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Photoinduced η-pairing correlation in the Hubbard ladder
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We investigate the staggered correlation of the on-site pairs, the so-called η-pairing correlation, induced by
pump electric fields in the Hubbard model on the ladder lattice. Employing the time-evolution method based
on exact diagonalization, we compute the photoinduced η-pairing correlation with different strengths of the
interchain hopping. When the pump field is polarized along the chain direction, the η-pairing correlation is
noticeably induced in the weakly coupled double-chain region, where the pairing property is similar to the
η pairing in the single-chain Hubbard model. On the other hand, the pump field polarized along the rung
direction prominently induces the η-pairing correlation in the strong interchain coupling regime, where the pair
correlations developing across rungs strongly contribute to the η pairing. Based on the local rung approximation,
which is valid in the strong interchain coupling regime, we discuss the origin of the photoinduced pair.
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I. INTRODUCTION

Light-matter couplings enable us to create and manipulate
intriguing quantum phenomena in driven nonequilibrium
systems [1–5]. For example, light-induced anomalous Hall
effect has been reported in graphene [6], and possible
light-induced superconducting properties have been discussed
in copper oxide and fullerene systems [7,8]. Floquet
engineering, i.e., design of quantum states in periodically
driven systems, is also a recent active research topic [9–12].
In correlated many-body systems, pump electric fields
can activate hidden degrees of freedom. In Mott-Hubbard
systems, photoexcitation can induce the η-pairing states [13],
which are the eigenstates of the Hubbard model possessing
staggered correlations of the on-site pairs [14,15]. The
light-induced enhancement of the η-pairing correlation has
been demonstrated by the real-time simulations [13,16–18],
and the presence of the η-pairing phase has been verified in
the photodoped Mott insulators [19–23]. The nonequilibrium
η pairing has also been discussed in different types of
driving schemes [24–27]. These studies suggest that the η

degrees of freedom play a key role in the photoexcited and
nonequilibrium states of the Hubbard model.

Recently, there has been renewed interest in bilayer
and ladder systems associated with the discovery of
high-temperature superconductivity in pressurized La3Ni2O7

[28–32]. In this material, the distinctive electronic structures
are made by strong interlayer bonding, which is a key factor
for understanding the origin of superconductivity [33–36].
Furthermore, the recent realization of the magnetically med-
itated hole pairing in the optical ladder lattice [37] and
possible strong pairing in doped mixed-dimensional Mott
insulators [38] provide advanced insights into the physics
of the bilayer/ladder systems. In these systems, quantum
correlations across rungs involving anisotropic kinetic and
magnetic properties between directions parallel and perpen-
dicular to the chains (layers) [39,40] enable the creation of
entangled interchain (interlayer) states. In terms of light-
matter coupling, since there are two possible polarization

directions, parallel or perpendicular to the rung, external light
may drive unique anisotropic properties in ladder and bilayer
systems depending on the polarization direction. Given such
background, the Hubbard ladder [a one-dimensional (1D) ana-
log of the bilayer Hubbard model] is an attractive host to
study light-induced phenomena, and it is natural to ask how
η-pairing correlations appear in ladder systems.

In this paper, we investigate the η pairing in the opti-
cally driven Hubbard ladder. By employing the time-evolution
method based on exact diagonalization, we compute the
η-pairing correlation with different ratios of the interchain
hopping t⊥ to the intrachain hopping t‖. We find when the
pump electric field is polarized along the chain direction, sim-
ilarly to the 1D Hubbard chain, η pairing is noticeably induced
in the weakly coupled double-chain region (at t⊥/t‖ < 1). On
the other hand, the external field polarized along the rung di-
rection induces the rung-like η pairing in the strong interchain
hopping regime (at t⊥/t‖ > 1), where the pair correlations
across rungs strongly contribute to the photoinduced pairing.
Since the η pairing with strong t⊥ is unique to the ladder
system, we discuss the origin of the photoinduced pair based
on the local rung approximation.

The rest of this paper is organized as follows. In Sec. II,
we introduce the Hubbard ladder model under the pump elec-
tric field and the numerical method we used. In Sec. III,
we show the calculated pair correlation functions, where the
polarization and t⊥/t‖ dependences are presented. Then, we
discuss the origin of the photoinduced pair using the local
rung approximation. The summary is given in Sec. IV.

II. MODEL AND METHOD

The Hamiltonian of the Hubbard ladder is defined by

Ĥ = −t‖
∑
j,α,σ

(
ĉ†

j,α;σ ĉ j+1,α;σ + H.c.
)

− t⊥
∑
j,σ

(
ĉ†

j,0;σ ĉ j,1;σ + H.c.
) + U

∑
j,α

n̂ j,α;↑n̂ j,α;↓, (1)
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where ĉ j,α;σ (ĉ†
j,α;σ ) is the annihilation (creation) operator for

a fermion with spin σ =↑,↓ at site j on chain α (= 0, 1),
and n̂ j,α;σ = ĉ†

j,α;σ ĉ j,α;σ . t‖ and t⊥ are the hopping integrals
along the chain and rung directions, respectively. U (> 0) is
the on-site Coulomb repulsion. We consider a ladder of length
L at half-filling, where the number of particles N is equal to
the number of lattice sites 2L.

