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Zigzag edge ferromagnetism of triangular-graphene-quantum-dot-like system
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Here, the magnetic susceptibility of a triangular-graphene-quantum-dot-like system was examined by using
the determinant quantum Monte Carlo method. We focused on three zigzag edge quantum dots or rings, namely,
the triangular graphene quantum ring, bilayer triangular graphene quantum dots, and bilayer triangular graphene
quantum ring. The triangular-graphene-quantum-dot-like system exhibited robust edge ferromagnetic behavior,
which was independent of size, monolayer or bilayer, or dot or ring shape, according to the numerical results. At
half filling, the edge magnetic susceptibility is increased by on-site interactions, especially in the low-temperature
region. Spintronics systems may benefit from use of this system due to its robust edge ferromagnetic behavior.
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I. INTRODUCTION

The rich physical features of graphene have led to its exten-
sive research and application development in the domains of
electrical [1–4], optics [5,6], and other fields over the past few
decades. Numerous research groups have explored the prop-
erties which were effected by the stacking mode in multilayer
graphene [7–18]. Additionally, with the increasing demand for
low-power devices, the field of spintronics is rapidly devel-
oping, and novel magnetic properties have also been found
in both monolayer and bilayer graphene. Therefore, the in-
vestigation into the possible ferromagnetism of graphene is
significant for expanding its use in spintronic applications.

The electronic and magnetic properties of various graphene
systems are significantly influenced by their edge atomic
configurations [19–23], such as armchair or zigzag types.
Zigzag-edge graphene exhibits magnetism due to ferromag-
netic coupling along each zigzag edge and antiferromagnetic
coupling between two parallel zigzag edges. The presence
of strong ferromagnetic coupling along zigzag edges has
been theoretically predicted [24–26] and verified by exper-
iments [27–29]. The disruption of sublattice symmetry by
zigzag edges is a primary factor contributing to graphene’s
magnetism [30]. Furthermore, experimental studies have ob-
served spin-related phenomena to arise from zigzag edges
in graphene [31,32]. Since zigzag edges as effective strate-
gies have been attempted to realize ferromagnetic ordering,
graphene nanoribbons (GNRs) [33–35] and graphene quan-
tum dots (GQDs) [36–38] have received increasing attention.
Both of these can be thought of as putting constraints on an
endlessly long two-dimensional lattice, and the edge region
itself shows a variety of magnetic phenomena. GNRs allow
for infinite extension in one direction while being finite in
another. However, GQDs are nanometric in all dimensions and
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display remarkable optoelectronic properties due to quantum
confinement and edge effects, as compared to other quantum
dots [38]. Theoretical approaches, like quantum Monte Carlo
(QMC) method and density functional theory (DFT) simula-
tions [37,38], have predicted strong edge magnetism even in
GQDs. Recent advancements in fabrication techniques have
promoted the precise creation of GQDs with varied shapes and
sizes, offering a unique opportunity to investigate the impact
of zigzag edges on GQDs’ magnetic properties.

Among various graphene quantum dot structures,
triangular-graphene-quantum-dot-like (TGQD-like) systems
stand out, including triangular graphene quantum dots
(TGQDs) [39,40], bilayer TGQDs [41], triangular graphene
quantum rings (TGQRs) [42,43], and bilayer TGQRs [44].
Although the magnetic properties of TGQDs consistent with
Lieb’s theorem where boundary conditions influence energy
spectra in finite-sized systems, magnetic fields do not impact
edge states [45–48]. Moreover, experimental efforts have
significantly advanced in probing the frontier molecular
orbitals of TGQDs [49–52]. As we all know, stacking
layers of graphene can have a significant impact on its
magnetic properties. The electronic and transport properties
of bilayer graphene quantum dots has also been recently
reported [53–56]. However, the geometry of TGQD-like
systems make such systems harder to be studied by
analytical methods, necessitating the use of numerically exact
methods for investigating TGQDs and TGQRs with zigzag
edges.

