adiabatically explore the crossover into the
spin-liquid phase. This (finite-size precursor of the) phase
transition connects a topologically ordered to a topologically
nonordered phase and, thus, unusually, it cannot be charac-
terized through the behavior of local order parameters. The
proposed protocol provides a starting point for exploring the
phase diagram of the perturbed toric code in a quantum sim-
ulator, the details of which are not yet entirely determined
[36–41]. This has potential impact also for the quantum sim-
ulation of lattice gauge theory since the transition is related
to confinement-deconfinement transitions of Z2 lattice gauge
theory [16]. The prototypical device has the nine-spin geom-
etry shown in Fig. 8(a). The system features two degenerate
ground states, which define a logical qubit. Topological order
implies that these ground states cannot be distinguished via lo-
cal observables, nor be turned one into the other by weak local
perturbations. A string of single-spin errors needs to cross the
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FIG. 8. (a) Device connectivity and X̂L logical operator for the
prototypical nine-spin device. (b) Floquet-Trotter sequence realizing
Ĥw . (c) Quasienergy spectrum of the effective Hamiltonian (black),
compared to the exact spectrum of the ideal Hamiltonian (red).

entire system, involving at least three spins, to produce a log-
ical error. The connectivity considered is shown in Fig. 8(a),
and the Floquet-Trotter sequence realizing the Hamiltonian,
developed following the prescription of Sec. IV, is shown in
Fig. 8(b). The two ground states are distinguished by logical
operators X̂L and ẐL which span the system vertically and hor-
izontally, commute with the Hamiltonian, and anticommute
with each other. A possible choice, which will be adopted
in the following, is X̂L = X̂2,1Ẑ2,2X̂2,3 and ẐL = Ẑ1,2X̂2,2Ẑ3,2.
Logical states |0L〉 and |1L〉 can then be defined according to

ẐL |0L〉 = + |0L〉 , ẐL |1L〉 = − |1L〉 . (21)

For example, X̂L is depicted in Fig. 8(a). For a chosen four-
spin coupling J = 0.01ω, the quasienergy spectrum of the
nine-qubit device is shown in Fig. 8(c) [black color], where
it is also compared with the ideal spectrum (red color).
The quasienergy spectrum reproduces the ideal spectrum
faithfully, featuring almost flat bands that acquire a slight
dispersion due the weak higher-order terms in the effective
Hamiltonian.

While a system’s ground state can be efficiently prepared
with the protocol of Sec. V, the goal here is to simulate the
(finite-size precursor of the) topological transition by adia-
batically interpolating between an effective Hamiltonian with
topologically nonordered ground state and Wen’s model. Note

that adiabatic, and even optimized diabatic [91], preparation
of topologically ordered states in interacting Floquet systems
is an ongoing challenge in state-of-the-art quantum simulators
[92], due to the interplay of both nonadiabaticities and Floquet
heating [46,93], constraining applications to moderate system
size. We discuss how the Floquet-Trotter protocol proposed
can be adapted to attain this goal and simulate the phase tran-
sition studied in Ref. [37]. The protocol aims at performing an
interpolation from the initial effective Hamiltonian

Ĥin = −R
∑

α

X̂α + Ĥw, (22)

with R 
 J , to a final effective Hamiltonian Ĥfin = Ĥw. The
topological phase transition for this model is predicted to
occur at the critical point R/J → 1. For R 
 J , the ground
state is fully magnetized along the x direction, and can be
interpreted as a “condensation” of both e and m quasiparticles
[37], while the spin-liquid ground state of Ĥw corresponds
to condensation of closed strings. At the beginning of the
protocol, the system is thus initialized with all spins aligned in
the state |+〉, which is approximately the ground state of Ĥin.
If the preparation is successful, at the final time the system
will be in the topologically ordered ground-state subspace
of Ĥfin.

The Floquet-Trotter sequence of Sec. IV implementing Ĥw

is “always on” during the protocol. The control parameters
are optimized in order to achieve a weaker four-body coupling
strength J = 0.01ω: in this way, the quasienergy spectrum of
Ĥw fits entirely within a single Floquet-Brillouin zone, sim-
plifying the application of the adiabatic principle to the driven
system [46,93]. The X̂α terms in Ĥin are obtained by modifying
the magnitude of single-spin terms in Eq. (4) when driving
each plaquette during the four-step sequence �k → �k − R.
The interpolation takes place in a total time t f by ramping
down R → R(t ) = Rr(t ), with ramping function r(t ) such that
r(0) = 1 and r(t f ) = 1.