Since the two-leg ladder is a bipartite lattice, we can in-
troduce the η operators [14,15], which are given by η̂+

j,α =
(−1) j+α ĉ†

j,α;↓ĉ†
j,α;↑, η̂−

j,α = (−1) j+α ĉ j,α;↑ĉ j,α;↓, and η̂z
j,α =

(n̂ j,α;↑ + n̂ j,α;↓ − 1)/2. These operators satisfy the SU(2)
commutation relations [η̂+

j,α, η̂−
j,α] = 2η̂z

j,α and [η̂z
j,α, η̂±

j,α] =
±η̂±

j,α , where [A, B] = AB − BA. The total η operators are
defined by η̂± = ∑

j,α η̂±
j,α and η̂z = ∑

j,α η̂z
j,α , which sat-

isfy [Ĥ, η̂+η̂−] = [Ĥ, η̂z] = 0. These commutative properties
indicate that the eigenstates of the Hubbard Hamiltonian
are labeled by the quantum numbers of η̂2 [= (η̂+η̂− +
η̂−η̂+)/2 + η̂2

z ] and η̂z. In this condition, the ground state of
the Hubbard model at half filling (ηz = 0) is an eigenstate with
η = 0 [13].

In order to induce η pairing, we introduce a pump
electric field via the Peierls substitution [41]. When an
external field is polarized along the chain direction, we intro-
duce the vector potential A‖(t ) by replacing ĉ†

j,α;σ ĉ j+1,α;σ →
e−iqA‖(t )ĉ†

j,α;σ ĉ j+1,α;σ , where q is the charge of a particle and
the electric field is given by E‖(t ) = −∂t A‖(t ). The light
velocity c, the Planck constant h̄, and the lattice constant a
are set to 1, and we use q = −1 in our calculations. Similarly,
ĉ†

j,0;σ ĉ j,1;σ → e−iqA⊥(t )ĉ†
j,0;σ ĉ j,1;σ when the vector potential in

the rung direction A⊥(t ) is nonzero. In this paper, we consider
a pump field

A(t ) = A0 exp

[
− (t − t0)2

2σ 2
p

]
cos[ωp(t − t0)], (2)

where A(t ) = A‖(t )e‖ + A⊥(t )e⊥. A0 = |A0| is the amplitude
of the vector potential, ωp is the frequency, and time t0 and
σp correspond to the center and width of the time-dependent
pulse, respectively. The external field A(t ) �= 0 transiently
breaks the commutation relation between the operator η̂2 and
the time-dependent Hamiltonian Ĥ(t ), which allows the pho-
toinduced η pairing [13].

The wave function |�(t )〉 under the pump electric field
is numerically obtained by solving the time-dependent
Schrödinger equation i d

dt |�(t )〉 = Ĥ(t ) |�(t )〉. We employ
the exact diagonalization (ED) method for the initial ground
state |ψ0〉. The sequential time evolution |�(t + δt )〉 	
e−iĤ(t )δt |�(t )〉 with small time step δt is carried out by
the Lanczos technique [42–44], where the exponential is
expanded as e−iĤδt 	 ∑ML−1

m=0 [(−iδt )m/m!](Ĥ)m. ML cor-
responds to the number of the iterations in the Lanczos
algorithm, and a large enough ML (with small δt) provides a
numerically precise result. In our calculations, we set t‖ (t−1

‖ )
as a unit of energy (time). The number of the Lanczos vectors
for time evolution is ML = 15 and we adopt δt = 0.01/t‖. We
use the 6 × 2 site cluster (i.e., L = 6) with periodic boundary
conditions along the chain direction. We set t0 = 10/t‖ and
σp = 2/t‖ in the pump field at all calculations.

We numerically observe the η-pairing properties using the
pair correlation functions

P(x, 0; t ) = 1

2L

∑
j,α

〈
�(t ) | (
̂†

j+x,α
̂ j,α + H.c.
) | �(t )

〉
, (3)

P(x, 1; t ) = 1

2L

∑
j,α

〈
�(t ) | (
̂†

j+x,ᾱ
̂ j,α + H.c.
) | �(t )

〉
, (4)

where 
̂ j,α = ĉ j,α;↑ĉ j,α;↓ is the operator of the on-site pair
and ᾱ denotes the opposite chain index to α (i.e., 0̄ = 1
and 1̄ = 0). P(x, 0; t ) and P(x, 1; t ) represent intra- and in-
terchain correlations of the on-site pairs, respectively. These
correlation functions can be denoted as P(x, y; t ) or P(r; t )
with r = (x, y). The Fourier transform of the pair correlation
function may be given by