In this work, we will further provide numerical simulations
on the magnetism of the Hubbard model in TGQD-like sys-
tems using the determinant quantum Monte Carlo (DQMC)
method. We observe that the edge magnetic susceptibility
of three types of quantum dots (rings) at finite temperatures
exhibits Curie-Weiss behavior, indicating the edge ferromag-
netism’s robustness in TGQD-like systems, regardless of
size, layering, and shape. Notably, at low temperatures, the
edge magnetic susceptibility increases with the on-site Hub-
bard interaction near the half-filling state. This robust edge
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FIG. 1. The relationship between the ratio of the number of
atoms at zigzag edge to total number of atoms Nzigzag/Nt and Nt

of TGQD, diamond shaped GQD (DSGQD), graphene nanoflake
(GNF), TGQR, respectively.

ferromagnetic behavior holds potential implications for spin-
tronic applications.

II. MODEL AND METHODS

We select the quantum dot model that most accurately cap-
tures the zigzag edge circumstances because the zigzag edge
of graphene is more prone to ferromagnetism. We determined
that the total number of atoms Nt varies with the percentage
Nzigzag/Nt of graphene nanoflakes, diamond-shaped GQDs,
TGQDs, and TGQRs with zigzag edges at different lattice
sites, as shown in Fig. 1.

It is apparent that the ratio of edge atoms in quantum rings
is greater than that in bulk quantum dots, as shown in Fig 1.
There are significantly fewer nonedge sites in the configu-
ration of quantum rings than in quantum dots, and there is
an inner edge in quantum rings. The edge proportion of the
TGQD is the highest of the three common quantum dots.
Similarly, TGQR was studied because of its high proportion of
edge regions compared to the total area. We shall investigate
only TGQRs with a hexagonal lattice of ring width, that is, the
difference between the outer diameter and inner diameter of
TGQRs in units of the graphene hexagonal lattice width. The
potential differences in edge magnetism between quantum
rings and quantum dots were also examined. As the ring width
narrows, the ratio of edge atoms to the overall number of
atoms increases.

In Fig. 2(a), the TGQD sketch is presented, while
Figs. 2(b)–2(d) depict the TGQR, bilayer TGQD, and bilayer
TGQR sketches. In particular, solid circles stand for the sites
of the top layer in the bilayer TGQD and the bilayer TGQR,
and the hollow circles represent the bottom layer. A, B sub-
lattices are distinguished by different colors, and the sites at
the zigzag edge are highlighted by green marker edge. The

FIG. 2. Sketches for (a) a TGQD with 97 sites, (b) a TGQR with
105 sites, (c) a bilayer TGQD with 92 sites, and (d) a bilayer TGQR
with 114 sites. In the subgraph (a) and (b), blue and red solid circles
indicate A and B sublattices, respectively. In the subgraph (c) and (d),
red and blue solid circles indicate A and B sublattices of the bottom
layer, while red and blue hollow circles indicate sublattices of the top
layer, respectively. The sites at the zigzag edge are marked by green
marker edge.

Hamiltonian of TGQD-like system is expressed as follows:

H = Hk + H ′
k + Hμ + HU . (1)

Among them,

Hk = −t
∑

l〈i, j〉σ
(a†

liσ bl jσ + H.c.), (2)

H ′
k = −

∑
i, j,l �=l ′,σ

ti j (a
†
liσ al ′ jσ + a†

liσ bl ′ jσ

+ b†
liσ al ′ jσ + b†

liσ bl ′ jσ ), (3)

Hμ = μ
∑
i,l,σ

(nlaiσ + nlbiσ ), (4)

HU = U
∑

i,l

(nlai↑nlai↓ + nlbi↑nlbi↓). (5)

