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In a milestone paper [F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988)], Haldane elaborated a model of
graphene within the time-reversal symmetry breaking is achieved by next-nearest-neighbors imaginary counter-
rotating hopping, hence conferring topological properties. In recent years, the time-reversal symmetry turned out
to be broken also by light irradiation in so-called Floquet topological insulators (FTIs). On the other hand, Kane
and Mele introduced a spin-orbit coupling (SOC) model [C. L. Kane et al., Phys. Rev. Lett. 95, 226801 (2005)]
inspired by the Haldane’s mechanism. In this paper, we present the topological properties of a FTI possessing
SOC, using graphene as the playground. It was found that the interplay between sublattice subspace and the
spin one triggers interesting topological phase transitions. Basically, in a FTI with SOC, two topological phases
may be excited: charge quantum Hall effect (CQHE) and, respectively, spin quantum Hall effect (SQHE) phases.
Also, it was demonstrated that the CQHE and SQHE coexistence is forbidden by the topology of the system. As
well, it was identified a special driving regime of spin filter (SF), in which only one spin state is topological and,
consequently, will be filtered in quantum transport.

DOI: 10.1103/PhysRevB.109.075121

I. INTRODUCTION

Symmetries are the main aspect in the physics of topo-
logical insulators [1]. On the other hand, the dimensionality
of the system also plays a high importance role. 2D topo-
logical insulators, so-called Chern insulators, are materials
endowed with time-reversal symmetry and by breaking it, the
topological phase transition is achieved [2]. In particular, a
very interesting time reversal symmetry breaking mechanism
is the circularly polarized light irradiation, and the systems in
question are called Floquet topological insulators (FTIs) [3,4].

In recent years, the spin-orbit interaction was also included
in the topological phases of matter studies and the findings
were very promising for a future spintronics technology. The
concept of spin-resolved topology was already studied in FTIs
such as semiconductor quantum wells [5,6] and cold atoms
trapped in optical lattices [7–9].

So far, graphene [10] has established itself as the em-
blematic material within the Chern insulators class. In a
milestone paper [11], in 1988, Haldane introduced a model
of time-reversal symmetry breaking in graphene via a next-
nearest-neighbors imaginary counter-rotating hopping. Along
recent years, it was observed that the mechanism proposed by
Haldane is accomplished by light irradiation [12–19], hence
inducing a Floquet topological phase. In an other valuable
work [20], in 2005, Kane and Mele developed a model for
spin-orbit coupling (SOC), which describes the topological
properties of spin-resolved physics of graphene.

Starting from Haldane and Kane-Mele models [11,20], in
this work, we investigate the topological properties of FTIs
possessing an intrinsic SOC, as discussed also in Ref. [21]
and in an extended Kane-Mele model containing disorder in
Ref. [22]. We find that in a FTI with SOC, two topological
phases may be excited, namely charge quantum Hall effect
and, respectively, spin quantum Hall effect and their coexis-
tence is forbidden by the intrinsic topology of the system.

The present work is organized as follows. In Sec. II,
we present the model and discuss how the light interaction
is introduced. In Sec. III, the main findings are discussed.
Here, we elaborate a topological phase diagram based on
Chern numbers and explain each phase in terms of energy
band structure. Also, we interpret the topological phases in
question in terms of quantum charge and spin transport. Fi-
nally, in Sec. IV, we summarize the main findings of our
work.

II. THEORY

We analyze the interaction of a honeycomb lattice system
(graphene) possessing an intrinsic SOC with light. The light
is introduced in our problem via the following time-dependent
vector potential (plane wave approximation):

A(t ) = A0[cos(ωt )x̂ + � sin(ωt )ŷ]. (1)

In Eq. (1), A0 is a real constant amplitude representing the
magnitude of the vector potential, ω is the frequency, � = ±1
is the helicity quantum number, and x̂(ŷ) is the unit vector
along the x(y) axis. We consider the graphene sheet lying in
the horizontal plane, while the light is propagating at normal
incidence. Schematically, the system in question is described
in Fig. 1(a). The honeycomb lattice of graphene is depicted in
Fig. 1(b), where the unit cell is represented by the gray shaded
area and contains two atoms indexed by A (blue) and, respec-
tively, B (red). The distance between two nearest-neighbors
A and B is denoted by a. In what follows, we employ the
tight-binding approach, using the second quantization for-
malism, where the operator a†

i (b†
i ) creates a particle of type

A(B) at the atomic site indexed by i and, respectively, aj (b j )
annihilates a particle of type A(B) at the atomic site j. In the
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FIG. 1. Schematic description of the studied system. (a) The
graphene is placed on the horizontal plane, while the light (h̄ω)
is propagating on the perpendicular direction. (b) The honeycomb
lattice. The unit cell, represented by the gray shaded area, contains
two atoms indexed by A (blue) and, respectively, B (red).