P(q‖, q⊥; t ) =
∑
x,y

ei(q‖x+q⊥y)P(x, y; t ). (5)

Note that q⊥ = 0 or π corresponds to the parity along the rung
direction [45]. In this reciprocal space notation, the staggered
correlation P(q‖ = π, q⊥ = π ; t ) = ∑

x,y (−1)x+y P(x, y; t ),
which is proportional to 〈�(t )|η̂2|�(t )〉 at half filling (ηz =
0), corresponds to the η-pairing correlation. To decompose the
η-pairing correlation into intra- and interchain contributions,
we define

Pintra (t ) =
∑
x>0

(−1)xP(x, 0; t ), (6)

Pinter (t ) =
∑

x

(−1)x+1P(x, 1; t ), (7)

respectively. Since the on-site part P(x = 0, y = 0; t )
corresponds to twice the double occupancy nd (t ) =
(1/2L)

∑
j,α 〈�(t )|n̂ j,α;↑n̂ j,α;↓|�(t )〉, we find

P(q‖ =π, q⊥ =π ; t ) = 2nd (t ) + Pintra (t ) + Pinter (t ). (8)

III. RESULTS

A. Photoinduced η pairing

Here, we show the calculated pair correlation function
P(r; t ) when the pump field is polarized along the chain or
rung direction [see Fig. 1(a)]. We use the optimal parameter
sets of t⊥ and A(t ) for the η pairing in Fig. 1, and the parameter
dependence of the pair correlation is shown in Figs. 2 and 3.

In Fig. 1(b), we plot the time evolution of P(r; t ) when the
weakly coupled chains at t⊥ = 0.5t‖ are driven by the external
field polarized along the chain direction [i.e., A‖(t ) �= 0 and
A⊥(t ) = 0]. Similarly to the 1D single chain [13], we find a
strong enhancement of P(r = (0, 0); t ) corresponding to the
enhancement of the double occupancy nd (t ). In addition to
this local component, P(r �= (0, 0); t ) is also enhanced by
A‖(t ). P(r; t ) at x + y = odd is negative while P(r; t ) at
x + y = even is positive, indicating the staggered pair cor-
relation of the η pairing [13]. In the ladder system, we find
that the development of the intrachain component P(x, 0; t )
is faster than that of the interchain component P(x, 1; t ). This
is because the external field A‖(t ) preferentially creates the
doublon (doubly occupied site) and holon (empty site) in the
same chain, and then these carriers move across rungs by
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FIG. 1. (a) Schematic figure of the Hubbard ladder and po-
larization directions of the pump field. (b) Time evolution of the
pair correlation function P(r; t ) when A‖(t ) �= 0 [and A⊥(t ) = 0] at
U = 8t‖ and t⊥ = 0.5t‖, where A0 = 0.3 and ωp = 7.2t‖ are used
in A(t ). (c) Time evolution of the pair correlation functions P(r; t )
when A⊥(t ) �= 0 [and A‖(t ) = 0] at U = 8t‖ and t⊥ = 2.0t‖, where
A0 = 0.2 and ωp = 9.8t‖ are used in A(t ). The solid (dotted) line rep-
resents the intrachain (interchain) component of the pair correlation
function.

the interchain hopping t⊥. Hence, the primal driving force of
the η-pair in the weakly coupled chains is essentially the same
as that in the 1D single chain.

Figure 1(c) shows the time evolution of P(r, t ) when the
strongly coupled chains at t⊥ = 2.0t‖ are driven by the ex-
ternal field polarized along the rung direction [i.e., A‖(t ) =
0 and A⊥(t ) �= 0]. Similarly to Fig. 1(b), we find the sig-
natures of the photoinduced η pairing. However, there are
several differences. In comparison with Fig. 1(b), the enhance-
ment of the double occupancy nd (t ) is larger. This indicates
that the open boundary or nature of the two-site Hubbard
model in the rung direction is favorable for the doublon
creation. As for the time profile, the interchain component
at r = (0, 1) is firstly enhanced, and then the intrachain and
nonlocal (x > 1) correlations are developed. In Fig. 1(c), the
interchain components at r = (0, 1) is larger than the intra-
chain pair correlation. Since the magnitudes of the intrachain
components are comparable to these values in Fig. 1(b), the
interchain components strongly induced by A⊥(t ) reinforce
the η-pairing correlation. In contrast to the previous case, the
doublon and holon are created by A⊥(t ) at the same rung, and
then the carrier motion along the chain direction via t‖ may
promote the nonlocal part of the correlation.