Hk is the intralayer hopping term, and H ′
k is the interlayer

hopping term, which is zero for monolayer graphene. Hμ rep-
resents the chemical potential and HU represents the on-site
Hubbard interaction. i and j represent different lattice site
index, and 〈i, j〉 represents a pair of nearest neighbors (NN).
a†

liσ (aliσ ) creates (annihilates) electrons with spin σ (σ =↑,↓)
at the i lattice point on sublattice A of the l layer, as well as
b†

liσ (bliσ ) acting on electrons of sublattice B. nlaiσ = a†
liσ aliσ

and nlbiσ = b†
liσ bliσ . t = 2.7 eV is the NN hopping integral,

which is a typical value that best reproduces the slopes of
the valence and conduction bands at the K point from DFT
calculations and is consistent with the experimental parame-
ters [2,57,58]. ti j is the hopping integral from lattice site R1i
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of one layer to lattice site R2 j of the other layer, satisfying

ti j = tce−(|Rd
1i−Rd ′

2 j |−d0 )/ξ . (6)

For tc = 0.17t , the vertical distance is d0 = 0.335 nm, and
ξ = 0.0453 nm [59]. It indicates the interlayer hopping from
R1i of the first layer to R2 j of the second layer, which is re-
lated to the relative position of the two lattices |R1i

d − R2 j
d ′ |.

ti j decreases exponentially with interlayer distance and be-
comes negligible beyond 3.0a. A two-center Slater-Koster
type model can be used to describe the pz orbitals on carbon
atoms. The hopping terms are shown below [60,61]:

t (r) = Vppπ (r) + Vppσ (r), (7)

where

Vppπ (r) = tppπe−(|Rd
1i−Rd ′

2 j |−d0 )/ξ (8)

and

Vppσ (r) = tppσ e−(|Rd
1i−Rd ′

2 j |−d0 )/ξ

(
r · ez

|r|
)2

. (9)

For Eq. (6), the parameter t corresponds to the ppσ term of
the Slater-Koster hopping parameters, whereas tc is associated
with the ppπ term [62].

We probe the edge magnetic properties of three different
types of quantum dots (rings) at finite temperature using
DQMC simulations. In this method, the action e−βH is split
into M slices by Trotter decomposition, namely e−βH =∏

M e−�τH . Then, the interaction term is decoupled by using
Hubbard-Stratonovich transformation [63,64]. These obser-
vations can be reproduced in calculation using a particular
auxiliary field configuration because the action will be bilin-
ear after transformation. In practice, the target observations
are obtained by sampling in the configuration space. The
simulation provides 8000 warm-up sweeps to equilibrate the
system, and 30 000 sweeps were subsequently conducted for
the measurements. The number of measurements was split
into ten bins, which provide the basis for coarse-grain aver-
ages and errors estimated based on standard deviations from
the averages so that the simulation can be performed at low
enough temperatures to converge to the ground state. At half
filling, the particle-hole symmetry frees our system from the
sign problem.

The uncertainty of the Coulomb interaction parameter U in
graphene and its derivatives is noteworthy. This value can be
inferred from estimations made for polyacetylene [2,65,66],
where U ranges between 6.0 eV and 17.0 eV, encompassing
a broad range of values. To examine the influence of interac-
tions on magnetic properties in such systems, our simulations
consider U values from 1.0|t | to 4.0|t |. In the remainder of
this paper, we set t as the unit.

III. RESULTS

We introduce χb and χz to describe the magnetic sus-
ceptibility of the bulk quantum dot (ring) and the zigzag
edge, respectively, in order to characterize the ferromagnetic

FIG. 3. The χz (solid line) and χb (dotted line) of a TGQR at
〈n〉 = 1.0 with different U , and m in the tag represents the number of
hexagons contained by the edge of the triangle ring.

behavior of the system [67],

χ =
∫ β

0
dτ

∑
d,d ′=a,b

∑
i, j

〈mid (τ ) · mjd ′ (0)〉, (10)

where mia (τ ) = eHτ mia (0)e−Hτ , mia = a†
i↑ai↑ − a†

i↓ai↓, and
sublattices A and B are equivalent. The bulk magnetic sus-
ceptibility χb is the average of the zz spin correlation of all
sublattices, and χz is the average of the sublattice of the zigzag
edge of the quantum dot (ring), which is shown in Fig. 2 with
special marking edges.

