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Many-body mobility edges in one and two dimensions revealed by convolutional neural networks
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We adapt a machine-learning approach to study the many-body localization transition in interacting fermionic
systems on disordered one-dimensional (1D) and two-dimensional (2D) lattices. We perform supervised training
of convolutional neural networks (CNNs) using labeled many-body wave functions at weak and strong disorder.
In these limits, the average validation accuracy of the trained CNNs exceeds 99.95%. We use the disorder-
averaged predictions of the CNNs to generate energy-resolved phase diagrams, which exhibit many-body
mobility edges. We provide finite-size estimates of the critical disorder strengths at Wc ∼ 2.8 and 9.8 for 1D
and 2D systems of 16 sites, respectively. Our results agree with the analysis of energy-level statistics and
inverse participation ratio. By examining the convolutional layer, we unveil its feature extraction mechanism
which highlights the pronounced peaks in localized many-body wave functions while rendering delocalized
wave functions nearly featureless.
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I. INTRODUCTION

Artificial neural networks have proven to be valuable assets
in tackling a wide range of problems in condensed matter
physics [1,2]. With their remarkable ability to discern univer-
sal features from extensive datasets and generalize to unseen
data, neural networks can be trained to perform quantum-state
tomography [3], accelerate ab initio calculations [4–6], and
classify various phases of matter based on numerical [7–23]
and experimental data [24–27]. As universal function approx-
imators [28,29], neural networks have also been utilized as
variational Ansätze for many-body quantum states [30–34],
achieving ground-state estimations on par with the state-of-
the-art conventional methods.

One notable application of neural networks is in char-
acterizing the many-body localization transition between an
ergodic many-body quantum system, following the eigenstate
thermalization hypothesis (ETH) [35–37], and a many-body
localized (MBL) phase under strong disorder [38–40]. Ac-
cording to ETH, an isolated, quantum many-body system
goes through quantum thermalization over time by acting
as its own heat bath, with all local observables eventually
assuming thermal expectation values. Introducing sufficiently
strong disorder can induce a transition into the MBL phase,
where all energy eigenstates become localized, rendering the
system nonergodic and unable to self-thermalize. Therefore,
the striking signature of the MBL phase is a partial retention
of the initial condition over long times. This phenomenon
has been experimentally observed in one-dimensional (1D)
and two-dimensional (2D) ultracold gases [41,42] and may
potentially serve as a mechanism for robust quantum memory.
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To characterize the ETH-MBL transition, the conventional
numerical approach is to perform finite-size scaling analyses
on simulated data of observables (such as level statistics) over
a range of system sizes [43–53]. This task is computation-
ally demanding due to the exponential growth of Fock space
with system size N . Furthermore, the ETH-MBL transition is
known to suffer strongly from the finite-size effect, such that
the apparent phase transition drifts toward strong disorder as
N increases. Extrapolating finite-size results to the thermo-
dynamic limit through data collapses is therefore subject to
ambiguity, particularly as numerically accessible system sizes
are limited to N ∼ O(10) sites [54]. Currently, a consensus on
the scaling theory for this transition remains elusive.

Machine learning offers a promising alternative approach
for characterizing the ETH-MBL transition. Authors of re-
cent studies [8,16,18–23] have successfully automated the
classification of the phases using data obtained from exact
diagonalization of model Hamiltonians, most of which are 1D
spin models. The types of data considered in these studies
include many-body energy spectra, many-body wave func-
tions, entanglement spectra of these wave functions, and other
variants obtained through additional feature engineering. A
range of learning algorithms, both supervised and unsuper-
vised, has been implemented, including the use of support
vector machines and various neural network architectures.
Notably, results of these studies show that machine learning
can provide a finite-size estimate of the phase transition using
data from only a single system size. Without the need for
scaling analysis to locate the transition point, phase diagrams
can be efficiently generated.

