
PHYSICAL REVIEW B 109, 075123 (2024)

Nodal semimetals in d � 3 to sharp pseudo-Landau levels by dimensional reduction
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Nonuniform strain applied to graphene’s honeycomb lattice can induce pseudo-Landau levels in the single-
particle spectrum. Various generalizations have been put forward, including a particular family of hopping
models in d space dimensions. Here we show that the key ingredient for sharp pseudo-Landau levels in higher
dimensions is dimensional reduction. We consider particles moving on a d-dimensional hyperdiamond lattice
which displays a semimetallic band structure, with a (d − 2)-dimensional nodal manifold. By applying a suitable
strain pattern, the single-particle spectrum evolves into a sequence of relativistic Landau levels. We develop and
solve the corresponding field theory: Each nodal point effectively generates a Landau-level problem which is
strictly two dimensional to leading order in the applied strain. While the effective pseudovector potential varies
across the nodal manifold, the Landau-level spacing does not. Our theory paves the way for strain engineering
of single-particle states via dimensional reduction and beyond global minimal coupling.
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I. INTRODUCTION

Synthetic gauge fields have become an important tool to
engineer phases of matter [1]: They enable one to realize
phenomena associated with orbital magnetic fields for charge-
neutral particles; they allow one to create non-Abelian gauge
fields; and they can therefore be used to create nontrivial, of-
ten topological, states of matter. Methods to achieve synthetic
gauge fields include the mechanical deformation of solid-state
lattices [2–4], the rotation of atomic gases [5], laser-induced
Raman transitions of cold atoms in optical lattices [6], as well
as Floquet engineering in photonic crystals [7].

In solids, strain engineering is a particularly interesting
route which has been used both to design novel physical
phenomena and to deliver novel functionalities [2–4], the
latter aspect leading to the emerging field of straintronics
[8]. One particular goal is to quench the electron kinetic
energy, by forming Landau levels or flat bands, such that
effects of electron–electron interaction get amplified. Strain-
induced pseudomagnetic fields have been first discussed for
carbon nanotubes [9]. Subsequently, triaxial strain applied to
graphene has been argued to induce an approximately ho-
mogeneous pseudomagnetic field for low-energy electrons,
leading to relativistic pseudo-Landau levels (PLLs) [10–13].
Such PLLs have indeed been observed in strained graphene
flakes [14], in graphene wafers grown on a structured substrate
[15], and in artificial molecular structures [16]. Electronic
PLLs induced by nonuniform strain have also been discussed
for Weyl semimetals [17–20] and superconductors [21]. For
insulating magnets, PLLs of Néel-state magnons [22] and
of Majorana-fermion excitations of spin liquids have been
proposed [23]. In all these cases, the effect of strain can be
understood in terms of a pseudovector potential which influ-
ences the orbital motion of elementary excitations via minimal
coupling, i.e., mimicking the effect of a physical magnetic
field.

Recently, a generalization of strain-induced PLLs known
for graphene to arbitrary space dimensions d has been pro-
posed [24]. This work constructed a family of lattice models
with spectral degeneracies inductively but did not provide in-
sights into the physical mechanism leading to PLLs in higher
dimensions. Other papers [25–27] proposed strain schemes
for approximately flat bands in d = 3, but more general in-
sights into their construction are lacking.

It is the purpose of this paper to close this gap. We con-
sider electrons moving on the d-dimensional hyperdiamond
lattice where the tight-binding dispersion is characterized by
a (d − 2)-dimensional nodal manifold. For d = 3 we develop
and solve the continuum field theory describing the effect
of tetraxial strain on the low-energy states (Fig. 1), and we
generalize this theory to arbitrary d > 3. Remarkably, the
effective theory cannot be understood via minimal coupling
to a globally defined pseudovector potential. Instead, we show
that for d > 2, dimensional reduction is at play: For each
point on the nodal manifold a separate two-dimensional (2D)
Dirac theory emerges. All of these Dirac theories generate
relativistic PLLs with the same Landau-level spacing, and the
global excitation spectrum arises from the collection of these
two-dimensional Landau-level problems. We also provide a
semiclassical picture for d = 3 which shows how dimensional
reduction connects to an ensemble of anisotropic 2D electrons
in a locally defined pseudomagnetic field. We discuss experi-
mental realizations and generalizations.