An example of successful Floquet-adiabatic state prepara-
tion is obtained in 130 Trotter steps using R = 10J , the sweep
function r(t ) = arctan(15t/t f )/ arctan(15), and is shown in
Fig. 9(a). In this figure, the instantaneous squared overlap of
the evolving state with the exact degenerate ground-state sub-
space of the ideal toric code is reported (dark-blue thick solid
line), which reaches a value �0.98 at the end of the sweep.
The corresponding growth in time of the topological entangle-
ment entropy, which reaches 98% of the ideal value − log(2),
is reported in Fig. 9(b) (dark-blue thick solid line), for the
system partition shown in the inset, and further signals the
achievement of topological order. Final values of the ground
space occupations and topological entanglement entropy at
the end of the sweep for different protocol times are reported
in Fig. 9(c), while maintaining the same ramp. Occupations
and Stopo above 95% of the ideal values are attained for total
durations t f � 80T , after which the protocol is rather stable
with respect to a variation in the total ramping time.

The adiabatic interpolation is robust also against imperfec-
tions in the Floquet drives. This is verified by perturbing the
ideal Floquet-Trotter protocol during the ramp, by including
random offsets in the driving amplitudes gi j → gi j (1 + ηi j ).
The dashed and dotted lines in Figs. 9(a) and 9(b) represent
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FIG. 9. Occupation probability of the ground-state subspace
(a) and growth of the topological entanglement entropy [(b), for the
system partition shown in the inset] during the adiabatic ramp, for
total evolution time t f = 130T . Dark-blue solid lines indicate the
result using the optimized protocol, while the dotted and dashed
lines indicate averaged results when including perturbations of such
a protocol. These averages are obtained from 1000 realizations of
random errors on the driving amplitudes, uniformly distributed in
an interval of ±1% (dashed) and ±2% (dotted) around the optimized
value. Light-blue and gray strips indicate a dispersion of one standard
deviation from the dashed and dotted mean values, respectively.
(c) Final ground-state-subspace occupation probability (black) and
topological entanglement entropy (light blue) as a function of the
total duration of the adiabatic interpolation. (d) Final occupation
probability (black) and topological entanglement entropy (light blue)
of the logical state |−L〉 as a function of the total duration, for
the adiabatic interpolation of Eq. (23), which includes the logical
operator X̂L .

the squared overlap averaged over 103 realizations of uni-
formly distributed errors ηi j ∈ [−ηmax, ηmax), with ηmax = 1%
(dashed) and 2% (dotted). The light-blue- and gray-colored
strips indicate a dispersion of one standard deviation around
the mean value. The adiabatic interpolation is not spoiled by
the presence of errors, and suffers only a moderate decrease
in the final ground-state-subspace occupation, such that it still
adequately realizes the topological crossover.

In the proposed nine-spin device, with an additional adap-
tation of the Floquet-Trotter sequence, it is also possible to
precisely pinpoint a specific final state within the doubly de-
generate ground-state subspace, if desired. This can be done
by including into the effective Hamiltonian a logical operator
as follows:

Ĥin → Ĥin ± X̂L, Ĥin → Ĥin ± X̂L. (23)

In this case, the final state will be a joint ground state of
Ĥw and X̂L, which will be |+L〉 or |−L〉 depending on the
choice of the sign in Eq. (23) and of the initial product state.
Remarkably, the realization of the logical operator can be
done via Floquet engineering in the prototypical nine-spin
device, as discussed in the following. This becomes, however,
prohibitively challenging for larger systems: since the logical
operators need to span the whole system length, they will

become higher and higher-order processes and thus become
more and more challenging to be attained via two-body inter-
actions and the Floquet drive.

Considering the three spins in the central column, labeled
from 1 to 3 vertically from bottom to top, the protocol Hamil-
tonian involves periodic driving of the central site, adapting
earlier protocols for achieving three-spin interactions [42],
and reads as

ĤXL (t ) = �1X̂1 + �3X̂3 + g12(X̂1X̂2 + Ŷ1Ŷ2)

+ g23(X̂2X̂3 + Ŷ2Ŷ3) + z(t )Ẑ2. (24)

The τ -periodic drive z(t ) = z(t + τ ) is chosen to feature mul-
tiple harmonics,

z(t ) = z1 + z2 cos(ωt ) + z3 cos(2ωt ). (25)

The parameters � j , gi j , z j are numerically optimized si-
multaneously to obtain an effective Hamiltonian JxzxX̂L =
JxzxX̂1Ẑ2X̂3, with a chosen magnitude Jxzx. A set of optimal
parameters is given in Table II. The capability to implement
a logical operator at the Hamiltonian level is also appealing
since it allows one to distinguish, and actively manipulate,
protected qubit states. For example, it can be used to induce
Rabi oscillations between the states |0L〉 and |1L〉. Here we
focus on the adiabatic preparation of logical states |−L〉 =
(|0L〉 − |1L〉)/

√
2, satisfying X̂L |−L〉 = − |−L〉. The Floquet-

adiabatic ramp used is the same, but each fundamental Trotter
step now features one additional substep (thus, T = 5τ ),
which is used to implement X̂L according to the driving pattern
of Eq. (25). The crossover into the target ground state is
confirmed in Fig. 9(d), where the final values of the squared
overlap with state |−L〉, and the topological entanglement
entropy for the partition shown in Fig. 9(b), are reported. The
selected state is reached with probability larger than 95% for
protocol durations above t f = 120T .