framework discussed above, the time-dependent Hamiltonian
of the system reads with the following equations:

H (t ) =
∑

σ=±1

(
Hσ

0 (t ) + Hσ
SO(t )

)
, (2)

Hσ
0 (t ) = −γ

∑
〈Ai,Bj 〉

Exp[iθi, j (t )]a†
i b j + H.c., (3)

Hσ
SO(t ) = i

2
λSOσ

∑
〈〈Ai,Aj 〉〉

vi jExp[iθi j (t )]a†
i a j+a ↔ b+H.c..

(4)

The first term in the expression of the total Hamiltonian
(2), defined in Eq. (3), expresses the interaction of the hon-
eycomb lattice system with light in the absence of SOC,
where γ = 2.8 eV represents the hopping amplitude be-
tween nearest-neighbors 〈Ai, Bj〉. The second term, defined
in Eq. (4), introduces in our problem the SOC, as discussed
by Kane and Mele in Ref. [20], where λSO gives the coupling
strength, σ = ±1 is the spin quantum number, and vi j = ±1,
depending on the next-nearest-neighbors hopping direction
(counterclockwise and, respectively, clockwise). Note that in
the actual model, besides the nearest-neighbors real valued
hopping within Eq. (3), we deal also with an imaginary next-
nearest-neighbors hopping � Ai, Bj �, realizing a Haldane
model, proposed in Ref. [11]. Explicitly, the interaction with
light is introduced via Peierls phases, defined by the following
path integral:

θi j (t ) = e

h

∫
i→ j

A(t ) · dl, (5)

where e is the elementary charge constant, h is the Plank
constant, A(t ) is the vector potential defined in Eq. (1), and
dl parametrizes the path between i and j atomic sites.

Since the time periodicity is an intrinsic property of the
light and implicitly of the Hamiltonian (2), in what follows we
utilize the Floquet formalism [23–27]. Within this approach,
the energy scales are crucial in formulating the appropriate
Hamiltonian. For a photon energy h̄ω � 6γ , where 6γ repre-
sents the band width of the energy spectrum of graphene, the
system is described in good agreement by the following high
frequency Hamiltonian [19] (see the Supplemental Material

[28]):

HHF = H0 + 1

h̄ω
[H−1, H1], (6)

Hn = 1

T

∫ T

0
dteinωt H (t ). (7)

Taking into account the integral (7), within each Hn term, the
Peierls substitution will transform as

Exp[iθ (t )] → inJn

(
eaA0

h

)
e�inϕ, for Eq. (3), (8)

Exp[iθ (t )] → inJn

(
ea

√
3A0

h

)
e�inϕ, for Eq. (4). (9)

Here, Jn(x) represents the first kind Bessel function, e the
elementary charge constant, h the Planck constant, and ϕ the
direction between the adjacent atoms between the hopping
takes place. See the Supplemental Material [28] for proof.

III. NUMERICAL RESULTS AND DISCUSSION

The Fourier space of graphene has a honeycomb structure,
as its real space, where each hexagon corner represents a high
symmetry point, called a Dirac point or K point. In these
special points in the Brillouin zone, the energy bands close,
forming so-called Dirac cones where the energy disperses
linearly. However, when the graphene is driven by light, the
Dirac cones vanish and, around each K point, an energy
gap arises. If the system is confined on one direction (rib-
bon), within the energy gaps two symmetrically crossed chiral
bands emerge. These two bands have a striking property. First,
each of them hosts a well defined A or B state which also
has a well defined momentum direction. Second, the states we
are discussing here are strongly and separately confined at the
edges of the system, so-called chiral edge states. Therefore, in
the Floquet topological phase, in graphene emerge two con-
duction channels localized at the edges and to each channel
a well defined A or B state participates. In this way, the cir-
cularly polarized light driving triggers an anomalous quantum
Hall effect (QHE). This phenomenon was first discussed in
Refs. [12,13,15,17,18]. For an in-depth analysis we refer the
reader to Ref. [29].

In what follows we express all the (quasi)energies in terms
of hopping amplitude γ and the magnitude of the light vector
potential in terms of h/(ea).

When the SOC is present, automatically a supplementary
degree of freedom is introduced, and that is the spin quantum
number σ = ±1. As discussed by Kane and Mele in Ref. [20],
a SOC term present in the graphene Hamiltonian opens a gap
in the energy spectrum, where two spin-degenerate symmet-
rically crossed bands appear. However, these two bands are
not chiral, therefore the charge QHE (CQHE) condition is not
fulfilled. Instead, the spin QHE (SQHE) phase is achieved.

