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Hidden higher-order topology in nonsymmorphic group IV and V tetragonal monolayers
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In recent years, two-dimensional (2D) second-order topological insulators (SOTIs) have garnered significant
interest, with indications of their potential realization in various symmorphic 2D electronic materials. However,
up to this point, no nonsymmorphic 2D electronic SOTIs have been identified, probably due to the inability of
nonsymmorphic operations to maintain the invariance of nanoflakes. In this paper, we investigate the existence
of nonsymmorphic 2D SOTIs, unveiling hidden higher-order topology within 2D nonsymmorphic electronic
systems. Our findings are substantiated by symmetry analyses, tight-binding (TB) models, and first-principles
calculations. The emergence of topological corner states in these nonsymmorphic 2D SOTIs is attributed to
the filling anomaly within a set of symmorphic Wannier orbitals, which exhibit a symmorphic distribution. We
identify square-octagon monolayers (so-MLs) of group IV and V elements, including 2D tetragonal P, and 2D
hydrogenated tetragonal Si and Ge, as promising material candidates. The corner states in these nonsymmorphic
so-MLs are protected by a point symmetry (C4 rotation). The TB model of so-MLs behaves similarly to the
Su-Schrieffer-Heeger model, with higher-order topological insulating phases having greater intersquare hoppings
compared to intrasquare hoppings, while the reverse is considered trivial. These discoveries not only enrich
our theoretical comprehension of higher-order topology but also introduce potential material candidates for
experimental exploration, thus advancing the field of topological crystalline materials.
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I. INTRODUCTION

Two-dimensional (2D) second-order topological insula-
tors (SOTIs) represent a novel category within the realm of
topological crystalline phases [1–4]. They are characterized
by the presence of 1D gapped edge states and 0D in-gap
corner states (CSs) [5–12]. In a time-reversal symmetry (T )-
preserved 2D SOTI, the existence of CSs is intricately linked
to its crystalline symmetries and can be attributed to a fill-
ing anomaly [1,13,14]. This filling anomaly arises from the
fact that charge neutrality is not compatible with the relevant
symmetries respected by the SOTI nanoflake. Up to now,
2D electronic SOTIs have been exclusively proposed within
systems exhibiting symmorphic symmetries [6–12]. It is in-
deed intriguing to inquire whether a nonsymmorphic 2D SOTI
exists.

At first glance, the answer to the question posed above ap-
pears to be negative, as a nanoflake can only remain invariant
under symmorphic symmetries. However, if we take into con-
sideration that in SOTIs, the filling anomaly typically pertains
to a set of obstructed charge centers or Wannier centers, the
aforementioned question seems to regain its feasibility. A set
of charge centers or Wannier centers are considered obstructed
or in obstructed atomic limit (OAL), implying a mismatch
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between these centers and atomic positions [15–20]. For a
crystal with nonsymmorphic symmetries, it may possess a
set of obstructed Wannier orbitals whose centers’ positions
remain invariant under the point symmetry parts of the non-
symmorphic symmetries. Consequently, the filling anomaly
for these obstructed Wannier orbitals can be associated with
a point operation rather than a nonsymmorphic operation,
thereby leading to the emergence of CSs protected by this
point operation. To illustrate this idea more vividly, we can
regard this set of obstructed Wannier centers as an effective
lattice that remains invariant under the point operations and
the nontrivial higher-order topology is hidden in the filling
anomaly for this effective lattice.

In this paper, we extend the theory and material candidates’
range of higher-order topology by recognizing that square-
octagon monolayers (so-MLs) of group IV and V elements,
including 2D tetragonal P (so-P), and 2D hydrogenated tetrag-
onal Si (so-Si) and Ge (so-Ge), a class of well-studied materi-
als [21–26] with nonsymmorphic symmetries, are 2D SOTIs.
Based on first-principles calculations and theoretical analy-
sis, the bulk symmetry indicators [14,15,17], Stiefel-Whitney
(SW) numbers [27–32], decompositions of atomic-orbital-
induced band representations (aBRs) [15,33], CSs, and the
tight-binding (TB) model are applied to identify the nontrivial
topology. The group IV and V so-MLs are ideal candidates for
the experimental realization of 2D hidden SOTIs.
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FIG. 1. (a) Optimized geometries of the so-P with maximal
Wyckoff positions (2a, 2c, 4e) in the unit cell, and two types of
nearest-neighbor hopping are labeled as t and γ , respectively. The
P atoms in different planes are represented by pink and blue spheres.
The red star denotes the inversion center. (b) Orbital-resolved bands
of so-P. Red dots: pz orbitals; blue dots: px,y orbitals; and green
dots: s orbitals. (c) The projected spectra for the (100) edge of a
semi-infinite sheet of the so-P. (d) The 1D ky-direct Wilson bands
as a function of kx calculated in the density functional theory (DFT)
code.