For increasing system size N , the gap of the Hamiltonian
of Eq. (22) at the critical point scales like ∼1/N [37]. This
then indicates a linear scaling of the preparation time with
the system size. However, the main difficulty in practically
scaling up the adiabatic preparation can be expected to come
from the interplay of the adiabatic ramp with the Floquet
drives, producing Floquet heating. These effects become rele-
vant when the quasienergy spectrum during the ramp spreads
over multiple Floquet-Brillouin zones, such that accidental
Floquet resonances (resonant m-“photon” processes borrow-
ing m energy quanta ω from the Floquet drive) are crossed
producing unwanted excitations [46]. For the drive parameters
used in Fig. 9, this can be expected to happen for system sizes
above 5 × 5, for which the spectral width of the Hamiltonian
Ĥin of Eq. (22) exceeds ω. The error is expected to be marginal
as long as the overlap between different Floquet-Brillouin
zones is not substantial: an overlap of the ground state with
the most excited states is a high-order process and will lead to
resonant excitation only on an exponentially long timescale.
This can be further mitigated by optimization of the sweep
function [46]. These problems do not affect, instead, the state-
preparation protocol presented in Sec. V above, which relies
entirely on the nonperturbative engineering of the Hamilto-
nian (and only prepares the final state without realizing the
phase crossover studied here).
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VIII. OUTLOOK

The possibility to Floquet engineer a clean toric-code
Hamiltonian as proposed in this work, with the added flexibil-
ity in the control of the coupling strength and of the operators
defining the effective Hamiltonian, provides a fully fledged
quantum simulation strategy of Z2 lattice gauge theory [15,16]
and string-net condensation [6,17,55]. Indeed, as exempli-
fied in Sec. VII, the Floquet-Trotter sequence can be easily
adapted to incorporate additional single-spin terms, alongside
the Floquet engineered four-spin interaction. By including
local X̂α and Ẑα terms, the model can be interpreted as a Z2

lattice gauge theory with matter fields [16]. The tunability of
the different terms can then be exploited to explore, either via
dynamical signatures or via adiabatic preparation, the phase
diagram of such a model, and the crossover between the
topological (or deconfined) and nontopological phase.

The proposed Floquet scheme provides also an interesting
perspective for investigating quantum computational models
related to the toric code. For example, it could be used to study
quantum computation based on topological defects. Topolog-
ical defects such as holes, which consist in the removal of a
subset of stabilizer operators P̂i, j from the Hamiltonian, admit
the presence of anyons residing in the hole, which do not
cost any energy (since the stabilizers in the hole have been
removed from the Hamiltonian). The possibility to create, an-
nihilate, and braid anyons, together with the holes potentially
hosting them, enables universal quantum computation [94].
While anyon manipulation needs only single-spin operations,
once the toric-code ground state has been prepared, creating
and moving holes is typically a more challenging task [7,94].
This is particularly simple in the Floquet-Trotter scheme pro-
posed here, where stabilizers P̂i, j can be removed by simply
avoiding to drive the corresponding plaquette in the sequence
of Sec. IV. Similarly, a hole can be restored by simply rein-
troducing the corresponding drive in the subsequent Trotter
step. To displace an occupied hole, one can combine such
operations with single-spin operations to move the hosted
anyon along with the hole. These fundamental operations then
constitute a promising toolbox for implementing a prototypi-
cal Floquet quantum computation based on holes.

Note added. Recently, other proposals for the Floquet
engineering of quantum spin-liquid models have appeared
[81,82]. Differently from this paper, these works address the
realization of Kitaev’s honeycomb model for a non-Abelian
spin liquid [95], with focus on implementations with ultracold
atoms [82] and Rydberg-atom arrays [81], and build on proto-
cols based on van Vleck and Floquet-Magnus high-frequency
expansions, respectively.
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APPENDIX A: INTERACTION PICTURE HAMILTONIAN

The Hamiltonian of the system in the Schrödinger picture
describes a lattice of two-level systems with tunable nearest-
neighbor hopping rate and subject to resonant qubit control,

Ĥ (t ) =
∑

α

[
ωα

2
Ẑα + �α (t ) sin(ωαt + φα )Ŷα

]
+

∑
〈α,β〉

gαβ (t ) cos(ωαβt )(σ̂+
α σ̂−

β + σ̂−
α σ̂+

β ), (A1)

where σ̂±
α = (X̂α ± iŶα )/2, ωαβ = ωα − ωβ , �α (t ) are the

envelopes of the resonant qubit pulses, gαβ (t ) a hopping mod-
ulation of frequency ω, and 〈α, β〉 indicates nearest neighbors.
Indices α and β denote pairs of lattice coordinates. The
characteristic frequencies of �α (t ) and gαβ (t ) will be much
smaller than the qubit frequencies ωα and their differences
ωαβ . The Hamiltonian (A1) can describe an architecture of
superconducting qubits with tunable coupling and additional
single-qubit microwave control, such as the one implemented
in Ref. [51]. In the interaction picture with respect to the
perturbed problem, the Hamiltonian (A1) reads as