For a comprehensive investigation, we start by analyzing
a honeycomb lattice with SOC under light driving, in an
infinite configuration. In order to characterize the band struc-
ture of the system, we perform the Fourier transform of real
space Hamiltonian (6). In Figs. 2(a) and 2(b), we present
the quasienergy dispersion on the K ′-	-K direction in the
Brillouin zone, for A0 = 0.6, � = 1, and h̄ω = 10. The SOC
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FIG. 2. Band structure of graphene with SOC under light ir-
radiation, on direction K ′-	-K : (a) for spin and (b) for sublattice
polarization. The insets present a zoomed view around K ′. The green
energy bands within the insets are plotted for a graphene in the
absence of SOC and light irradiation.

strength is λSO = −0.07, a value of approximately 200 meV,
already realized experimentally, see Ref. [30]. Now, in order
to characterize the degeneracy and its lifting, we introduce the
sublattice polarization function (see Appendix for derivation):

Psl(k) = |〈An(k)|An(k)〉| − |〈Bn(k)|Bn(k)〉|
|〈An(k)|An(k)〉| + |〈Bn(k)|Bn(k)〉| , (10)

where n = 1, 2 represents the band index. The function (10)
takes values in the interval [−1, 1] and have the following
interpretation. For instance, if Psl = 1, an energy band at a
given kx participates exclusively in A state. For Psl = −1,
there participates exclusively a B state. For any other value,
the participation is from both A and B states, each of them
with a specific weight. By analogy, we also introduce the spin
polarization function denoted by Pσ with σ = ±1, having the
same interpretation as Psl.

As revealed in panel (a), around each Dirac point, an
energy gap arises, which is due to the light interaction and
SOC, as discussed above. Interestingly, the light irradiation

lifts the spin degeneracy and in the vicinity of Dirac points the
bands are completely spin polarized. In the inset is presented a
zoomed view around K ′, where the dispersion in the absence
of light and SOC is plotted with green. Here, we obviously
observe the intersection of the two green bands, forming a
Dirac cone where the energy disperses linearly. The most
important effect we observe here is that the gaps have different
magnitudes for each spin state. In our example, the gap for
σ = +1 is lower than for σ = −1. This behavior leads us
to the following prediction. If the light drives the system
differently, depending on the spin state, the corresponding
bands will close and open one after the other. On the other
hand, since the topological phase transition is accompanied
mandatorily by a band closing, the topological phase diagram
will be automatically spin resolved. Note that the spin polar-
ization is the same for both K ′ and K points. Going further, we
investigate the interaction also in sublattice polarization terms,
for the same parameters as in panel (a). As depicted in panel
(b), around the two Dirac points, the bands are also polarized
in A and B states. If we move from one Dirac point to the other,
unlike in the case of spin-polarization analysis, we observe
that the sublattice polarization is reversed. Consequently, both
the large and small gaps are bordered by bands containing
both A and B states. Recall that this situation is not the same
in the case of spin states.

Since we are dealing with a bipartite spin subspace, we
can define a spin Chern number Cσ [31–33] associated to
each σ = ±1 spin state for the lower spin bands (below zero
quasienergy level). The spin Chern number characterizes the
topology of the system with respect to a well defined spin state
and, hence, will govern the SQHE phase. As well, since in-
trinsic SOC is spin-conserving, we also define a spin-summed
Chern number:

C = C−1 + C1. (11)

The topological invariant defined above globally characterizes
the system assuming that the Fermi level always lies within
the quasienergy gap and will govern the CQHE phase.

Panel (a) of Fig. 3 represents the topological phase di-
agram, computed using the Fukui-Hatsugai-Suzuki method
[34]. The top plot shows the spin Chern number Cσ , while the
bottom one is for spin-summed Chern number C. Analyzing
the topological transitions, we distinguish different regimes
of light driving. Whenever C−1 = −C+1, the system lies in a
SQHE phase (yellow regions), and in transport terms only spin
states are transversely transmitted with opposite direction.
Since in this phase C = 0, the system will not transport any
charge. On the other hand, when C−1 = C+1 = 1 and C = 2,
the QSHE is quenched and the system is in a CQHE phase
(gray regions), then only charge will be transported. More-
over, we expect a Hall resistance RH = 1