ΔPintra(t)
t=30/t||

P(π,π;t)
t=30/t||

2Δnd(t)
t=30/t||

ΔPinter(t)
t=30/t||

(a) (b)

(c) (d)

A||≠0 (chain)A||≠0 (chain)

FIG. 2. t⊥ and ωp dependence of (a) P(π, π ; t ), (b) 2
nd (t ),
(c)
Pintra (t ), and (d)
Pinter (t ) at t = 30/t‖ when the pump field is
polarized along the chain direction [A‖(t ) �= 0 and A⊥(t ) = 0], where
U = 8t‖ and A0 = 0.3 are used.

In Figs. 2 and 3, we plot the η-pairing correlation P(q‖ =
π, q⊥ = π ; t ) and its components at t = 30/t‖ (after pulse
irradiation) in the plane of t⊥ and ωp. Figure 2(a) shows the
η-pairing correlation when the external field is polarized along
the chain direction [i.e., A‖(t ) �= 0 and A⊥(t ) = 0]. Note that
P(π, π ; t = 0) = 0 since the ground state is the eigenstate
with the quantum number η = 0 and ηz = 0. As shown in
Fig. 2(a), the η-pairing correlation is prominently induced
by A‖(t ) around ωp/t‖ = 7 in the small t⊥ region while the
induced pair correlation decreases as t⊥ is increased. This
tendency implies that the η-pairing property in the 1D single
chain mainly causes the η pairing in the ladder. In order to
identify the main contributor to the η pairing in the ladder, we
decompose P(π, π ; t ) into the double occupancy nd (t ), intra-
chain component Pintra (t ), and interchain component Pinter (t )
[see Eq. (8)]. In Figs. 2(b)–2(d), we plot 
nd (t ), 
Pintra (t ),
and 
Pinter (t ) at t = 30/t‖, where 
X (t ) = X (t ) − X (0)
indicates the difference of the quantity X from its equilibrium
value at t = 0. We find that nd is enhanced at the same spot
as the η-pairing correlation is induced. In addition to nd (t ),
the intrachain component Pintra (t ) in the small t⊥ regime is
prominently activated by A‖(t ). This means that the strongly
induced P(π, π ; t ) at t⊥/t‖ < 1 is mainly caused by nonlocal
intrachain correlations in Pintra (t ). This chain-like η-pairing
correlation becomes smaller at t⊥/t‖ > 1, indicating that the
formation of the strong rung bond is unfavorable for the η

pairing induced by A‖(t ).
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A ≠0 (rung)A ≠0 (rung)

ΔPintra(t)
t=30/t||

P(π,π;t)
t=30/t||

2Δnd(t)
t=30/t||

ΔPinter(t)
t=30/t||

(a) (b)

(c) (d)

FIG. 3. t⊥ and ωp dependence of (a) P(π, π ; t ), (b) 2
nd (t ),
(c)
Pintra (t ), and (d)
Pinter (t ) at t = 30/t‖ when the pump field is
polarized along the rung direction [A‖(t ) = 0 and A⊥(t ) �= 0], where
U = 8t‖ and A0 = 0.2 are used.

Figure 3 shows the t⊥ and ωp dependence of the correlation
functions when the external field is polarized along the rung
direction [i.e., A‖(t ) = 0 and A⊥(t ) �= 0]. In contrast to the
chain-like η pairing shown in Fig. 2(a), the enhancement
of P(π, π ; t ) is not noticeable in the small t⊥ regime. On
the other hand, η-pairing correlation is significantly light-
induced at t⊥/t‖ > 1. The maximum value of P(π, π ; t )
around t⊥/t‖ ∼ 2 in Fig. 3(a) is nearly 1.5 times as large as the
maximum value observed in Fig. 2(a) [see the maximum of
the color bars, which are 2 in Fig. 2(a) and 3.2 in Fig. 3(a)]. As
shown in Figs. 3(b)–3(d), the interchain component Pinter (t )
at t⊥/t‖ > 1 mainly contributes to the enhancement of the
η-pairing correlation. This rung-like η pairing should be con-
trasted with the chain-like η pairing shown in Fig. 2. As seen
in Fig. 1(c), A⊥(t ) activates the strong interchain component
P(x, 1; t ) in addition to the intrachain component P(x, 0; t ).
Because of the additional P(x, 1; t ) contribution, the η-pairing
correlation driven by A⊥(t ) is enhanced relative to the correla-
tion of the chain-like η pairing induced by A‖(t ). These results
suggest that the formation of the rung bond is favorable for
η pairing when the external field is polarized along the rung
direction.