Ĥ (t ) =
∑

α

�α (t )

2
(eiφα σ̂+

α + e−iφα σ̂−
α

− ei2ωαt+iφα σ̂+
α − e−2iωαt−iφα σ̂−

α )

+
∑
〈α,β〉

gαβ (t )[σ̂+
α σ̂−

β + σ̂−
α σ̂+

β

+ e2iωαβ t σ̂+
α σ̂−

β + e−2iωαβ t σ̂−
α σ̂+

β ]. (A2)

The second and fourth lines involve terms oscillating at fre-
quencies ωα and ωαβ , which are assumed to be much larger
than the frequencies in �α (t ) and gαβ (t ). Hence, they can be
neglected in rotating-wave approximation, and a Hamiltonian
of the form of Eq. (1) is obtained. Note that, if single-qubit
control was possible for resonant qubits, without crosstalk
issues, the cosinusoidal modulation in Eq. (A1) could directly
implement the modulations of Eq. (6), without needing the
additional separation of timescales ωαβ 
 ω.

APPENDIX B: SINGLE-PLAQUETTE DRIVING SCHEME

We motivate in this section the choice of the driving func-
tions of Eq. (6).

1. Oscillating part

First, we explore the problem from the point of view of a
high-frequency limit and related high-frequency expansions.
This helps one to build some intuition about the choice of the
driving fields, which provides the base for proceeding with
numerically exact methods for designing the final protocol.
The desired four-spin term X̂1Ẑ2Ẑ3X̂4 can be written as the
commutator of at least three two-spin operators,

X̂1Ẑ2Ẑ3X̂4 ∝ [X̂1X̂2, [X̂2X̂3 + Ŷ2Ŷ3, X̂3X̂4]]. (B1)
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Double-commutator terms of this form appear in a Magnus
expansion [45,46,79] generated by the driven Hamiltonian
Ĥ (t ) at third order. In particular, such terms have, e.g., the
form

[Ĥ−m, [Ĥm−n, Ĥn]]/ω2, [Ĥ−m, [Ĥ0, Ĥm]]/ω2, . . . , (B2)

where Ĥm = 1/τ
∫ τ

0 eimωt Ĥ (t ). Choosing Ĥ0 = 0, since we
want lower-order two-spin terms to be zero, leaves, for exam-
ple, the first term. A choice of values of m and n that makes
such a term nonzero is, for instance, m = −1, n = 2. Then,
comparing Eqs. (B1) and (B2), one can start guessing a drive
Hamiltonian of the form

g(ωt )X̂1X̂2 + g(−3ωt )(X̂2X̂3 + Ŷ2Ŷ3) + g(2ωt )X̂3X̂4, (B3)

with periodic g(t + τ ) = g(t ). Now, since the goal is to make
third-order terms in the expansion to become of leading or-
der, the second order must vanish. This can be achieved by
exploiting a property of the Magnus expansion, namely, that
all even-order terms vanish if the driven Hamiltonian is time
symmetric within the integration step τ , Ĥ (t ) = Ĥ (τ − t )
[96,97]. We will elaborate more on this point in Appendix B 3.
It is thus convenient to choose g(t ) to be time symmetric. We
thus obtain driving functions (using the labeling of Fig. 2)

g13(t ) = g13 cos(ωt ), g23(t ) = g23 cos(3ωt ),

g24(t ) = g24 cos(2ωt ), (B4)

which yield the desired four-body term with strength J ∝
g13g23g24/ω

2. The ansatz (B4) is the starting point for the
numerical optimization, where testing slightly different har-
monics yields in the end optimal parameters with frequencies
ω and 2ω as in Eq. (6). In the next subsection, we discuss the
intuition behind the introduction of the static parameters �1,
�4.

2. Constant part

The Hamiltonian of Eq. (B3) has a form similar to the
Hamiltonian of Eq. (1), except that it also involves two-qubit
operators not conserving the total spin magnetization

∑
j Ẑ j .

If one is experimentally able to modulate magnetization-
nonconserving couplings like X̂ X̂ and Ŷ Ŷ separately, then the
ansatz (B3) would be sufficient. However, the Hamiltonian
(1), as compared to Eq. (B3), also contains terms Ŷ1Ŷ2 and
Ŷ3Ŷ4, which would lead to the formation of unwanted effective
terms Ŷ1Ẑ2Ẑ3Ŷ4, in addition to X̂1Ẑ2Ẑ3X̂4. These terms are un-
desired since they do not commute with X̂1Ẑ2Ẑ3X̂4 on different
plaquettes, and they are thus detrimental. Their suppression
in the effective Hamiltonian can be achieved by introducing
single-spin X̂ drives on spins 1 and 4. The Hamiltonian (B3),
including the additional Ŷ Ŷ terms, then becomes