To determine how the edge magnetic susceptibility of
TGQRs changes with temperature at various on-site inter-
actions U = 1.0|t | ∼ 4.0|t |, we first plot Fig. 3 and that χz

decreases with temperature in an inversely proportional way.
We assume that the edge of the TGQR is ferromagnetic ac-
cording to the Curie-Weiss law χ = C/(T − TC ). The law
shows the connection between magnetic susceptibility and
temperature in ferromagnetic materials below the Curie tem-
perature TC .

We choose two values of U for fitting. The first typical
U is derived from the Peierls-Feynman-Bogoliubov varia-
tional principle, which maps a generalized Hubbard model
with nonlocal Coulomb interactions onto an effective Hubbard
model with only on-site effective interactions U , demonstrat-
ing that U is approximately 1.6|t | [68]. The second one, U =
3.0|t | [67], is a typical value for examining how interactions
affect the magnetic characteristics of quantum dots. For these
calculations, we use the following formula:

χ = C

T − TC
. (11)

According to Fig. 4, TGQR exhibits conventional ferro-
magnetic behavior, and the relationship between χz and
temperature satisfies the Curie-Weiss law. The TC is approx-
imately 0.033|t | at U = 3.0|t | and approximately 0.013|t | at
U = 1.6|t |.

The Monte Carlo approach results in larger intrinsic vari-
ances due to the process of sampling at lower temperatures,
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FIG. 4. The χz of a TGQR of m = 10 at 〈n〉 = 1.0 with U =
1.6|t | and 3.0|t | and the fitting of Curie’s law, respectively.

which produces a slightly incorrect result. The magnetic sus-
ceptibility at the lowest temperature in the calculation result
is used to estimate the maximum inaccuracy of TC ,

δTC = C

χ2
δχ. (12)

For U = 3.0|t |, δTC is approximately 0.008|t |. For U =
1.6|t |, δTC is approximately 0.005|t |. Our results demonstrate
the edge ferromagnetic feature even when the interaction U is
small.

The bulk magnetic susceptibility χb is flat and can be
deduced from the half-filled Hubbard model on the ideal hon-
eycomb lattice due to its antiferromagnetism in the ground
state.

For any central atom, the NN atom has a negative spin
correlation factor because the hexagonal honeycomb lattice
is antiferromagnetic. This spin correlation between the next-
nearest neighbor (NNN) atom and the central atom is positive,
that is, ferromagnetic correlation, because the NNN atom and
NN atom have a NN relationship. The center atom and the
NNN atom are connected by a NN relationship to the same
sublattice, according to the graphene structure. Therein, the
high dependence of χz on temperature may be caused by the
fact that the atoms at the zigzag edges belong to the same
sublattice.

We show χb and χz as the number of hexagonal lattices
at the TGQR edge shifts from 5 to 17 under the conditions
of T = 0.1|t | and 〈n〉 = 1.0 to investigate the impact of the
size effect on TGQR edge ferromagnetism, as shown in Fig. 5.
With an increase in the quantum ring size, χb and χz gradually
change. The magnetic susceptibility scarcely changes with
structure size, especially at low U (U = 3.0|t | and below),
suggesting that the robustness of TGQR with zigzag edges
is unaffected by size. This phenomenon occurs because the
TGQR edge structure is a typical zigzag structure and has a
significant ferromagnetic correlation. In addition, we deduce
that a larger on-site interaction U can greatly increase the
Curie temperature of the system by enhancing the magnetic
susceptibility of the edge.

FIG. 5. The χz (solid line) and χb (dotted line) of TGQR of
different size at 〈n〉 = 1.0 with different U . “Number” represents for
the number of hexagons contained by the edge of the triangle ring.

Starting with the smallest TGQR, each side of the triangle
contains five honeycomb lattices, that is, five zigzag edge
atoms. In this case, the ferromagnetic correlation of its edge
has been saturated, signifying that the spins of the electrons
on the edge are practically in the same direction. As a result,
adding more atoms with zigzag edges will not strengthen the
ferromagnetic correlation. A change in system size may result
in an erratic oscillation of the edge magnetic susceptibility
at higher U . At the same temperature, we also observe from
Figs. 3 and 5 that χb and χz increase as U increases. Fig-
ure 4 indicates that as U increases, the Curie temperature
increases.