In this paper, we employ the machine-learning approach to
investigate the ETH-MBL transition in interacting fermionic
systems on 1D and 2D disordered lattices, each consist-
ing of 16 sites. Our method strategically pairs unprocessed
many-body wave functions as input data with convolutional
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FIG. 1. Machine-predicted phase diagrams. Trained on many-
body wave functions at the weak and strong disorder limits, our
convolutional neural networks (CNNs) effectively generalize to clas-
sify wave functions near the transition region. We generate the phase
diagrams of 16-site one-dimensional (1D) and two-dimensional (2D)
disordered fermionic t-V models described by Eq. (1) using the
disorder-averaged CNN prediction 〈P〉, representing the probability
of the eigenstate thermalization hypothesis (ETH) phase. In both
phase diagrams, the many-body mobility edge is clearly visible as the
division between ETH (red) and many-body localized (MBL; blue)
phases. The finite-size estimates of the critical disorder strengths are
Wc ∼ 2.8 in 1D and Wc ∼ 9.8 in 2D.

neural networks (CNNs) for classification. Designed for im-
age recognition, CNNs are expected to be equally suited
for learning the local features in many-body wave functions.
We train CNNs with a simple architecture to differentiate
wave functions sampled from deep within the ETH and MBL
phases, each labeled according to its respective phase. The
trained CNNs are then tasked with classifying wave functions
from the intermediate region. The disorder-averaged predic-
tions of the CNNs are used to construct phase diagrams over
energy density ε and disorder strength W , which clearly dis-
play the many-body mobility edges in 1D and 2D, as shown
in Fig. 1.

In the following, we first introduce the fermionic t-V
model on 1D and 2D disordered lattices (Sec. II A) and detail
our procedure for collecting eigenstate samples via exact

diagonalization (Sec. II B). We delve into the supervised
training of our neural-network phase classifiers, describing
the input data (Sec. III A), convolutional network architecture
(Sec. III B), and training techniques (Sec. III C). We then
present the energy-resolved phase diagrams based on the
predictions of trained CNNs (Sec. IV A), compare them
with the transition behaviors of energy-level statistics and
inverse participation ratio (IPR; Sec. IV B), and interpret the
decision-making mechanism of our trained CNNs (Sec. IV C).

II. FERMIONIC t-V MODELS WITH DISORDER

A. Model construction

We consider repulsive spinless fermions hopping on 1D
and 2D lattices with random on-site potentials. The Hamil-
tonian is given by

H =
∑
〈i, j〉

[
−t (c†

i c j + c†
j ci ) + V

(
ni − 1

2

)(
n j − 1

2

)]

+
N∑

i=1

ui

(
ni − 1

2

)
, (1)

where c†
i creates a spinless fermion at site i, ni = c†

i ci is the
number operator, 〈i, j〉 goes over combinations of nearest
neighbors, N is the system size, t is the hopping amplitude,
V is the strength of the nearest-neighbor repulsive inter-
action, and ui are on-site potentials randomly drawn from
a uniform distribution in the range [−W,W ]. For t = 1

2
and V = 1, Eq. (1) on a 1D chain can be exactly mapped
via Jordan-Wigner transformation to a spin- 1

2 antiferromag-
netic Heisenberg chain subject to a random field in the z
direction [55,56]:

H =
∑
〈i, j〉

Si · S j +
N∑

i=1

uiS
z
i , (2)

This 1D spin/fermionic model has been well studied, with
its critical disorder estimated to be Wc ∼ 3.5 at zero total
magnetization,

∑N
i=1 Sz

i = 0, corresponding to the half-filling
sector in the fermionic picture [44,46,47,57,58]. The many-
body mobility edge has been demonstrated through finite-size
scaling analyses of various observables [46,58] and machine-
learning technique [8], which we will use to benchmark our
phase diagram in the 1D case. From here onward, we set t = 1

2
and V = 1, and focus on half-filling for both the 1D and 2D
systems.

The lattice geometries considered here are 1D chain and
2D square lattices, both given periodic boundary conditions
to prevent localization by the boundaries. Each lattice consists
of N = 16 sites, with the 2D lattice arranged as 4 × 4. To
construct the many-body Hamiltonians, we start by defining
the creation operators in the occupancy number basis of the
216-dimensional Fock space. The basis states are ordered by
the total number of particles Nf , such that a particle-number
conserving term like c†

i c j would be block-diagonal with
each block corresponding to a specific Nf . Using these
creation operators, we construct the many-body Hamiltonian
as per Eq. (1) and the specified lattice geometries. In the
following analysis, we focus on the half-filling sector,
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Nf = 8, described by the D×D diagonal block with
D = N choose Nf = 12 870.