�1X̂1 + �4X̂4 + g13(t )(X̂1X̂3 + Ŷ1Ŷ3)

+ g23(t )(X̂2X̂3 + Ŷ2Ŷ3) + g24(t )(X̂2X̂4 + Ŷ2Ŷ4). (B5)

By choosing �1 = �4 = Mω with integer M and moving to
a rotating frame with respect to the X̂1 and X̂4 terms, the
Hamiltonian transforms to

g13(t )(X̂1X̂2 + eiMωt X̂1Ŷ1e−iMωt X̂1Ŷ2) + g23(t )(X̂2X̂3 + Ŷ2Ŷ3)

+ g24(t )(X̂2X̂4 + Ŷ2eiMωt X̂4Ŷ4e−iMωt X̂4 ). (B6)

Note that, thanks to the choice of �1 and �4 as a multiple
of ω, the rotating frame coincides with the nonrotating frame
at t = τ . One can now observe that the terms multiplied by
exponential functions oscillate at frequencies ∼ ± (M ± k)ω
with k = 1, 2, and will thus produce terms in a high-frequency
expansion that are suppressed at least by a factor 1/(M ± k)ω.
By choosing M sufficiently large, these terms can be made
smaller than the effective four-body X̂1Ẑ2Ẑ3X̂4 term. A very
large M can become impractical, and this is an additional
reason for including the parameters � j in the optimization.

Finally, the Hamiltonian of Eq. (B5) will likely generate, at
higher orders in the effective Hamiltonian, terms composed of
the same operators which enter the undriven Hamiltonian it-
self. In the numerical optimization, small static corrections ḡi j

to the drive functions gi j (t ) can also be included as additional
free parameters, such that gi j (t ) = ḡi j + gi j cos(nωt ), for the
purpose of canceling these terms and permitting an additional
fine tuning of the four-spin effective Hamiltonian. However,
since the latter is already very clean via optimization of
the oscillating components gi j (as shown in Sec. III), these
corrections are of order ∼10−4ω and thus beyond practical
experimental interest.

3. Effective reduction of the dynamical Lie algebra
via time-symmetric drive

In this subsection, we describe how the choice of
time-symmetric drives, together with the specific algebraic
structure of the control problem, leads to a situation where
not all operators belonging to the dynamical Lie algebra
can actually contribute to the effective Hamiltonian. The lat-
ter property is particularly advantageous since it drastically
reduces the number of potential unwanted operators, while
easing the numerical optimization of parameters.

As the first step, we observe that the dynamical Lie alge-
bra L, spanned by the operators in Table I, admits a Cartan
decomposition [60] L = h ⊕ p, such that

[h, h] ⊆ h, [h, p] ⊆ p, [p, p] ⊆ h, (B7)

with subspaces h and p spanned by

h = span{Ẑ1Ŷ2, Ŷ3Ẑ4, X̂1Ẑ2Ŷ3, Ŷ1Ẑ2X̂3,

X̂2Ẑ3Ŷ4, Ŷ2Ẑ3X̂4, Ẑ1Ẑ2Ẑ3Ŷ4,

Ŷ1Ẑ2Ẑ3Ẑ4}, (B8)

p = span{X̂1, X̂4, X̂1X̂2,

X̂2X̂3, X̂3X̂4, Ẑ1Ẑ2Ẑ3Ẑ4,

Ŷ1Ŷ2, Ŷ3Ŷ4, Ẑ1Ẑ2X̂3, X̂2Ẑ3Ẑ4,

X̂1Ẑ2Ẑ3X̂4, Ŷ1Ẑ2Ẑ3Ŷ4}. (B9)

The dynamics Û (t ) of the system governed by the Hamilto-
nian Ĥ (t ) can be formally expressed via a Magnus expansion
[98], Û (t ) = eM̂(t ), characterized by the Magnus exponent
M̂(t ) = ∑∞

n=1 M̂n(t ). The first terms read as

M̂1(t ) = −i
∫ t

0
dt ′ Ĥ (t ′), (B10)

M̂2(t ) = (−i)2

2

∫ t

0
dt1

∫ t1

0
dt2 [Ĥ (t1), Ĥ (t2)]. (B11)
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In particular, the nth term M̂n(t ) in the Magnus exponent
involves n − 1 nested commutators of Ĥ (t ),

[Ĥ (t1), [Ĥ (t2), . . . [Ĥ (tn−1), Ĥ (tn)] . . . ]], (B12)

evaluated at different times. Since Ĥ (t ) is a linear combination
of elements of p, it holds that Ĥ (t ) ∈ p. Hence, from the prop-
erties (B7) of the Cartan decomposition, one can conclude by
induction that

M̂2n(t ) ∈ h, M̂2n+1(t ) ∈ p. (B13)

Finally, choosing driving functions that are time symmetric
within the time interval τ makes even terms M̂2n(τ ) in the
Magnus expansion to vanish [96,97], as mentioned in Ap-
pendix B 1. As a result, the effective Hamiltonian is restricted
to be a linear combination of operators belonging to p only,
rather than to the whole Lie algebra L. This can also be inter-
preted as the fact that a time-symmetric drive within the period
cannot produce time-reversal symmetry-breaking terms in the
effective Hamiltonian [99].