B. Local rung approximation

Here, we discuss the origin of the photoinduced pair in the
large t⊥/t‖ regime since the chain-like η pairing at t⊥/t‖ � 1
can be understood in terms of the photoinduced η pairing

A

A||

(a) (b)

FIG. 4. Schematic figures of the local rung approximation for the
doublon-holon creations induced by the external fields applied along
the (a) chain and (b) rung directions.

in the single Hubbard chain, whose mechanism has been
revealed in Ref. [13]. When t⊥/t‖  1, the Hubbard ladder
with L × 2 sites can be approximated as the L independent
two-site Hubbard models [45]. In this local rung approxima-
tion (LRA), the essential physical properties of the ladder can
be estimated by the eigenstates in the two-site Hubbard model.
Figure 4 schematically shows two patterns of light-induced
doublon-holon creation in the LRA. When the external field
is applied along the chain direction as shown in Fig. 4(a),
one of two particles in the spin-singlet bond transfers to the
adjacent rung (by the perturbative weak t‖), and one doublon
and one holon are created along the chain direction. On the
other hand, when the external field is applied along the rung
direction as shown in Fig. 4(b), one of two particles moves to
the rung direction, and one doublon and one holon are created
within the single rung. Here, we consider the optical excitation
energies for these doublon-created states and compare them
with the results obtained by the ED-based calculations.

First, we consider the case in Fig. 4(a). The ground state of
two particles in the two-site Hubbard model is the spin-singlet
state whose eigenenergy is −J⊥ = −4t2

⊥/U in the strong cou-
pling limit (U  t⊥). Hence, the energy of two spin-singlet
rungs in equilibrium (before the pump) is E (a)

g 	 −2J⊥. When
the pump field A‖(t ) is applied, one of the two rungs possesses
one particle while the other rung possesses three particles
[see Fig. 4(a)]. The energies of the one-particle states are
E1 = ∓t⊥ while the energies of the three-particle states are
E3 = U ± t⊥, where upper and lower signs correspond to
even and odd parities along the rung direction, respectively.
Because the external field polarized along the chain direc-
tion does not change the parity along the rung direction,
the parities of the one-particle and three-particle states must
be the same. Hence, the excited energy of the two rungs
shown in Fig. 4(a) is given by E (a)

e = ∓t⊥ + (U ± t⊥) = U
in total. According to these energies, the optical gap of the
case in Fig. 4(a) is given by 
(a) = E (a)

e − E (a)
g 	 U + 2J⊥.

This energy gap suggests that the η-pairing correlation can
be activated at ωp = 
(a) 	 U + 2J⊥. Let us compare the
energy estimated by the LRA with the actual numerical data.
Figure 5(a) shows P(π, π ; t ) at t = 30/t‖ in the t⊥ and ωp

plane, where we set U = 16t‖ because our estimation of the
optical gap is accurate when U  t⊥. In the region at t⊥/t‖ >

1, we indeed find that U + 2J⊥ shows good agreement with
ωp at which the η-pairing correlation is generated. Because
the LRA is not valid when t⊥/t‖ � 1, the peak positions of
P(π, π ; t ) around t⊥/t‖ = 0 deviate from U + 2J⊥. However,
even around t⊥/t‖ = 1, the hot spot of P(π, π ; t ) and the curve
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A||≠0 (chain)A||≠0 (chain) A ≠0 (rung)

P(π,π;t)
t=30/t||

(a) ωp=U+2J

P(π,π;t)
t=30/t||

(b) ωp=U+J

FIG. 5. t⊥ and ωp dependence of P(π, π ; t =30/t‖) at U = 16t‖.
(a) P(π, π ; t ) after the pulse A‖(t ) �= 0 and A⊥(t ) = 0 with A0 = 0.3
and (b) P(π, π ; t ) after the pulse A‖(t ) = 0 and A⊥(t ) �= 0 with A0 =
0.2. The orange solid lines indicate ωp = U + 2J⊥ in (a) and ωp =
U + J⊥ in (b), where J⊥ = 4t2

⊥/U .

ωp = U + 2J⊥ almost coincide. In reality, t‖ is not zero, and
complicated multiple factors can be involved in the optical
transition. The appearance of weak multiple bands at t⊥/t‖ >

1 besides the U + 2J⊥ line in Fig. 5(a) may be caused by these
minor excitation entities.

Next, we consider the case in Fig. 4(b). Before the pump,
the ground-state energy of one spin-singlet rung is E (b)

g 	
−J⊥. The eigenenergy of the optically allowed one dou-
blon and one holon state (i.e., η-pair state) in the two-site
Hubbard model is E (b)

e = U . Hence, the optical gap of the
case in Fig. 4(b) is given by 
(b) = E (b)

e − E (b)
g 	 U + J⊥,

suggesting that the η-pairing correlation can be activated at
ωp = 
(b) 	 U + J⊥. Figure 5(b) shows the comparison be-
tween the LRA and the numerical data. As expected, the
peak positions of the induced P(π, π ; t ) at t = 30/t⊥ show
good agreement with the line ωp = U + J⊥ estimated by the
LRA. These agreements indicate that the LRA at t⊥/t‖ > 1
is a very valid approach for identifying the optimal ωp of the
photoinduced pair in the Hubbard ladder.