B. Exact diagonalization

For training neural networks to differentiate ETH and MBL
wave functions, we select representative disorder strengths
deep within each phase: (WETH,WMBL) = (0.2, 12) for 1D
and (0.4, 24) for 2D. Choosing these values does not re-
quire knowledge of the critical disorder Wc because one can
always verify that conventional observables follow the ex-
pected ETH/MBL behaviors at these values. For the phase
diagrams, we define suitable grids of W values in the in-
termediate regions: W ∈ [0.2, 4.6] for 1D and [0.4, 12] for
2D. At each selected W value, we implement 50 random
disorder realizations and perform exact diagonalization of the
Hamiltonians. Each energy spectrum is normalized as ε =
(E − Emin)/(Emax − Emin), where ε is the energy density and
Emin/Emax is the smallest/largest eigenvalue of the spectrum.
For the phase diagram in the 2D case, we use 50 additional
disorder realizations for each W value in the range [8.4, 10].

Eigenstates from each disorder realization are binned into
20 equal energy intervals between ε = 0 and 1. In each bin,
we discard all but the 50 eigenstates with energy densities
closest to the center of the bin, greatly reducing data stor-
age and computational demands during subsequent analysis.
We do, however, keep all the eigenvalues for computing the
energy-level statistics later. We observe that using such a
small sample of eigenstates does not significantly affect the
disorder-averaged values of IPR and machine predictions.
Note that, due to the low density-of-states near ε = 0 and
1, bins in these regions contain <50 eigenstates per disorder
realization.

III. NEURAL-NETWORK PHASE CLASSIFIER

Neural networks are complex, nonlinear functions con-
sisting of alternating layers of linear and nonlinear maps.
The linear maps are defined by a large number of adjustable
parameters, weights and biases. The nonlinear maps are
activation functions that mimic the behavior of biological
neurons, which produce an output only when the input ex-
ceeds a certain threshold. A given neural network can be
trained to approximate any function to a certain degree of
accuracy. In supervised learning, the model is provided with
a training dataset consisting of input-output pairs, and the
weights and biases are adjusted to minimize a loss function,
which quantifies the difference between the predictions of the
model and the correct outputs. We refer to Refs. [59,60] for
comprehensive introductions to neural networks and machine
learning.

Our objective is to train a neural network to approximate
the hypothetical function which maps a many-body wave
function to the correct binary classification, ETH (labeled
1) or MBL (labeled 0). Our neural network would merely
be an approximation to this function, so its output would
not be binary but rather a continuous real number P ranging
from 0 to 1, representing the probability that the input wave
function belongs to the ETH phase. Upon disorder averag-
ing, the prediction of the model can be regarded as an order

parameter 〈P〉, transitioning from 1 in the ETH phase to 0
in the MBL phase. Assuming that the trained model is not
biased toward one phase over the other, the point 〈P〉 = 0.5
can be interpreted as the critical point for the N = 16 systems
considered here.

A. Input data

For the input data, we use the probability densities |� j |2
of the many-body wave functions, where j labels the occu-
pancy number basis. This choice is economical because (i)
each wave function serves as a data sample, unlike using the
energy spectrum as the input which requires one exact diag-
onalization per sample, and (ii) it avoids additional feature
engineering, such as calculating the entanglement spectra of
the wave functions, which increases the computational costs.
Moreover, this approach does not assume a priori wave func-
tion behaviors in either phase, leading to data-driven results.

Every time we train a model, we prepare a set of labeled
data by randomly selecting 10 000 ETH and 10 000 MBL
wave functions with energy densities 0.15 < ε < 0.85 col-
lected at disorder strengths WETH and WMBL, as discussed
in Sec. II B, and pair them with outputs of 1 and 0, re-
spectively. We observe that the MBL wave functions are
typically localized on a subset of basis states, displaying a
few highly pronounced peaks, while the ETH wave functions
are distributed across all basis states. This visible difference
motivates our choice of using CNNs to classify the wave
functions, as CNNs are designed for image recognition. Our
input probability densities can be viewed as 1 by 12 870
grayscale images, with each pixel representing the probability
at a specific basis state.

B. CNN

As shown in Fig. 2, our simple CNN consists of (i) a con-
volutional layer followed by a max-pooling layer for feature
extraction, (ii) a dense layer with dropout regularization for
classification, and (iii) an output layer of one sigmoid neuron
for prediction. These layers are built in Python using the
TensorFlow package [61]. In the following, we describe the
operations in each layer and their purposes.