II. RESULTS AND DISCUSSION

The group IV and V so-MLs are a new class of 2D tetrago-
nal allotrope, which are reported to be stable semiconductors
[21–26]. These so-MLs own a similar buckled square geomet-
ric structure [Fig. 1(a)] with a space group of P4/nbm (No.
125) and a point group of D4h. Due to similar crystal structures
and electronic properties, we will use so-P as a representative,
while the relevant results for other materials can be found in
the Supplemental Material (SM) [34]. The unit cell of the
so-P has eight P atoms, where there are four P atoms in the
upper plane (blue spheres) while the other four atoms are in
the lower plane (pink spheres), as displayed in Fig. 1(a). The
optimized lattice constant of the so-P is 6.54 Å, consistent
with the previous results [21–24]. In so-P, each P atom forms
π bonding and σ bonding with its nearest neighbors [21],
resulting in a stable noncoplanar structure. This is confirmed
by the phonon spectrum calculations and molecular dynamics
simulations [21,22]. There are three kinds of maximal Wyck-
off positions 2a, 2c, and 4e in this unit cell, labeled with
gray hexagons, green squares, and yellow circles in Fig. 1(a),
respectively.

Figure 1(b) displays the calculated orbital-resolved energy
bands, where the s bands and p bands under the Fermi level
(EF) exhibit a clear separation between them. Since the energy
gap at the EF is very large and the spin-orbit coupling in this
so-P is small [34], it can be effectively neglected, allowing
the material to be treated as spinless in later discussions. As
shown in Fig. 1(c), the relatively flat and gapped edge state of
the semi-infinite plane of the so-P along the (100) direction
demonstrates that the so-P is not a traditional topological
insulator. Because the spinless so-P possesses a space-time

TABLE I. BR decompositions for the occupied bands of the
so-P. The first two columns indicate whether the s and p bands
can be decomposed into aBRs (eBRs). The third column provides
the specific decomposition results, and the last two columns present
the corresponding SW numbers of each decomposition, obtained by
parity criterion. The third row provides the SW numbers for all the
eBRs appearing in the decompositions of p bands, where ai (ci) refers
to any one of A1, B1, and E . Details of the decompositions and irreps
of the occupied bands can be found in the SM [34].

aBRs eBRs Decompositions w1 w2

p bands × � D1 Ag@4e⊕ 0 1
(A1 ⊕ B1 ⊕ E )@2c

D2 Ag@4e⊕ 0 1
(A1 ⊕ B1 ⊕ E )@2a

Ag@4e 0 1
ai@2a (ci@2c) 0 0

s bands � A′@8m 0 0

inversion symmetry (IT , where I represent inversion sym-
metry), its second-order band topology can be described by
the second Stiefel-Whitney (SW) number (w2) [27–32]. The
second SW number w2 is a well-defined 2D topological in-
variant of an insulator only when the first SW number w1 = 0.
Here, the w1 is defined as

w1|C = 1

π

∮
C

dk · TrA(k), (1)

where Amn = 〈um(k)|i∇k|un(k)〉 [30]. The second SW class
(w2) can be computed by three methods: the parity criterion,
the nested Wilson-loop method, or simply by m module 2,
where m is the number of crossings of Wilson bands at θ = π

[9,12]. As illustrated in Fig. 1(d), the Wilson bands for all
occupied energy bands exhibit symmetric distribution with
respect to θ = π , implying that w1 = 0, which is a neces-
sary condition for a well-defined w2. There is one crossing
of Wilson bands at θ = π in Fig. 1(d), indicating the sec-
ond SW class w2 = 1. Therefore, the so-P is a SOTI with a
nontrivial w2. It is noteworthy that all rotational and mirror
symmetries of the buckled so-P are nonsymmorphic (with
our unit cell choice), meaning that there are no symmetry
operations that would keep the nanoflakes of so-P invariant
and, consequently, protect CSs. To comprehend the higher-
order topological mechanisms of this system and identify the
corresponding symmetries that can protect CSs, we employed
topological quantum chemistry [15,16] to analyze the elec-
tronic states of the system in the following. This analysis
revealed the existence of hidden higher-order topology within
this system.