Finally, we comment on the polarization dependence of
the strength of the η-pairing correlation at t⊥/t‖ > 1. While
the intensity regions of P(π, π ; t ) at t⊥/t‖ > 1 show good
agreement with the lines estimated by the LRA, the η-pairing
correlation induced by A‖(t ) �= 0 in Fig. 5(a) is not so large
in comparison with the pair correlation induced by A⊥(t ) �=
0 in Fig. 5(b). This is because t‖ is small relative to t⊥
in this region, and the doublon generation along the chain
direction meditated by t‖ is inefficiently induced by A‖(t ).
On the other hand, since the doublon generation along the
rung direction meditated by t⊥ can be strongly induced by
A⊥(t ), in Fig. 5(b), we observe the prominently induced η-
pairing correlation at t⊥/t‖ > 1. In Fig. 5(b), the η-pairing
correlation is significantly enhanced at 1.5 < t⊥/t‖ < 2.0. In
the independent rung limit (t‖/t⊥ → 0), the η-pairing cor-
relation must be suppressed because a weak t‖ relative to
t⊥ is unfavorable for the spatial extension of the correlation
along the chain direction, where the nonlocal (x > 1) pair
correlations cannot contribute to P(π, π ; t ). For this reason,
the η-pairing correlation in Fig. 5(b) can be enhanced in

the intermediate t⊥/t‖ regime. Hence, we can interpret the
intensity of P(π, π ; t ) by considering the contributions of t‖ in
the LRA.

IV. SUMMARY

We have investigated the η pairing in the optically driven
Hubbard ladder using the time-evolution method based on
ED. As in the 1D Hubbard chain, we have observed the
light-induced enhancement of the η-pairing correlation in
the Hubbard ladder when the pump field is polarized along
the chain direction. Moreover, we have shown that the
pair correlation induced by the pump field polarized along
the rung direction is larger than the correlation induced by
the field polarized along the chain direction. This conse-
quence is mainly caused by the strong interchain component
of the pair correlations. This rung-like η pairing observed in
the large t⊥/t‖ region is unique in the ladder system. Finally,
the origin of the photoinduced pair in the strong t⊥ regime has
been clarified using the LRA.

The pump electric field can also enhance charge cor-
relations associated with the doublon creation. In the 1D
photodoped Mott insulator, the η-pairing correlation is dom-
inant when the nearest-neighbor Coulomb interaction V is
weak whereas the charge-density-wave correlation becomes
dominant when V is large [20,21]. As in the 1D chain, the
intersite interaction V may enhance the charge-density-wave
correlation in the photodoped ladder system. Experimen-
tally, η pairing has not been observed up to date. Since the
maximum value of the induced η-pairing correlation in the
Hubbard ladder is larger than that of the single chain limit
at t⊥ = 0, the ladder lattice can be a promising host of the
photoinduced η pairing. For instance, the ladder-type cuprates
[46] can be candidates for the host of the rung-like η pairing.
If we can set up a similar situation in a many-body simulator
such as an optical lattice, we may approach the η pairing using
the ladder structure. These are open issues for the future.
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APPENDIX: SPIN CORRELATION

In this Appendix, we show the antiferromagnetic (AF)
correlation function

S(q‖ =π, q⊥ =π ; t ) =
∑
x,y

(−1)x+yS(x, y; t ) (A1)

given by

S(x, 0; t ) = 1

2L

∑
j,α

〈
�(t ) | σ̂ z

j+x,ασ̂ z
j,α | �(t )

〉
, (A2)

S(x, 1; t ) = 1

2L

∑
j,α

〈
�(t ) | σ̂ z

j+x,ᾱ σ̂ z
j,α | �(t )

〉
, (A3)
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where σ̂ z
j,α = n̂ j,α;↑ − n̂ j,α;↓. Figure 6 plots the time evolu-

tion of S(q‖ =π, q⊥ =π ; t ), where the parameters used in
Figs. 6(a) and 6(b) are the same as Figs. 1(b) and 1(c), respec-
tively. Figures 6(a) and 6(b) are the results when the pump
electric fields are polarized along the chain and rung direc-
tions, respectively. The initial states (at t = 0) possess strong
AF correlations. Since the formation of the rung spin-singlet
suppresses the AF correlation, the initial state at t⊥/t‖ = 2
[Fig. 6(b)] has a smaller AF correlation than that at t⊥/t‖ =
0.5 [Fig. 6(a)]. In both cases, the pump electric fields re-
duce the AF correlations. This suppression is mainly caused
by the photoinduced doublon creation. Because the double
occupancy is strongly enhanced by A⊥(t ) as shown in
Fig. 1(c), the AF correlation after the pulse irradiation in
Fig. 6(b) is smaller than that in Fig. 6(a).