1. Convolutional layer

The linear map in this layer is the convolution operation
between kernels (or filters) and the input data. The total
number of kernels m and the length of each kernel l are
hyperparameters which are fixed prior to the training process.
Having multiple kernels are crucial for detecting different
local features in the input data. Each kernel slides across the
input with a stride of 1, computing dot products between its
array of l weights and the corresponding segment of the input
data it covers at each position. Each dot product, added with
the bias of the kernel, is passed through a nonlinear rectified
linear unit (ReLU) activation function defined as

ReLU(x) = max(0, x), (3)

which sets negative values to zero. The outputs of the ReLU
neurons form a feature map, so m kernels give rise to m feature
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FIG. 2. Convolutional neural network (CNN) architecture. For
the task of classifying many-body wave functions, we design a
simple CNN composed of (i) a convolutional layer followed by
max pooling for feature extraction, (ii) a dense layer with dropout
regularization for classification, and (iii) an output layer consisting
of a single sigmoid neuron for predicting the probability for the
input wave function to be in the eigenstate thermalization hypothesis
(ETH) phase. All activation functions are chosen to be rectified linear
units (ReLUs) except in the output layer.

maps. The weights and biases in the kernels are initialized
randomly and optimized during the training process.

2. Max-pooling layer

This layer performs a down-sampling operation dictated by
a hyperparameter p. It slides a window of size p (with a stride
of p) across each feature map and selects the maximum value
within each window. This process results in m pooled feature
maps with length reduced by a factor of p.

3. Dense layer

The pooled feature maps are flattened into a single 1D
vector v of length L, which is then fed into a dense (or fully
connected) layer. A hyperparameter q dictates the number of
ReLU neurons in this layer. The linear operation:

f (v) = Av + b, (4)

where A is the q × L weight matrix and b is the bias vector,
maps v to a vector of length q. The ReLU activation func-
tion is then applied to the resulting vector element wise. The
weights and biases in A and b are optimized during training.

4. Dropout layer

A dropout layer following the dense layer randomly deac-
tivates a fraction d of the neurons in the dense layer during
training by setting their activation functions to zero. This is
a regularization technique designed to prevent overfitting to
nonuniversal features specific to the training data. The intro-
duced randomness prevents any single neuron in the dense
layer from becoming too specialized to certain patterns from
the training data, encouraging the model to learn more robust
and universal feature. The dropout layer only operates during
training.

5. Output layer

In the final layer, the output of the dense layer is multiplied
by a 1 × q weight matrix and then combined with a bias; as
before, the weights and bias are optimized during training.
The resulting value is passed through a sigmoid activation
function given by

σ (x) = 1

1 + e−x
, (5)

which maps any real number into a value P ∈ [0, 1]. For the
task of binary classification, P can be interpreted as the prob-
ability for the 1 class. In this case, it represents the probability
for the input wave function to be in the ETH phase.

C. Supervised training

1. Loss function

Supervised training of our CNN amounts to tuning the
weights and biases to minimize the difference between model
predictions and the correct labels provided in the training
dataset. Here, the difference is measured by the binary cross -
entropy, which is a common choice of loss function for binary
classification:

Loss = −[y ln(P) + (1 − y) ln(1 − P)], (6)

where y is the correct label, and P is the model prediction.
When the label is 0, the first term in Eq. (6) vanishes and the
loss function is approximately P for P ∼ 0. Similarly, when
the label is 1, the loss function approximately measures how
far P strays from 1.

2. Gradient descent

The dataset prepared in Sec. III A is randomly split 50/50
into a training set and a test set for evaluating the performance
of the model on unseen data. The training process is orga-
nized into epochs; each is a complete pass through the entire
training set. During each epoch, the training set is randomly
divided into smaller batches for mini-batch gradient descent.
We typically set the batch size to be 50 samples. Each batch
goes through the layers of the model, a process known as
feedforward. For each sample in the batch, a loss is computed
according to Eq. (6). Then the backpropagation algorithm
calculates the gradient of the loss with respect to the model
parameters. This gradient is averaged over all samples in the
batch. The optimization algorithm uses this average gradient
to update the parameters, moving them in the direction of the
steepest descent (opposite to the gradient), with the magnitude
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of change controlled by the learning rate. As opposed to fixing
the same learning rate for all parameters, we have opted to use
TensorFlow’s Adam optimizer, which adjusts the learning rate
for each parameter throughout the training process.