II. HYPERDIAMOND LATTICE UNDER STRAIN

Motivated by Ref. [24], we consider particles hopping on
a hyperdiamond lattice in d space dimensions: This is a bi-
partite lattice with coordination number (d + 1), leading to
chain, honeycomb, and diamond lattices in d = 1, 2, 3, re-
spectively. The nearest-neighbor vectors δ̂ j connect the center
of a (d + 1) simplex to each of its vertices, these simplices
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FIG. 1. Strain-induced Landau levels in d = 3: (a) Diamond lat-
tice with (b) semimetallic density of states. (c) Diamond lattice under
tetraxial strain, resulting in (d) sharp relativistic Landau levels which
emerge via dimensional reduction.

being line segment, triangle, and tetrahedron in d = 1, 2, 3.

In the absence of strain we have δ̂
2
j = a2

0, δ̂ j · δ̂ j′ = −a2
0/d for

j �= j′, and
∑d+1

j=1 δ̂ j = 0, with a0 being the nearest-neighbor
distance, which we set to unity in what follows. We consider
a nearest-neighbor hopping Hamiltonian of spinless particles
[28]

H = −
∑
〈ii′〉

tii′ (c
†
i ci′ + H.c.). (1)

In the absence of strain, tii′ ≡ t , the momentum-space Bloch
Hamiltonian takes the form h(k) = t ( 0 f (k)

f ∗(k) 0 ) in the sub-
lattice basis, resulting in two bands with dispersion

ε(k) = ±t | f (k)|, where f (k) =
∑

j

exp[−ik · δ̂ j]. (2)

As shown in the Supplemental Material [29], the function
f (k) vanishes on a (d − 2)-dimensional manifold in momen-
tum space, leading to band-touching Dirac points in d = 2,
nodal lines in d = 3 (Fig. 2), nodal surfaces in d = 4, etc.
This nodal manifold is characterized by a Berry phase of π in
any d � 2; that is, electrons encircling a nodal point along a
finite-energy trajectory acquire a π phase shift.

Upon distorting the lattice, the electronic hopping ampli-
tudes t get modified because wave-function overlaps change.
Empirically, the hopping amplitudes follow [28]

tii′ = t0 exp [−β(|Rii′ |/a0 − 1)], (3)

where t0 ≡ t is the hopping in the absence of strain and Rii′ =
ri + ui − ri′ − ui′ is the distance between sites i and i′, where
u is the displacement field evaluated at the lattice positions ri.
The factor β encodes the strength of electron-lattice coupling:
Typical values are of order unity; for graphene, β = 3.37 [30].

We subject the system to a d-dimensional generalization
of the triaxial strain introduced for graphene [12]. As will
become clear below, this (d + 1)-axial strain has the property
that it generates only a pseudomagnetic field, but no pseudo-

FIG. 2. Brillouin zone (shaded) of the diamond lattice, together
with the momentum-space network of nodal lines which cross at the
high-symmetry X points. Also shown are the directions of the pseu-
domagnetic field (arrows) emerging under tetraxial strain, together
with the corresponding semiclassical trajectories for low-energy
electrons (hatched ellipses). The pseudomagnetic field is singular at
the X points.

electric field. The strain is defined by the displacement field
u(r) = C

2

∑
j (δ̂ j · r)2δ̂ j , leading to the strain tensor

u = C
∑

j

(δ̂ j · r)(δ̂ j ◦ δ̂ j ). (4)

The effect of the strain on the hopping matrix elements is now
parametrized by the product γ = βC(1 − 1/d2), with the last
factor included for later convenience. We note that mechani-
cal stability limits the maximum displacement and hence the
value of C, with the maximum allowed C scaling with inverse
linear system size [29]. The continuum theory below relies
on a Taylor expansion in C and is therefore unaware of this
restriction.