We estimated the changes in magnetic susceptibility of
TGQD and TGQR bilayers with temperature and size to
investigate the impact of interlayer coupling on the edge
magnetism. The DQMC can be applied to approximately 100
quantum dot (ring) lattice sites with precise sampling and
calculation of physical quantities, and the result is shown in
Fig. 6. In the half-filled system, the χz and χb of the bilayer
TGQD and the bilayer TGQR increase with increasing U ,
and χz dramatically decreases with increasing T ; however, the
change in χb with T is comparatively flat.

In the quantum ring, the inner edge atoms and the outer
edge atoms do not belong to the same sublattice, and the
value of their spin correlation is likely to be negative. When
we calculate the edge magnetic susceptibility of the quantum
ring, the spin correlations of the inner and outer boundaries
are separately calculated and then these values are subse-
quently added. Thus, the edge magnetism is not directly
impacted by the spin correlation between the inner and outer
edges.

As illustrated in Figs. 6(b) and 6(d), χz with respect to tem-
perature is fitted under the on-site interactions U = 3.0|t | and
U = 1.6|t |. The Curie-Weiss law is satisfied by the edge mag-
netic susceptibilities of bilayer TGQDs and bilayer TGQRs,
and there is a strong edge ferromagnetic correlation. This
reveals that the zigzag edge of the bilayer TGQD has a
slightly greater Curie constant (C) than the zigzag edge of
the bilayer TGQR. The former is U = 3.0|t |, C = 0.75 and
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FIG. 6. m in the tag represents the number of hexagons contained
by the edge of (a) bilayer TGQR/(c) bilayer TGQD. The χz (solid
line) and χb (dotted line) of (a) a bilayer TGQR with 114 sites and
(c) a bilayer TGQD with 92 sites at 〈n〉 = 1.0 with U = 1.0 ∼ 4.0|t |.
The χz of (b) a bilayer TGQR and (d) a bilayer TGQD with U =
1.6|t | (positive triangle marker) and 3.0|t | (inverted triangle marker),
the dashed line represents the fitting of Curie’s law when U = 3.0|t |,
while the dotted line represents the fitting when U = 1.6|t |.

U = 1.6|t |, C = 0.63. The latter is U = 3.0|t |, C = 0.71 and
U = 1.6|t |, C = 0.62, and their critical temperatures for the
ferromagnetic-paramagnetic phase transition are similar. The
reason might be that the bilayer TGQD already has significant
edge ferromagnetism, and the ring structure adds more ferro-
magnetic boundaries while the original edge ferromagnetism
remains the same. Because relatively few zigzag edge atoms
have already demonstrated a very strong ferromagnetic cor-
relation, as shown in Fig. 7, χz and χb of the bilayer TGQD
and bilayer TGQR is nearly unchanged with the increase of
structure size.

FIG. 7. The χz and χb of bilayer TGQD (square marker) and
bilayer TGQR (circle marker) of different size as shown in the
subgraphs with different U . “Number” represents the number of
hexagons contained by the edge of bilayer TGQD or bilayer
TGQR.

FIG. 8. The ferromagnetic susceptibility of a bilayer TGQR in
various twist angles.

IV. SUMMARY OF RESULTS

In summary, based on the Hubbard model, we computed
the robust edge ferromagnetism of the TGQD-like system
using DQMC. The TGQD-like structure, which includes
TGQRs, bilayer TGQDs, and bilayer TGQRs, was chosen
because it reflects the zigzag border condition among the
various quantum dot (ring) shapes. Our results show that
temperature has a significant impact on the edge magnetic
susceptibility of such systems. We use the Curie-Weiss law to
fit the TGQD-like system, which shows that it exhibits robust
edge ferromagnetic behavior. One way to improve the edge
magnetic susceptibility and increase the Curie temperature is
to increase on-site Hubbard interactions U . The application
of TGQD-like systems in spintronics may benefit from robust
edge ferromagnetic behavior.
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APPENDIX

When simulating the physics of many-body interaction
systems, the computational cost grows exponentially with the
size of the lattice. Therefore, our simulations are confined to
a relatively small system and may provide some enlightening
results for describing truncated small lattices.