3. Training history

At the end of each epoch, the average loss over the test
set is computed and recorded, known as the validation loss.
A successful training is marked by a decreasing trend in
both training loss (average loss over training data) and val-
idation loss as training progresses over successive epochs,
which indicates that the model is learning and generaliz-
ing well to unseen data. However, an increase in validation
loss coupled with a decrease in training loss can signal po-
tential overfitting, where the model memorizes the training
data instead of learning generalizable features. To prevent
significant overfitting, we implement early stopping, which
halts training when validation loss stops decreasing for a few
consecutive epochs.

4. Cross-validation

Due to the inherent randomness in the training pro-
cess, including weight/bias initialization and data sampling,
model training can vary with each iteration, often converg-
ing to different local minima in the loss function landscape.
To evaluate model performance reliably, we perform k-fold
cross-validation, training the model k = 20 times with dif-
ferent training and test sets. Examining all training histories
together enables accurate assessment of the performance of
the model under a given set of hyperparameters, which facili-
tates hyperparameter tuning.

5. Hyperparameters

Through experimentation, we determined that the fol-
lowing set of hyperparameters yields optimal validation
loss at the end of training—m = 16, l = 10, p = 2,
q = 60, and d = 0.2—for models trained with wave func-
tions of the 1D system. This set of hyperparameters leads
to 99.99% validation accuracy (averaged over k folds of
training). Validation accuracy is defined as the percentage
of correct predictions on the test data, considering a predic-
tion correct if its rounded integer value matches the label.
Minor variations in these hyperparameters do not signifi-
cantly affect performance. We thus fix the hyperparameters
at these values when training CNN models for the 1D
system.

However, we find that this set of hyperparameters is sub-
optimal for training with wave functions of the 2D system,
resulting in an average test accuracy of 99.74%. Further ex-
perimentation reveals that increasing the kernel size l from
10 to 100 and the dropout rate d from 0.2 to 0.5 significantly
improves test accuracy, achieving an average of 99.97%. The
improved performance due to a larger kernel suggests that the
important local features in wave functions of the 2D system
likely span a wider range of basis states. Accordingly, we fix
the hyperparameters at m = 16, l = 100, p = 2, q = 60, and
d = 0.5 for the 2D case.

IV. RESULTS AND DISCUSSION

A. Machine-predicted phase diagrams

To generate the energy-resolved phase diagram of the 1D
fermionic chain, we trained 20 CNN models, with architecture
described in Sec. III B and hyperparameters in Sec. III C,
using wave functions at disorder strengths WETH = 0.2 and
WMBL = 12 (see Secs. II B and III A for details on training
data). Similarly, in the 2D case, we trained another 20 CNN
models, this time using wave functions of the 2D fermionic
system at WETH = 0.4 and WMBL = 24. Our trained models
demonstrate >99.95% validation accuracy in predicting the
correct phases of the test wave functions.

Exploiting the generalization capacity of neural networks,
we input wave functions from the intermediate regions. At ev-
ery pair of discretized energy density ε and disorder strength
W , we first averaged the prediction of one trained CNN over
wave functions belonging to one disorder realization. These
averages were then further averaged over all disorder real-
izations and 20 CNNs. The disorder- and training-averaged
probability for the ETH phase forms the phase diagrams
shown in Fig. 1. Note that the models trained on wave func-
tions from the 1D and 2D systems were specifically used
to produce their respective 1D and 2D phase diagrams. We
further note that we did not follow the common practice of
truncating the phase diagrams at low and high energies since
the average prediction of our CNNs appears convergent de-
spite the scarcity of data in these regions.

In both phase diagrams, the mobility edge is clearly vis-
ible as the division between ETH (red) and MBL (blue)
phases. For the 1D system, the mobility edge agrees with
previous studies [8,46], exhibiting a characteristic bell shape
with the tip dropping slightly below ε = 0.5. We estimate
the critical disorder to be Wc ∼ 2.8, agreeing with a previous
machine-predicted estimate for the N = 16 chain [8]. Our
finite-size estimate of Wc is smaller than the thermodynamic
limit Wc ∼ 3.5 determined through finite-size scaling analyses
[44,46,47,57,58]. This difference is expected due to the strong
finite-size effect at the ETH-MBL transition.