III. CONTINUUM THEORY IN d = 3

To be specific, we demonstrate the continuum treatment for
the most relevant case of d = 3. The tight-binding model (1)
on the diamond lattice yields a dispersion featuring three dis-
tinct straight nodal lines which connect and cross at different
X points [31,32]; see Fig. 2. We choose the nodal line along z
and expand the Hamiltonian about an arbitrary momentum-
space point on the green line segment connecting a solid
circle and a solid triangle in Fig. 2, K = √

3π/2(1, 0, λ)
parametrized by λ ∈ (0, 1), to obtain

hK (q) = vx(λ)qxσx + vy(λ)qyσy + O(q2), (5)

where the full momentum is k = (Kx − qx, Ky − qy, Kz − qz )
and σx,y are Pauli matrices in the sublattice space. Equa-
tion (5) is a 2D Dirac theory in the plane perpendicular to the
nodal line, with velocities vx(λ) = (4t/

√
3) cos( π

2 λ), vy(λ) =
(4t/

√
3) sin( π

2 λ); see Fig. 3(a). One of the velocities vanishes
for λ = 0, 1, i.e., the X points where two nodal lines cross.
A small-momentum expansion directly at one of the crossing
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FIG. 3. Illustration of dimensional reduction in d = 3. (a) Dirac
velocities vx and vy, together with the amplitude of the pseudomag-
netic field |BK |, plotted along a nodal line connecting two X points.
(b) Semiclassical trajectories at selected points along the nodal line
in the momentum-space plane perpendicular to the nodal line.

points X yields

hX (q) = 4t√
3

qxσx − 4t

3
qyqzσy + O(q3); (6)

the full momentum k here is (
√

3π/2 − qx,−qy,−qz ), and
we have included the quadratic piece.

We now proceed to include the effect of strain. We focus
on the nodal line described by Eq. (5) and incorporate strain-
induced changes of the hopping according to Eq. (3) up to first
order in γ , explicitly using the d = 3 version of Eq. (4), i.e.,
tetraxial strain with u3D = 4C/

√
27(yz, zx, xy); see Fig. 1.

Technically, we expand about a fixed momentum-space point
K on the nodal line and switch to continuum-limit real space
in the plane perpendicular to this line. To leading order, this
yields

hK =
(

vx(λ)qx + 4γ√
3

t sin
(π

2
λ
)

y

)
σx

+
(

vy(λ)qy − 4γ√
3

t cos
(π

2
λ
)

x

)
σy, (7)

where qx,y = i∂x,y. For fixed λ this is a Dirac theory,
now minimally coupled to a pseudovector potential AK =
(Ax, Ay) = γ

vxvy
(v2

y y,−v2
x x); that is, it is obtained from (5)

by the replacement q → q + AK . The pseudomagnetic field
BK corresponding to AK is given by 16γ t2

3vxvy
(0, 0, 1), i.e., it is

homogeneous in the x − y plane, but depends on the position
λ along the nodal line. These findings equivalently apply to the
other nodal lines where hK (7) then depends on the coordinates
(�r⊥) and their conjugate momenta (�q⊥) perpendicular to the
nodal lines, but not on the momentum q‖ along the line.
The pseudomagnetic field BK is always directed parallel to
the nodal line (Fig. 2).