4. Numerical optimization

The numerical optimization is performed by starting with
different random choices of drive parameters, computing the
end-of-period propagator Ûi j (τ ) generated by the driven dy-
namics and minimizing the norm

‖Ûi j (τ ) − eiτJ P̂i, j ‖ (B14)

with a gradient-descent algorithm. Well converged results are
obtained by first setting �α = 0 and optimizing gαβ . Then,
all parameters are optimized together starting from initial
random guesses that are stochastically perturbed variants of
the optimal gαβ found at the first optimization step.

APPENDIX C: MASTER EQUATIONS

In this Appendix, the master equations used to describe
decoherence and dissipation, for both the undriven and driven
four-plaquette system of Sec. III, are derived and discussed.
While for the case of the undriven system the standard
quantum-optical master equation [100] applies, describing the
thermal relaxation of each spin, the case of the driven system
within the Floquet-Born-Markov formalism [62–64,101] must
be worked out explicitly due to the highly degenerate structure
of the Floquet quasienergy spectrum for the four-spin plaque-
tte, as discussed in the following.

The Hamiltonian of the system has the form of Eq. (A1)
and can thus be written as Ĥ (t ) = Ĥ0 + Ĥd (t ), where Ĥ0 =∑

α ωαẐα/2 describes the bare spin energies, Ĥd (t ) is the
driven part, and the index α indicates coordinates in the lattice.
Incoherent effects are modeled in the following through the
coupling of each spin to an independent thermal bosonic bath
at low temperature. The combined system-bath Hamiltonian
ĤSB(t ) reads as

ĤSB(t ) = Ĥ0 + Ĥd (t ) + ĤB + ĤI , (C1)

where ĤB is the bare Hamiltonian of the baths and where the
system-bath interaction Hamiltonian ĤI reads as

ĤI = λ
∑

α

X̂α ⊗ B̂α, (C2)

assuming equal system-bath coupling λ for all spins, and
where B̂α = B̂†

α are coupling operators for the αth bath. In-
dicating with trB the partial trace over the baths’ degrees of
freedom and with ρ̂B the baths density matrix, the thermal
bosonic baths are characterized by the spectrum of the cor-
relation functions [100]

γα (ω) =
∫ +∞

−∞
ds trB[eiĤBsB̂αe−iĤBsB̂αρ̂B]e−iωs

=
{

J (ω)nβ (ω), ω � 0

J (−ω)[1 + nβ (−ω)], ω < 0
(C3)

where nβ (ω) = [eβω − 1]−1 denotes the Bose-Einstein dis-
tribution and where we choose an Ohmic spectral density
J (ω) = ω.

Undriven system. In the case of the undriven system
Ĥd (t ) = 0, following standard derivations [100], one obtains
the quantum-optical master equation for the system’s density
matrix ρ̂(t ),

d ρ̂(t )

dt
= −i[Ĥ0, ρ̂(t )] + λ2

∑
α

γ (−ωα )D[σ̂−
α ]ρ̂(t ) (C4)

+ λ2
∑

α

γ (ωα )D[σ̂+
α ]ρ̂(t ), (C5)

where D[ĉ]ρ̂(t ) = ĉρ̂(t )ĉ† − 1
2 ĉ†ĉρ̂(t ) − 1

2 ρ̂(t )ĉ†ĉ is a dissi-
pator in Lindblad form.

Driven system. As discussed in Sec. II and
Appendix A, the periodic Floquet protocol takes place
in the interaction picture with respect to the undriven
part Ĥ0, such that the time-periodic Hamiltonian is
Ĥ (t ) = exp(iĤ0t )Ĥd (t ) exp(−iĤ0t ) = Ĥ (t + τ ) with period
τ = 2π/ω. According to Floquet theorem [79,102,103], the
propagator generated by Ĥ (t ) can be written in the form

Û (t ) =
∑

j

e−iq j t |u j (t )〉〈u j (0)| = K̂ (t )e−it ĤF , (C6)

where q j are the quasienergies, |u j (t )〉 = |u j (t + τ )〉 are the
periodic Floquet modes, and where we have introduced the
Floquet Hamiltonian ĤF , generating the stroboscopic dynam-
ics, and the periodic micromotion operator K̂ (t ) = K̂ (t + τ ),
which are defined by

ĤF =
∑

j

q j |u j (0)〉〈u j (0)| , (C7a)

K̂ (t ) =
∑

j

|u j (t )〉〈u j (0)| . (C7b)