In comparison, the phase diagram of the 2D system ex-
hibits notable differences. The tip of the mobility edge is more
aligned to ε = 0.5. Moreover, the eigenstates at small W are
predicted to have high probability of localization near ε = 0,
in contrast with the 1D case where no states are localized
at small W . The estimated critical disorder is Wc ∼ 9.8, sig-
nificantly greater than the 1D case. The increase in critical
disorder with higher spatial dimension is a well-known phe-
nomenon in the noninteracting limit and can be understood in
terms of classical random walks on lattices [62].

B. Comparison with conventional observables

To verify the machine-predicted phase diagrams, we ana-
lyze two conventional observables across the transition. The
first observable is the energy-level statistics based on the gap
ratios in the many-body energy spectrum [43]:

rα = min{εα+1 − εα, εα − εα−1}
max{εα+1 − εα, εα − εα−1} , (7)
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where εα’s are the sorted energy densities of a single disorder
realization. Using the full energy spectrum of each disorder
realization, we compute the averaged gap ratio within each
of the 20 energy intervals between ε = 0 and 1. These values
are then averaged over all disorder realizations. In the ETH
phase, the expected value of the disorder-averaged gap ratio
〈r〉 is 〈r〉GOE = 4 − 2

√
3 = 0.536 [63], corresponding to the

Wigner surmise of the Gaussian orthogonal ensemble (GOE).
In the MBL phase, the level statistics is described by the
Poisson distribution, averaging to 〈r〉P = 2 ln 2 − 1 = 0.386.

The second observable is the IPR, defined as

IPR(�) =
D∑

j=1

|� j |4, (8)

where � is a many-body wave function and j goes over the
occupancy number basis in the half-filling sector. The inverse
of IPR quantifies the support of � in our choice of basis.
For each disorder realization, we average the IPR of up to
50 eigenstates per energy interval (see Sec. II B for details
on data sampling). These values are then averaged over all
disorder realizations. In contrast with the Anderson localiza-
tion transition, where 〈IPR〉 defined in the real-space position
basis increases from 1/N to 1 toward the strong disorder limit,
the 〈IPR〉 in the Fock-space basis increases more gradually.
Unlike the former, it does not approach 1 because localized
many-body wave functions have nonzero support over many
basis states even at strong disorder. Thus, we compute the
disorder-average of log(IPR) to highlight the transition from
ETH to MBL.

In Fig. 3, we plot 〈r〉 and 〈ln(IPR)〉 as functions of ε

and W . For these conventional observables, pinpointing the
transition boundary involves analyses over various system
sizes and finite-size scaling. Thus, we focus on the contours,
which are lines of equal value. In both the 1D and 2D cases,
the 〈ln(IPR)〉 contour at around −3.5 is very similar to the
mobility edge in Fig. 1. On the other hand, the contours of
〈r〉, while consistent with the mobility edges, have less pointy
profiles with weaker curvature. Note that our data obtained
from 50 disorder realizations are insufficient for converging
〈r〉 near ε = 0 and 1 where eigenvalues are scarce.

C. Model interpretation

To understand the decision making of our trained CNNs,
we examine the kernel weights and biases and the feature
maps generated from the input data. Prior to classification by
the dense layer, the input probability densities |�|2 undergo a
series of operations: convolution with the kernels plus biases
(resulting in convolution feature maps), ReLU activation (fea-
ture maps), and max pooling (pooled feature maps). For both
CNNs trained on the 1D and 2D systems, the kernels generally
have highly fluctuating weights between −1 and 1, along
with small negative biases [see Fig. 4(a) for examples in the
1D case]. During convolution, these weights effectively scale
down |�|2, which is then shifted downward by the negative bi-
ases. The negative values in the resulting convolution feature
maps, due to the negative biases, are truncated by the ReLU
activation. Lastly, the max-pooling layer, with a minimal pool

FIG. 3. Inverse participation ratio (IPR) and energy-level statis-
tics. For the 16-site one-dimensional (1D) and two-dimensional (2D)
systems, disorder-averaged 〈log(IPR)〉 and gap ratio 〈r〉 as functions
of energy density ε and disorder strength W bear similar qualitative
features as the machine-predicted phase diagrams (Fig. 1). For 〈r〉,
the max and min values of the colorbar correspond to 〈r〉GOE and
〈r〉P, respectively, and the noise is due to insufficient eigenvalue data
near ε = 0 and 1.

size of 2, down-samples the feature maps by a factor of two
without significantly altering the extracted features.