2 e/h2. Interestingly,
the values C = −2 are forbidden. This phenomenon is related
to the helicity of the driving light. Examining Eqs. (8) and
(9), we observe that the substitution � → −� is equivalent
to changing ϕ → −ϕ or y → −y. Since this transformation
rotates the system about the xaxis, the direction of the edge
states momentum will be inverted, therefore also C changes its
sign. In this way, if � = −1 the conduction channels localized
at the edges of the lattice will also revert their direction,
hence the charge will be transported implicitly on the opposite
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FIG. 3. Topological phase diagram vs A0 (upper panel) and quasienergy dispersion for a ribbon with zig-zag termination and ten atoms in
the unit cell (lower panels): (b) SQHE [yellow regions within (a)], (c) CQHE (black regions), and (d) SF driving regime (blue marker).

direction than before. This effect will generate a Hall resis-
tance RH = − 1

2 e/h2. Concerning the spin states, the same
behavior is valid. Having in mind the discussion above,
when changing the light helicity state, also the next-nearest-
neighbors hopping directions are inverted [vi j → −vi j in
Eq. (4)] and this is the same as changing the spin state (σ →
−σ ). Resuming, the change � → −� determines C → −C
and Cσ → −C−σ , and this is one of the most important phe-
nomena which happens in a FTI with SOC (see Fig. S3(a) in
the Supplemental Material [28]). Besides SQHE and CQHE
phases, we can identify a special regime of spin filtering (SF).
This occurs when one spin state gap remains open, while the
other closes. Namely, this effect takes place every time when
one of Cσ changes its sign, see for instance blue marker where
C−1 becomes 1 from −1.

In terms of quasienergy dispersion and band chirality, the
topological phases examined above are described in Fig. 3,
panels (b) for SQHE [red marker within panel (a)], (c) for
CQHE (black marker), and (d) for SF driving regime, respec-
tively. Analyzing the quasienergy dispersion, we observe three
different configurations. In what follows we assume a Fermi
level (FL) EF = 0.05 residing in the topological gap. First, in
the SQHE phase the FL is crossing four chiral bands having
alternating chiralities. In this configuration, at the edges of the
system will arise two A and B states. The A type states will
be localized at one edge and, respectively, B type states, at
the other edge. However, as the slope of the chiral bands in-
dicates, at each edge will arise two conduction channels with
opposite directions. Hence, the charge Hall transport should
vanish. Second, in the CQHE phase, the FL also crosses four
chiral bands, but this time, A type states will have a positive

momentum direction and, respectively, B states will have a
negative one. As a result, at one edge will arise two conduction
channels with the same direction and at the other edge, two
conduction channels with the other direction. In this way, the
system transports charge in the transversal direction, in a Hall
device configuration. Finally, in the SF regime, the FL crosses
only two chiral bands, populated with σ = −1 spin state. The
other nonchiral bands, corresponding to σ = +1 spin state,
are exactly the same as when the system was not driven by
light and the SOC was absent. In other words, the σ = +1
state shows simply a pristine zig-zag terminated graphene
ribbon dispersion. These two nonchiral bands accommodate
nonlocalized states. This last interpretation is best summa-
rized in the Supplemental Material [28], where we show the
local density of states (LDOS) for each A, B, σ = ±1 state. In
the case of � = −1, the bands chirality within panels (b), (c),
and (d) is reversed (see panels (b), (c) and (d) of Fig. S3 in the
Supplemental Material [28]).

In Fig. 4, we present transport results using Landauer-
Büttiker formalism [35,36] (see the Supplemental Material
[28] for details). The spin-resolved Hall resistance is denoted
by RHσ , while RH expresses the charge transport. In what
follows, the constant h/e2 will be dropped. In panel (a), the
SQHE (top plot) and CQHE (bottom plot) are highlighted
vs A0. The Hall resistance specific plateaus are in perfect
agreement with the topological phase transitions explored in
terms of Chern numbers and quasienergy dispersion within
the topological gaps opened by light driving and SOC. More-
over, in panel (b), we investigated the transport effects with
respect to FL in the SF regime [see blue marker in Fig. 3(d)].
In the SF regime, the σ = −1 state gap is still open, while the
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FIG. 4. Quantum Hall transport diagram. (a) SQHE (top panel)
and CQHE (bottom panel) vs A0. RHσ (RH ) plateaus are in perfect
agreement with the topological phase diagram [Fig. 3(a)]. (b) RHσ in
SF driving regime vs EF . The state σ = −1 is filtered.

corresponding σ = +1 closes, therefore only σ = −1 states
will be topological. In the configuration discussed here, the
spin Hall transport will be achieved only for σ = −1, as long
as the FL resides in the topological gap. As a result, in the
transport diagram RH−1 will show a +1 plateau, while RH+1

vanishes. That is to say the σ = −1 spin will be filtered in the
transversal direction. Finally, when � = −1, as discussed, the
chirality is reversed and, hence, the Hall plateaus will change
their sign and also spin state. See the Supplemental Material
[28] for results.