A||≠0 (chain), t =0.5t||A||≠0 (chain), t =0.5t|| A ≠0 (rung), t =2.0t||A ≠0 (rung), t =2.0t||

S(
π

,π
;t)

S(
π

,π
;t)

FIG. 6. Time evolution of the antiferromagnetic correlation
function S(π, π ; t ) when (a) A‖(t ) �= 0 and (b) A⊥(t ) �= 0. The
parameters used in (a) and (b) are the same as the parameters in
Figs. 1(b) and 1(c), respectively.

[1] D. N. Basov, R. D. Averitt, and D. Hsieh, Nat. Mater. 16, 1077
(2017).

[2] C. Giannetti, M. Capone, D. Fausti, M. Fabrizio, F. Parmigiani,
and D. Mihailovic, Adv. Phys. 65, 58 (2016).

[3] K. Yonemitsu and K. Nasu, Phys. Rep. 465, 1 (2008).
[4] S. Ishihara, J. Phys. Soc. Jpn. 88, 072001 (2019).
[5] A. de la Torre, D. M. Kennes, M. Claassen, S. Gerber, J. W.

McIver, and M. A. Sentef, Rev. Mod. Phys. 93, 041002 (2021).
[6] J. W. McIver, B. Schulte, F.-U. Stein, T. Matsuyama, G. Jotzu,

G. Meier, and A. Cavalleri, Nat. Phys. 16, 38 (2020).
[7] D. Fausti, R. I. Tobey, N. Dean, S. Kaiser, A. Dienst, M. C.

Hoffmann, S. Pyon, T. Takayama, H. Takagi, and A. Cavalleri,
Science 331, 189 (2011).

[8] M. Mitrano, A. Cantaluppi, D. Nicoletti, S. Kaiser, A. Perucchi,
S. Lupi, P. Di Pietro, D. Pontiroli, M. Riccò, S. R. Clark, D.
Jaksch, and A. Cavalleri, Nature (London) 530, 461 (2016).

[9] T. Oka and S. Kitamura, Annu. Rev. Condens. Matter Phys. 10,
387 (2019).

[10] M. S. Rudner and N. H. Lindner, arXiv:2003.08252.
[11] A. Eckardt, Rev. Mod. Phys. 89, 011004 (2017).
[12] M. Bukov, L. D’Alessio, and A. Polkovnikov, Adv. Phys. 64,

139 (2015).
[13] T. Kaneko, T. Shirakawa, S. Sorella, and S. Yunoki, Phys. Rev.

Lett. 122, 077002 (2019).
[14] C. N. Yang, Phys. Rev. Lett. 63, 2144 (1989).
[15] F. H. L. Essler, H. Frahm, F. Göhmann, A. Klümper, and V. E.

Korepin, The One-Dimensional Hubbard Model (Cambridge
University Press, Cambridge, 2005).

[16] T. Kaneko, S. Yunoki, and A. J. Millis, Phys. Rev. Res. 2,
032027(R) (2020).

[17] S. Ejima, T. Kaneko, F. Lange, S. Yunoki, and H. Fehske, Phys.
Rev. Res. 2, 032008(R) (2020).

[18] S. Ejima, F. Lange, and H. Fehske, Phys. Rev. Res. 4, L012012
(2022).

[19] J. Li, D. Golez, P. Werner, and M. Eckstein, Phys. Rev. B 102,
165136 (2020).

[20] Y. Murakami, S. Takayoshi, T. Kaneko, Z. Sun, D. Golež, A. J.
Millis, and P. Werner, Commun. Phys. 5, 23 (2022).

[21] Y. Murakami, S. Takayoshi, T. Kaneko, A. M. Läuchli, and P.
Werner, Phys. Rev. Lett. 130, 106501 (2023).

[22] Y. Murakami, D. Golež, M. Eckstein, and P. Werner,
arXiv:2310.05201.

[23] M. Sarkar, Z. Lenarčič, and D. Golež, arXiv:2311.04899.
[24] S. Kitamura and H. Aoki, Phys. Rev. B 94, 174503

(2016).
[25] F. Peronaci, O. Parcollet, and M. Schiró, Phys. Rev. B 101,

161101(R) (2020).
[26] J. Tindall, F. Schlawin, M. Buzzi, D. Nicoletti, J. R. Coulthard,

H. Gao, A. Cavalleri, M. A. Sentef, and D. Jaksch, Phys. Rev.
Lett. 125, 137001 (2020).

[27] J. Tindall, F. Schlawin, M. A. Sentef, and D. Jaksch, Phys. Rev.
B 103, 035146 (2021).

[28] H. Sun, M. Huo, X. Hu, J. Li, Z. Liu, Y. Han, L. Tang, Z. Mao,
P. Yang, B. Wang, J. Cheng, D.-X. Yao, G.-M. Zhang, and M.
Wang, Nature (London) 621, 493 (2023).