As we mentioned above, the OAL serves as a key signature
of 2D SOTIs, which can be diagnosed through their band
representations (BRs). The absence of the decomposition of
BRs into aBRs is referred to as OAL, indicating that the BRs
can be decomposed into elementary BRs (eBRs), but not aBRs
[15,17]. We first calculated the irreducible representations
(irreps) for the occupied bands at several high-symmetry k
points and their BR decompositions. As shown in Table I,
the s bands can be decomposed as an aBR, while the p
bands cannot be decomposed as a sum of aBRs, but can
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be decomposed as a sum of eBRs induced from maximal
Wyckoff positions 4e and 2a (2c), respectively. Hence the
nontrivial topology of so-P is derived from the p bands. The
two decompositions of eBRs for the p bands, D1 and D2, con-
sist of Ag@4e along with either (A1 ⊕ B1 ⊕ E )@2a or (A1 ⊕
B1 ⊕ E )@2c, respectively. Because (A1 ⊕ B1 ⊕ E )@2a and
(A1 ⊕ B1 ⊕ E )@2c are equivalent, as demonstrated below,
D1 and D2 are indeed identical. The site symmetry groups
of Wyckoff positions 2a and 2c are D4 and D2d , respectively.
The straight lines connecting 2a with 2c own a site symmetry
group of C2. Due to the relations

C2 ⊂ (D4 ∩ D2d ),

2(A ⊕ B)↑D4 = A1 ⊕ B1 ⊕ E ,

2(A ⊕ B)↑D2d = A1 ⊕ B1 ⊕ E , (2)

where the A and B are the two irreps of the C2 (see details in
SM [34]), respectively, (A1 ⊕ B1 ⊕ E )@2a and (A1 ⊕ B1 ⊕
E )@2c are equivalent [15,16].

For a set of bands with I and T , the corresponding po-
larization can be derived from the inversion eigenvalues of
these bands [13,35,36]. In our system, the polarization can be
expressed specifically as

px
I=

{
0, if I(�)I∗(X ) = +1 and I(Y )I∗(M ) = +1,

1/2, if I(�)I∗(X ) = −1 and I(Y )I∗(M ) = −1,
(3)

and

py
I=

{
0, if I(�)I∗(Y ) = +1 and I(X )I∗(M ) = +1,

1/2, if I(�)I∗(Y ) = −1 and I(X )I∗(M ) = −1.
(4)

As shown in Table S2, all the decomposed eBRs of p bands
have a polarization (px, py) of zero, indicating that their w1

is zero. Therefore, for each decomposed eBR, its w2 is indi-
vidually well defined, enabling us to discern the relationship
between the nontrivial topological properties of the system
and these eBRs. For this purpose, we can further determine
the w2 of these eBRs using the parity criterion as

(−1)w2 =
∏

�∈TRIM

(−1)�N−
occ(�)/2�, (5)

where the �·� is the floor function. From the results shown in
Table I, we can see that the Ag@4e hold a nontrivial w2 = 1,
while the other eBRs are all topologically trivial (w2 = 0).
This suggests that the nontrivial topology of the systems is
actually derived from the Ag@4e eBR. It is also noticed that
the sites of the 4e Wyckoff position are distributed in the same
plane and are invariant under symmorphic rotation symmetry
C4z. Thus the nonsymmorphic so-P owns a hidden nontrivial
topology, whose CSs arise from the filling anomaly of the
Wannier orbitals on 4e sites and are protected by the C4z

symmetry.
To verify the nontrivial topological properties of the so-P,

we further calculated its symmetry indicators and topological
CSs. Due to the nontrivial topology of the so-P being related to
the C4z symmetry, the symmetry indicators and related corner
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FIG. 2. (a) Calculated energy spectra for the so-P flake shown in
(b) with DFT code. Red and black dots represent corner and bulk
states. The black arrow denotes the Fermi levels by the electron
counting, EF. (b) The so-P flake, in which the charge distributions
of the corner states are also shown. The isosurface value is set as
0.003 e Å−3.

charges for the so-P can be expressed as

χ (4) = ([
X (2)

1

]
,
[
M (4)

1

]
,
[
M (4)

2

])
,

Q(4)
corner = e

4

([
X (2)

1

] + 2
[
M (4)

1

] + 3
[
M (4)

2

])
mod e. (6)

Here, the superscript 4 in χ (4) and Q(4)
corner denotes the C4

symmetry, and the invariant [�(n)
p ], � = X , or M indicates

the difference in the number of eigenvalues (e2π i(p−1)/n) of the
Cn operation at � and � in the occupied band manifold [14].
The symmetry indicators for all the occupied bands of the so-P
are determined to be χ (4) = (−2, 0), confirming that so-P is a
SOTI. Symmetry indicators calculated using only the Ag@4e
eBR are the same as those calculated using all occupied bands
of the so-P, indicating that its nontrivial topological properties
are indeed determined by the Ag@4e eBR, consistent with the
above analysis.