IV. DIMENSIONAL REDUCTION

The form of the leading-order Hamiltonian (7) now im-
plies that each point on a nodal line corresponds to a
two-dimensional system of Dirac electrons subjected to a per-
pendicular homogeneous pseudomagnetic field. Since there is

no mixing between these 2D systems to this order, the total
low-energy Hamiltonian can be written as

H =
∫

dKhK, (8)

representing a sum of two-dimensional subtheories, with the
integral running over the nodal manifold. While the Dirac
velocities as well as the strength of the magnetic field vary
along each nodal line, and moreover the field direction
changes from line to line, the spectrum of pseudo-Landau
levels turns out to be independent of λ and hence constant
on the entire nodal manifold [29],

E±
n = ±t

√
n

√
32γ

3
, (9)

with n being the Landau-level index. Hence all nodal points
generate the same 2D Landau-level spectrum, together re-
sulting in sharp (i.e., nondispersive) pseudo-Landau levels
with degeneracy of L3, where L is the linear system size.
Equations (8) and (9) represent the central result of this paper.
Parenthetically, we note that the crossing points of two nodal
lines require a separate treatment, as the pseudomagnetic field
diverges, but the PLL spectrum (9) can be recovered as we
will show further down.

As announced above, the spectrum (9) does not (and, in
fact, cannot) emerge from the coupling of the particle motion
to a globally defined pseudogauge field. Instead, electrons in
each two-dimensional submanifold are subject to a different
pseudogauge field AK ; hence minimal coupling applies only
after dimensional reduction.

We also note that the zeroth PLL resides on one sublat-
tice only [24]. Similar to the case of graphene, this can be
understood as a consequence of the parity anomaly of two-
dimensional Dirac electrons [33].

V. SEMICLASSICAL MOTION

One can obtain a semiclassical picture of dimensional re-
duction by constructing a low-energy wave packet from Bloch
states near a nodal momentum K. Approximating the motion
of the wave packet’s center using Hamilton equations yields
2D orbits, parametrized by s, in the plane perpendicular to the
nodal line, elliptic in both momentum space and real space
[29],

r̄λ = r0(vx(λ) cos s,−vy(λ) sin s, 0) + const, (10)

as one would expect from a semiclassical 2D Landau problem.
The orbits can be centered at an arbitrary real-space point of
the 2D slice perpendicular to the nodal line, which recovers a
degeneracy of L2 per slice. Using Sommerfeld’s phase-space
quantization rule, together with the π Berry phase of the nodal
line, yields exactly the spectrum in Eq. (9). Interestingly, this
construction works for all points on the nodal lines, including
their crossing points X [29].

VI. BEYOND LEADING ORDER

To access higher-order terms in both momentum and strain
in the expansion of hλ (7), it is advantageous to define the op-
erator � = −iq − βCd r, where Cd = C(1 − 1/d2). This then
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enables one to expand f in hK = t ( 0 fK
f ∗
K 0 ) in powers of �; this

is facilitated by the fact that hopping and (d + 1)-axial strain
involve terms of the form exp[−iq · δ̂ j] and exp[−βCd r · δ̂ j],
respectively, which can be combined using �. An explicit
calculation in d = 3 [29] yields a result which can be cast
into the form

fλ = 4√
3

√
2γ a1 + 8γ

3
aλa2 + O(	3), (11)

where a1, a2, aλ form a complete set of commuting ladder op-
erators, [ai, a†

i ] = 1, with a1,2 (aλ) encoding momentum and
position perpendicular to (along) the nodal line, respectively.

Keeping the first-order term only restores the result above,
namely a theory which is local with respect to the nodal line
(in the sense that it does not involve the momentum along
the nodal line) and displays the spectrum given in Eq. (9),
with a degeneracy given through a†

2a2. The strict dimensional
reduction, however, does not hold beyond leading order due to
the presence of aλ: The physics near a chosen point K is then
no longer constrained to the momentum plane perpendicular
to the nodal line. Then, a rewriting of the form (8) is no
longer possible, since the degrees of freedom along the nodal
line would be overcounted. One may instead resort to finite
patches along the nodal line and then use Eq. (11) to estimate
the broadening of the PLLs; see Supplemental Material for
details [29]. As the expansion (11) is controlled by powers
of

√
γ , the broadening is parametrically small for small γ ,

i.e., small strain. Notably, the zeroth PLL remains perfectly
degenerate at second order.