We provide the results for different angles below to validate
our study for the lattice size we simulated. We can see that the
magnetic susceptibility hardly changes with the twist angle in
Fig. 8.

We next discuss different NNN hopping parameters in the
TGQRs in Fig. 9. Our results show that ferromagnetism is not
affected by NNN hopping at t ′ = 0.0|t |, 0.1|t |, 0.3|t |, which
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FIG. 9. The ferromagnetic susceptibility as a function of temper-
ature at the zigzag edge when NNN hopping is introduced.

is consistent with the analytic expression for tight-binding
dispersion [57]. Therefore, our simulations show that this sys-
tem has robust edge ferromagnetism even when considering
intralayer NNN hopping.

In order to further investigate the effect of the on-site
interaction U on the Curie temperature, we plot the recipro-
cal of χ as depicted below in Fig. 10. The figures exhibit
a linear correlation between 1/χ and temperature T , which
corresponds to the Curie-Weiss behavior 1/χ = (T − Tc)/A.
Therefore, we extrapolate 1/χ to zero temperature by using
linear fitting. If the system possesses a finite Tc, its intercept
should be negative. Figure 10 shows that the on-site interac-
tion U enhances the ferromagnetism and the absolute value of
the intercept becomes larger with increasing U both in TGQR
and TGQD.

We further add an additional potential at the zigzag edges
of the system, to investigate a realistic system in which zigzag
edges are decorated by adding atoms. To accomplish this, we
change the chemical potential of the edge atoms from −2|t |
to 2|t | and adjust the bulk chemical potential to maintain
half-filling, as shown in Fig. 11(a). Our simulation results
show that the magnetic susceptibility χz has a maximum
value when the chemical potential of the edge atoms is 0,
and χb remains almost stable in this range. Additionally,

FIG. 10. Linear fitting of the inverse of χz of TGQR and TGQD
versus temperature at half-filling state.

FIG. 11. (a) Linear fitting of the inverse of χz of TGQR versus
temperature at different edge chemical potentials and the whole
system maintains half-filling state. (b) Ferromagnetic susceptibility
χz and χb of TGQR at 114 sites for different boundary chemical
potentials at 〈n〉 = 1.0, and β = 1/T represents the reciprocal of the
temperature.

Fig. 11(b) indicates that as the absolute value of the edge
potential changes from 0.0 to 0.5|t | at half-filling state, the
edge ferromagnetism of the system gradually disappears. It is
interesting that even a tiny U is enough to make the edge ferro-
magnetic at half filling. If including a nonzero edge potential,
this phenomenon disappears and one needs finite U for mag-
netism to appear where edge states getting nonflat dispersion.
This behavior could be expected from Stoner criterion. Thus,
our results provide important guidance for understanding the
physics of TGQD-like system edge doping experiments.

To inspect the validity of inverse temperature β chosen in
the main text, we refer to Fig. 12. Because the bilayer TGQR
is the most complex structure among those discussed in our
work, we consider this material as an example worth further
discussion. The values of the correlation functions SAFM

b tend
to stabilize with the increase of β at U = 1.0|t | ∼ 3.0|t |,
where SAFM

b = 1
Nt

〈[∑li(Ŝ
z
lai − Ŝz

lbi )]
2〉 [19], and Ŝz

lai (̂Sz
lbi) is

the z component spin operator on A (B) sublattice of layer
l . So the value of temperature used in our paper is sufficiently
large.

FIG. 12. The antiferromagnetic correlation of bilayer TGQR as
a function of β = 1/T for different U = 1.0|t | ∼ 3.0|t |.
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