For the single-plaquette Floquet engineering protocol of
Sec. III, whose open dynamics is studied, the Floquet Hamil-
tonian (depicted in Fig. 2) approximates very closely the
plaquette operator P̂ = −J X̂1Ẑ2Ẑ3X̂4 (using the labeling of
Sec. III and Fig. 2). The spectrum of the latter features
two eightfold-degenerate eigensubspaces, corresponding to
eigenvalues 〈P̂〉 = ±J . The Floquet Hamiltonian is thus well
approximated by ĤF = J [�̂+ − �̂−] where �̂± represent the
projectors into the ±J degenerate subspaces, respectively.
The propagator can, thus, be expressed as

Û (t ) = K̂ (t )[e−iJ t�̂+ + eiJ t�̂−]. (C8)
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In the basis of time-dependent Floquet modes for the sys-
tem and in interaction picture for the bath, the system-bath
interaction Hamiltonian reads as

ĤI (t ) = λ
∑

α

X̂α (t ) ⊗ B̂α (t ), (C9)

where B̂α (t ) = exp(iĤBt )B̂α exp(−iĤBt ) and where the sys-
tem part is

X̂α (t ) = Û †(t )eiĤ0t X̂αe−iĤ0tÛ (t )

=
∑

n,n′=±
(ei(qn−qn′ +ωα )t σ̂+

α,nn′ (t ) + H.c.) (C10)

with σ̂+
α,nn′ (t ) = �̂nK̂†(t )σ̂+

α K̂ (t )�̂n′ and q± = ±J . Expand-
ing σ̂+

α (t ) in a Fourier series,

σ̂+
α (t ) =

+∞∑
m=−∞

σ̂+,(m)
α eimωt , (C11)

where the Fourier components satisfy [σ̂+,(m)
α,nn′ ]† = σ̂

−,(−m)
α,n′n ,

one obtains that Eq. (C10) features time-independent opera-

tors only, with the time dependence made fully explicit in the
associated phase factors,

X̂α (t ) =
∑

n,n′=±

+∞∑
m=−∞

(
ei�(m)

α,nn′ t σ̂
+,(m)
α,nn′ + H.c.

)
, (C12)

which oscillate at frequencies �
(m)
α,nn′ = ωα + (qn − qn′ ) +

mω. Under Born-Markov approximations, the open dynamics
of the system in described by the Markovian master equa-
tion [100]

d ρ̂(t )

dt
= −

∫ +∞

0
ds trB[ĤI (t ), [ĤI (t − s), ρ̂(t ) ⊗ ρ̂B],

(C13)
where ρ̂(t ) and ρ̂B are the system and bath density matrices,
respectively. Inserting Eq. (C12) into (C13), one arrives at

d ρ̂(t )

dt
= λ2

∑
α

∑
i,i′,

j, j′=±

+∞∑
m,m′=−∞

ei(�(m)
α,ii′ −�

(m′ )
α, j j′ )t{[(

σ̂
+,(m′ )
α, j j′

)†
ρ̂(t )σ̂+,(m)

α,ii′ − σ̂
+,(m)
α,ii′

(
σ̂

+,(m′ )
α, j j′

)†
ρ̂(t )

]
Gα

( − �
(m)
α, j j′

)
(C14)

+ [
σ̂

+,(m)
α,ii′ ρ̂(t )

(
σ̂

+,(m′ )
α, j j′

)† − ρ̂(t )
(
σ̂

+,(m′ )
α, j j′

)†
σ̂

+,(m)
α,ii′

]
G∗

α (�(m)
α, j j′ )

} + H.c., (C15)

where Gα (ω) is the one-sided Fourier transform of the bath
correlation functions

Gα (ω) =
∫ +∞

0
ds e−iωstrB[B̂α (s)B̂α (0)ρ̂B]. (C16)

Under the assumption of weak system-bath coupling, the
secular (rotating-wave) approximation is adopted: only
terms such that �

(m)
α,ii′ − �

(m′ )
α, j j′ = (qi − qi′ ) − (q j − q j′ ) +

(m − m′)ω = 0, while others are neglected. While the hier-
archy |qi − qi′ | � 2J � ω justifies the so-called “moderate”
rotating-wave approximation, m = m′, the full secular approx-
imation (implying that �

(m)
α,ii′ − �

(m′ )
α, j j′ vanishes only if i = j,

i′ = j′, and m = m′) cannot be applied. Indeed, given the
quasienergy structure of the Floquet Hamiltonian, composed

of two degenerate “bands” of states, the following combina-
tions of indices must be considered instead:

{ii′, j j′} = {(++,++), (++,−−), (+−,+−),

(−+,−+), (−−,++), (−−,−−)}. (C17)

Using the explicit expressions

�
(m)
α,++ = �

(m)
α,−− = ωα + mω, (C18a)

�
(m)
α,+− = ωα + 2J + mω, (C18b)