Taken together, beyond leading order the individual PLLs
acquire a finite width, consistent with lattice calculations [24]
and similar to the case of strained graphene [13,30]. The
zeroth Landau level is the sharpest and hence best suited for
observations and applications.

VII. GENERALIZATION TO d > 3

Remarkably, the above leading-order calculation can be
generalized to arbitrary d , even without precise knowledge of
the shape of the nodal manifold. To this end, the calculation is
now performed in a coordinate-free fashion. We again expand
about a nodal point K, now to first order in momentum and
strain:

fK =
∑

j

e−iK·δ̂ j δ̂ j · (∂r − βCd r) ≡ bK, (12)

where the operators ∂r and r are defined in the plane per-
pendicular to the nodal manifold. As already noted above,
momentum and strain terms are related by exchanging q and
βCd r in fK , which allows us to introduce a bosonic operator
bK . Noting that ωK = [bK, b†

K] corresponds to a harmonic-
oscillator energy and accounting for the 2 × 2 matrix structure
of the Bloch Hamiltonian hK , we find its spectrum to be
E = ±t

√
n
√

ωK . An explicit computation of ωK shows that
it is independent of K, ω = 2γ (d + 1)2/d [29], such that we
can define a1 = bK/

√
ω with [a1, a†

1] = 1. Hence all points on
the nodal manifold yield the same spectrum of pseudo-Landau

levels

E±
n = ±t

√
n
√

2γ (d + 1)2/d, (13)

which is consistent with Eq. (9) for d = 3.
We thus conclude that (d + 1)-axial strain applied to the

hyperdiamond lattice yields sharp PLLs with levels scaling
as ±√

n for arbitrary dimensions: The specific strain pat-
tern guarantees that the semiclassical motion near any nodal
point K is constrained to the normal space of the (d − 2)-
dimensional Fermi manifold. Therefore the problem reduces
to a family of two-dimensional Landau-level problems regard-
less of the dimensionality of the original model, explaining the
previous lattice-model findings in Ref. [24].

VIII. CONCLUSION

We have developed and solved a continuum theory for par-
ticles hopping on a d-dimensional hyperdiamond lattice under
the influence of (d + 1)-axial strain. This single-particle prob-
lem results in sharp PLLs in arbitrary d , which emerge for d >

2 via dimensional reduction: Each momentum-space point
along the (d − 2)-dimensional nodal manifold generates an
effectively two-dimensional Landau-level problem, with ve-
locities and pseudomagnetic field varying across the manifold,
but having the same (hence global) Landau-level spectrum.

Our theory opens up a non-trivial way of strain-engineering
single-particle spectra: The PLLs in d > 2 are not gen-
erated via global minimal coupling, but instead arise in
two-dimensional submanifolds of the system. Research on
generalizations to other lattice structures is underway; a de-
tailed investigation of the higher-dimensional valley quantum
Hall effect is left for future work. Our work also raises
interesting questions about interaction effects in strained hy-
perdiamond lattices: Will interactions also follow the principle
of dimensional reduction? If yes, can one find higher-
dimensional cousins of fractional quantum Hall states? If not,
do novel forms of fractionalization occur for partially filled
PLLs?

Our predictions can be tested in cold-atom experiments.
For optical lattices, either spatial variations of beam in-
tensities [34] or density-assisted tunneling [35] have been
proposed to simulate strain effects, with the concrete goal
of emulating the physics of strained graphene. The result-
ing PLLs can be probed using Bragg spectroscopy. We
believe these settings can be generalized to d = 3. Alterna-
tively, a three-dimensional generalization of the inhomoge-
neous photonic lattices demonstrated in Ref. [36] could be
considered.
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