[29] J. Hou, P.-T. Yang, Z.-Y. Liu, J.-Y. Li, P.-F. Shan, L. Ma, G.
Wang, N.-N. Wang, H.-Z. Guo, J.-P. Sun, Y. Uwatoko, M.
Wang, G.-M. Zhang, B.-S. Wang, and J.-G. Cheng, Chin. Phys.
Lett. 40, 117302 (2023).

[30] Y. Zhang, D. Su, Y. Huang, H. Sun, M. Huo, Z. Shan, K. Ye,
Z. Yang, R. Li, M. Smidman, M. Wang, L. Jiao, and H. Yuan,
arXiv:2307.14819.

[31] H. Sakakibara, M. Ochi, H. Nagata, Y. Ueki, H. Sakurai, R.
Matsumoto, K. Terashima, K. Hirose, H. Ohta, M. Kato, Y.
Takano, and K. Kuroki, arXiv:2309.09462.

[32] G. Wang, N. Wang, J. Hou, L. Ma, L. Shi, Z. Ren, Y. Gu, X.
Shen, H. Ma, P. Yang, Z. Liu, H. Guo, J. Sun, G. Zhang, J. Yan,
B. Wang, Y. Uwatoko, and J. Cheng, arXiv:2309.17378.

[33] Z. Luo, X. Hu, M. Wang, W. Wú, and D.-X. Yao, Phys. Rev.
Lett. 131, 126001 (2023).

[34] H. Sakakibara, N. Kitamine, M. Ochi, and K. Kuroki,
arXiv:2306.06039.

[35] Y. Zhang, L.-F. Lin, A. Moreo, T. A. Maier, and E. Dagotto,
arXiv:2307.15276.

[36] T. Kaneko, H. Sakakibara, M. Ochi, and K. Kuroki, Phys. Rev.
B 109, 045154 (2024).

075122-6

https://doi.org/10.1038/nmat5017
https://doi.org/10.1080/00018732.2016.1194044
https://doi.org/10.1016/j.physrep.2008.04.008
https://doi.org/10.7566/JPSJ.88.072001
https://doi.org/10.1103/RevModPhys.93.041002
https://doi.org/10.1038/s41567-019-0698-y
https://doi.org/10.1126/science.1197294
https://doi.org/10.1038/nature16522
https://doi.org/10.1146/annurev-conmatphys-031218-013423
https://arxiv.org/abs/2003.08252
https://doi.org/10.1103/RevModPhys.89.011004
https://doi.org/10.1080/00018732.2015.1055918
https://doi.org/10.1103/PhysRevLett.122.077002
https://doi.org/10.1103/PhysRevLett.63.2144
https://doi.org/10.1103/PhysRevResearch.2.032027
https://doi.org/10.1103/PhysRevResearch.2.032008
https://doi.org/10.1103/PhysRevResearch.4.L012012
https://doi.org/10.1103/PhysRevB.102.165136
https://doi.org/10.1038/s42005-021-00799-7
https://doi.org/10.1103/PhysRevLett.130.106501
https://arxiv.org/abs/2310.05201
https://arxiv.org/abs/2311.04899
https://doi.org/10.1103/PhysRevB.94.174503
https://doi.org/10.1103/PhysRevB.101.161101
https://doi.org/10.1103/PhysRevLett.125.137001
https://doi.org/10.1103/PhysRevB.103.035146
https://doi.org/10.1038/s41586-023-06408-7
https://doi.org/10.1088/0256-307X/40/11/117302
https://arxiv.org/abs/2307.14819
https://arxiv.org/abs/2309.09462
https://arxiv.org/abs/2309.17378
https://doi.org/10.1103/PhysRevLett.131.126001
https://arxiv.org/abs/2306.06039
https://arxiv.org/abs/2307.15276
https://doi.org/10.1103/PhysRevB.109.045154


PHOTOINDUCED η-PAIRING CORRELATION IN … PHYSICAL REVIEW B 109, 075122 (2024)

[37] S. Hirthe, T. Chalopin, D. Bourgund, P. Bojović, A. Bohrdt, E.
Demler, F. Grusdt, I. Bloch, and T. A. Hilker, Nature (London)
613, 463 (2023).

[38] A. Bohrdt, L. Homeier, I. Bloch, E. Demler, and F. Grusdt, Nat.
Phys. 18, 651 (2022).

[39] E. Dagotto, J. Riera, and D. Scalapino, Phys. Rev. B 45,
5744(R) (1992).

[40] M. Troyer, H. Tsunetsugu, and T. M. Rice, Phys. Rev. B 53, 251
(1996).

[41] R. Peierls, Z. Phys. 80, 763 (1933).
[42] T. J. Park and J. C. Light, J. Chem. Phys. 85, 5870 (1986).
[43] H. Lu, S. Sota, H. Matsueda, J. Bonča, and T. Tohyama, Phys.
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