SF represents a transitional regime and thus it may be seen
as a critical property. The SF is realized whenever the spin
Chern number Cσ changes its sign, namely at a topological
phase transition. On the other hand, each phase transition is
determined by an energy gap closing. Here, the main impor-
tant property is represented by the spin conservation, thus
the entire system may be understood as two noninteracting
subsystems (one for σ = −1 and one for σ = +1). Having in
mind this property, the spin-resolved topological phase transi-
tions realize independently. In the Floquet model proposed in
our manuscript, the spin-resolved energy gap Gσ is governed
by the following functions:

Gσ=+1 = 3
√

3

5

∣∣√3J2
1 (A0) − 5λSOJ0(

√
3A0)

∣∣, (12)

Gσ=−1 = 3
√

3

5

∣∣√3J2
1 (A0) + 5λSOJ0(

√
3A0)

∣∣. (13)

Consequently, whenever A0 takes a value for which Gσ=±1 =
0, the TRS is not broken, thus the subsystem behaves simply
as a graphene with renormalized hopping parameters. In this
case, only one spin state (subsystem) lies in a topological
phase and, by consequence, will be filtered in a Hall transport
experiment.

Finally, we suggest a feasible experimental method to
probe the theory discussed in this manuscript. First, for the
fabrication of the graphene sample, we invoke Ref. [30],
which demonstrated that a layer of Pb intercalated between a

monolayer graphene sheet deposited on Pt(111) enhances the
SOC up to a value of 200 meV. Otherwise, another technique
for SOC increasing consists of a controlled hydrogenation,
as shown in Refs. [37,38]. Second, the graphene based Hall
transport device may be set up by attaching a number of
electrodes using the method presented in Ref. [39]. Third,
the measurements under circularly polarized light irradiation
[13,40] must be performed in the presence of a microwave
excitation as already realized in Refs. [41–43].

IV. CONCLUSION

To summarize, we have explored the topological properties
of a FTI with an intrinsic SOC. The interplay between the
sublattice subspace and the spin one turned out to be the trig-
ger of topological phase transitions. With respect to A0, which
in turn dictates the driving light intensity, we have identified
two phases, namely SQHE and CQHE, whose coexistence is
forbidden by the topology of the system. Moreover, we have
also distinguished a special driving regime of SF, in which
only one spin state is topological and, hence, will be filtered
in quantum transport. All the topological properties described
in the present paper were explained correlating the abstract
method of Chern numbers with quasienergy spectral proper-
ties. Finally, we have discussed the transport phenomena from
the perspective of topological features presented in the first
part of this work.
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APPENDIX A: SUBLATTICE POLARIZATION FUNCTION

In this Appendix we present a rigorous definition and in-
terpretation for Eq. (10).

In infinite configuration, where the unit cell contains two
atoms (A and B), the system is described by the following two-
component uniparticle wave function:

|ψn(k)〉 = αn(k)|a〉 + βn(k)|b〉, (A1)

where the basis kets |a〉 and |b〉 satisfy

〈a|a〉 = 〈b|b〉 = 1 and 〈b|a〉 = 0. (A2)

In Eq. (A1), n = 1, 2 represents the band index. The complex
coefficients αn(k) and βn(k) express the contribution of each
A and B state. The normalization of the wavefunction (A1) in
the sublattice space implies

|αn(k)|2 + |βn(k)|2 = 1. (A3)

Now consider the following projectors on A and B states,
respectively:

PA = |a〉〈a| and PB = |b〉〈b|. (A4)

Using (A4), we define the following states:

|An(k)〉 = PA|ψn(k)〉 and |Bn(k)〉 = PB|ψn(k)〉. (A5)
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In Eq. (10), the numerator reads

|〈An(k)|An(k)〉| − |〈Bn(k)|Bn(k)〉| = |αn(k)|2 − |βn(k)|2.
(A6)

Hence, taking into account Eqs. (A3) and (A6), the func-
tion defined by Eq. (10) (sublattice polarization, Psl) expresses
the difference between A and B states contribution at any given

k. Say, for instance, at a given k1 in the nth band, Psl = 1,
hence |αn(k1)|2 = 1 and the wavefunction (A1) entirely rep-
resents state A. In other words, at k1 point, the band n is fully
polarized in A states. On the other hand, if in k2, Psl = −1, the
respective band is fully polarized in B states. Going further, if
in k3, Psl = 0, the band is fully nonpolarized.
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