The obtained χ (4) = (−2, 0) indicates that for a so-P flake,
when the 4e lattice points within it exhibit C4 symmetry,
and the edges of the flake terminate at the 4e sites, a cor-
ner charge of Q(4)

corner = e/2 is observed. By calculating this
flake, approximately fourfold degenerate states [red circles in
Fig. 2(a)] emerge around the EF. Their charge distributions
are all localized around the corners of the flake, as shown in
Fig. 2(b). Since only half of the CSs are occupied [Fig. 2(a)],
an average spinless corner charge of e/2 is obtained, in line
with the symmetry indicators.

Considering that, as shown in Fig. 1(b), the low-energy
bands near the EF are primarily contributed by the pz orbitals,
in order to gain a deeper understanding of the low-energy
physics of the so-P, we have constructed a symmetry-
constrained TB Hamiltonian with a pz orbital per P atom site
as

H = t
∑
〈i, j〉

t∈intrasquare

C†
i Cj + γ

∑
〈i, j〉

γ∈intersquare

C†
i Cj + H.c. (7)

Details regarding the derivations of the parameters for the TB
model can be found in SM [34]. As displayed in Fig. 1(a),
there are two types of nearest hopping parameters in this
model: intrasquare hopping (t) and intersquare hopping (γ ).
Figures 3(a) and 3(d) show the bands of the two insulating
phase for our TB model with γ /t equal to 2.5 and 0.5,
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FIG. 3. (a) and (d) depict the electronic band structures for our
TB model with the parameters γ /t = 2.5 and γ /t = 0.5, respec-
tively. (b) and (e) display the energy spectra of the nanoflakes of
the TB model with identical parameters as those in (a) and (d),
respectively. Red and black dots represent corner and bulk states,
respectively. The inset in (b) shows the flake shape and the charge
distributions of the corner states. (c) is the 1D ky-direct Wilson bands
as a function of kx calculated for the lowest four bands of (a). (f)
presents the phase diagram of the TB model.

respectively. Flake calculations for the TB model with dif-
ferent parameters demonstrate that, for γ /t = 0.5 [Fig. 3(e)],
no CSs emerge in either energy gap. However, for γ /t = 2.5
[Fig. 3(b)], fourfold degenerate states (depicted as red circles)
emerge within the energy gap, confirming that the half-
filled TB model with these parameters is in the SOTI phase.
The nontrivial topology of this case is further confirmed
by the Wannier band calculations [Fig. 3(c)], yielding w2 =
1. It is also worth noting that within the parameter region
γ /t > 2, the BR decompositions for the half-filled TB model
are identical to Ag@4e, demonstrating that this model cap-
tures the nontrivial topological properties of the system. We
have further computed the band structures and corresponding

topological properties of the TB model as it evolves with pa-
rameters, and the phase diagram is presented in Fig. 3(f). The
phase diagram shows that our TB model behaves similarly
to the Su-Schrieffer-Heeger (SSH) model, with higher-order
topological insulating phases having greater intersquare hop-
pings compared to intrasquare hoppings, while the reverse
is considered trivial. The differentiation between intersquare
hoppings and intrasquare hoppings in the so-P monolayer
originates from its buckled square geometric structure. This
structure also gives rise to the emergence of nonsymmorphic
geometries within the so-P monolayer, highlighting the intrin-
sic connection between nonsymmorphic symmetries and the
nontrivial topology present in the so-P monolayer.

Our findings therefore reveal the hidden higher-order
topology in the 2D nonsymmorphic systems, supported by a
symmetry analysis, tight-binding models, and first-principles
calculations. The emergence of topological CSs in these non-
symmorphic 2D SOTIs is attributed to the filling anomaly
of a set of symmorphic Wannier orbitals, and these CSs are
protected by the corresponding point symmetries. We identify
group IV and V nonsymmorphic so-MLs as suitable material
candidates, whose corner states are protected by a point sym-
metry (C4). The TB model unveils a topological behavior in
the so-MLs akin to that of the SSH model, where higher-order
topological insulating phases exhibit greater intersquare hop-
pings than intrasquare hoppings. These results not only extend
the theoretical framework and range of material candidates
for 2D SOTIs but also provide several potential candidates for
the experimental realization of 2D SOTIs in nonsymmorphic
electronic systems.
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