Figure 4(b) shows the feature extraction process by a typ-
ical kernel applied to an ETH/MBL wave function of the
1D system. The ETH wave function, characterized by its
low probability density at almost all basis states, becomes
nearly featureless after the application of the negative bias
followed by ReLU activation. In contrast, the same operation
accentuates the pronounced peaks in the MBL wave function,
reducing smaller signals to zero while preserving the more
significant ones. This explains how our convolutional layer
effectively highlights the key differences between MBL and
ETH wave functions, thereby simplifying the classification
task for the dense layer.

V. CONCLUSIONS

In this paper, we investigated interacting spinless fermionic
systems on 1D and 2D lattices with random on-site potentials,
focusing on systems of 16 sites. Through exact diagonaliza-
tion, we collected many-body wave functions from various
disorder realizations. We then conducted supervised train-
ing of neural networks using wave functions at weak and
strong disorder, labeled as ETH and MBL, respectively. We
specifically chose CNNs for their capability in local pattern
recognition. Utilizing effective training techniques, includ-
ing dropout regularization and cross-validation, our CNNs
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(a) (b)

FIG. 4. Interpretation of the convolutional layer. (a) (top panel) The kernel weights in our trained convolutional neural networks (CNNs)
are highly fluctuating values between −1 and 1. Here, we show the weights of three kernels (each with l = 10 weights) belonging to a CNN
trained on the wave functions of the one-dimensional (1D) system. (bottom panel) The kernel biases (one bias per kernel) of the same CNN are
small negative numbers. (b) By learning to apply a small negative bias right before rectified linear unit (ReLU) activation, a typical kernel in our
trained CNNs truncates small values in the input probability density |�|2, which renders an eigenstate thermalization hypothesis (ETH) wave
function nearly featureless and accentuates the pronounced profile of a many-body localized (MBL) wave function. This feature extraction
mechanism, demonstrated here with wave functions of the 1D system, is observed in both CNNs trained on 1D and two-dimensional (2D)
systems.

achieved >99.95% accuracy on test data, successfully clas-
sifying wave functions deep in the ETH and MBL phases.

Leveraging the generalization ability of the neural network,
we provided the CNNs with wave functions near the transition
region and used the disorder-averaged prediction 〈P〉, repre-
senting the probability for the ETH phase, to construct phase
diagrams. The energy-resolved phase diagrams over energy
density ε and disorder strength W precisely locate the many-
body mobility edges in both 1D and 2D systems. We estimated
the critical disorder strengths to be Wc ∼ 2.8 for 1D and
Wc ∼ 9.8 for 2D, applicable to finite-sized systems of 16 sites.

Our analysis of energy-level statistics and IPR corroborates
our phase diagrams by showing similar qualitative features.
We further examined the weights, biases, and feature maps of
the CNN, gaining insights into its feature extraction mech-
anism. We found that the convolutional layer has learned
to truncate small values in the input probability densities
through negative biases and ReLU activation, effectively re-
taining only the strong input signals for classification. This
mechanism was observed in both CNNs trained on 1D and
2D systems, demonstrating its applicability across different
dimensions. In future studies, one could investigate its con-
nection to conventional observables or potentially formulate
order parameters inspired by the learned mechanism.

The ultimate success of the machine-learning approach
for characterizing the ETH-MBL phase boundary hinges on

precise quantification of the predictions of the machine. This
includes quantifying the uncertainties in the predictions and
conducting finite-size scaling analysis to extend finite-size re-
sults to the thermodynamic limit. Assessing the effectiveness
of transfer learning, particularly by applying CNNs trained
on 1D systems to classify wave functions in 2D systems and
vice versa, could reveal whether the machine-based order
parameter P is universal, independent of lattice configurations
and spatial dimensions. Lastly, one could experiment with
neural networks with more advanced architectures, which may
generalize better to the transition region and lead to more
precise determination of the phase boundary.
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