�
(m)
α,−+ = ωα − 2J + mω, (C18c)

using Eq. (C3) and neglecting Lamb shift contributions, one
finally obtains the master equation in Lindblad form

d ρ̂(t )

dt
= λ2

∑
α

+∞∑
m=−∞

{
γα (−ωα + mω)D

[
σ̂

−,(m)
α,++ + σ̂

−,(m)
α,−−

]
ρ̂(t ) + γα (−ωα − 2J + mω)D

[
σ̂

−,(m)
α,−+

]
ρ̂(t )

+ γα (−ωα + 2J + mω)D
[
σ̂

−,(m)
α,+−

]
ρ̂(t ) + γα (ωα + mω)D

[
σ̂

+,(m)
α,++ + σ̂

+,(m)
α,−−

]
ρ̂(t )

+ γα (ωα + 2J + mω)D
[
σ̂

+,(m)
α,+−

]
ρ̂(t ) + γα (ωα − 2J + mω)D

[
σ̂

+,(m)
α,−+

]
ρ̂(t )

}
. (C19)

This master equation has a simple physical interpretation in
terms of transitions within or between Floquet “bands” oc-
curring through the excitation (σ̂+

α ) or relaxation (σ̂−
α ) of the

αth spin, which can be assisted by the Floquet drive via the
exchange of an integer number of drive quanta mω. These
processes have energy cost ±ωα + mω for the spin flip with
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potential intra-Floquet-band transitions, and they involve an
additional energy ±2J for changing Floquet band. For exam-
ple, the second term in the first line of Eq. (C19) describes
transitions from the upper (+) to the lower (−) Floquet band
via the coupling operator σ̂−

α , assisted by the emission of m
quanta ω in the drive. In the process, the system thus releases
the excess energy ωα + 2J − mω to the environment.

APPENDIX D: SEMIANALYTICAL REPRESENTATION
OF OPERATORS

In order to efficiently represent and manipulate the opera-
tors for large systems in numerical simulations, in particular
for computing commutators, we employ the following semi-
analytical representation. A generic multi-qubit operator

Ô =
∑
σ̂α j ∈

{X̂α j ,Ŷα j ,Ẑα j ,1̂α j }

Oσα1 ,...,σαN
σ̂α1 ⊗ · · · ⊗ σ̂αN (D1)

is represented in a sparselike form by storing (i) the position of
nonidentity terms, (ii) the type of Pauli matrix at each position
(as a string), (iii) the coefficient Oσα1 ,...,σαN

. For example, an
operator Ô = ω1Ẑ1 + ω2Ẑ2 + JX̂1X̂2 is represented as

O = {[1 → Z, ω1], [2 → Z, ω2],

[(1, 2) → (X , X ), J]}. (D2)

This representation is convenient for manipulating Hamiltoni-
ans for large systems since it allows one to perform matrix
multiplications without needing to store and multiply the
matrices explicitly. This is particularly advantageous in the
case of Floquet-engineered effective Hamiltonians since they
are typically not sparse because of all the higher-order ef-
fective terms produced by the Floquet drives. For example,
the commutator of two operators Ô1 and Ô2 is computed by
simply selecting shared nonidentity sites between O1 and O2

and providing the analytical result of the commutator of such
terms.

APPENDIX E: CONSTRUCTION OF THE GROUND-STATE
PREPARATION PROTOCOL

The aim of this Appendix is to explain how the ground-
state preparation protocol proposed in Sec. V can indeed
produce the same results of Eq. (16). This is based on three
observations:

(1) Since X̂ and −iŶ give the same result if applied to |0〉,
X̂ |0〉 = −iŶ |0〉 = |1〉, it is also true that

(1 + P̂i, j ) |ψ0〉 = (1 − iÂi, j ) |ψ0〉 = (1 − iB̂i, j ) |ψ0〉 . (E1)

(2) Âi, j commutes with all other operators Âi′, j′ and B̂i′, j′

except for Âi+1, j+1 and B̂i−1, j−1; this implies that the order-
ing of the product along diagonals spanning the system in
direction bottom right (BR) to top left (TL) does not matter,
whereas the ordering of products along diagonals in direction
bottom left (BL) to top right (TR) does matter. The correct
order can be determined from the next point.

(3) In a product of two noncommuting terms (1 −
iÂi+1, j+1) and (1 − iÂi, j ), the noncommuting parts satisfy

−Âi+1, j+1Âi, j = − iX̂i, j Ẑi+1, jZi, j+1Ẑi+1, j+1Ẑi+1, j+1

⊗ Ẑi+2, j+1Ẑi+1, j+2Ŷi+2, j+2. (E2)

According to observation 1 and the fact that Ẑ |0〉 = |0〉,
the operator in Eq. (E2) acts on |ψ0〉 in exactly the same way
as P̂i+1, j+1P̂i, j , such that

(1 − iÂi+1, j+1)(1 − iÂi, j ) |ψ0〉
= (1 + P̂i+1, j+1)(1 + P̂i, j ) |ψ0〉 . (E3)

Generalizing, the product of n terms −iÂi, j along a diagonal
ordered from BL to TR has the same action on |ψ0〉 as the
equivalent product of P̂i, j .
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