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Hall coefficient and resistivity in the doped bilayer Hubbard model
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Finding and understanding non-Fermi-liquid transport behaviors are at the core of condensed matter physics.
Most of the existing studies in this field were devoted to the monolayer Hubbard model, which is the minimal
model that captures the essential features of high-temperature superconductivity. Here, we discover another
type of non-Fermi-liquid behavior emergent in the hole-doped bilayer Hubbard model, using dynamical mean-
field theory with a full consideration of the short-range interlayer electron correlation. We find that at low
temperatures, the Hall coefficient has a strong nonmonotonic dependence on temperature, leading to a double
or quadruple reversal of its sign depending on the doping level. At the same time, the resistivity exhibits two
plateaus rather than linearity in its temperature dependence. We show that these intriguing transport behaviors
stem from the formation of coherent interlayer singlets, which scatter off gapped collective modes arising from
short-range interlayer antiferromagnetic fluctuations.
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I. INTRODUCTION

Studying the magnetotransport properties of electron sys-
tems is a valuable way to learn about their electronic structure.
For example, in high-temperature cuprate superconductors,
the direct-current (dc) Hall resistivity has a strong temperature
(T ) dependence and changes its sign in the heavily overdoped
regime [1,2]. Meanwhile, the dc longitudinal resistivity in the
normal state has a linear temperature dependence and ex-
ceeds the Mott-Ioffe-Regel criterion [3–5], known as strange
metallicity. In an atomically thin cuprate van der Waals het-
erostructure during cooling, the Hall resistivity decreases and
changes from positive to negative and then reverses sign again
before vanishing at low temperatures. This was explained by
the vortex dynamics-based description of the Hall effect in
high-temperature superconductors [6]. These behaviors are
incompatible with the Fermi-liquid theory of weakly inter-
acting electrons and manifest the intricate nature of strongly
correlated electron systems.

In efforts to understand the non-Fermi-liquid behaviors,
various authors have calculated the magnetotransport prop-
erties of the hole-doped Hubbard model using the quantum
Monte Carlo method for small square lattices [7], the dynam-
ical mean-field theory (DMFT) approximation for hypercu-
bic [8] and square [9–11] lattices, and an expansion formula
of the Hall coefficient for small square lattices [12]. A double
sign change of the T -dependent dc Hall coefficient similar
to that in cuprate superconductors has been observed [8,12].
Recent numerical calculations for the square-lattice Hubbard
model also revealed the T -linear dc longitudinal resistivity
exceeding the Mott-Ioffe-Regel limit [13] and a T -linear elec-
tron scattering rate at low temperatures [14].

These works motivate us to further investigate the transport
properties of a more complicated lattice model, the Hubbard
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model on a bilayer square lattice, in which electrons can
form disordered interlayer singlets with a spin gap [15–17].
Accurately computing the conductivities of strongly corre-
lated systems is notoriously difficult [18], and is frequently
hindered by small lattice sizes, infinite expansion summa-
tions, or the omission of vertex corrections. We use the dimer
DMFT [19] to calculate the resistivities of the hole-doped
bilayer Hubbard model. The dimer DMFT works for the
thermodynamic limit, but in this theory, some of the vertex
corrections to the in-plane conductivities cancel out due to
the neglect of in-plane nonlocal correlations [20]. However,
the short-range out-of-plane correlation is still present in the
Kubo bubble, enabling us to investigate how an interlayer
correlation affects the transport behavior of a layered lattice
system (in the normal phase), which is relevant to unconven-
tional superconductivity [21–23].

We find that the Hall coefficient has a strong nonmonotonic
T dependence at low temperatures and can change its sign
twice or four times with decreasing temperature, depending on
the doping level. Concomitantly, the longitudinal resistivity as
a function of T acquires two plateaus that smoothly cross over
to each other. These unfamiliar transport behaviors are shown
to be associated with the formation of coherent interlayer
singlets, which scatter off gapped collective modes arising
from short-range interlayer antiferromagnetic fluctuations.

II. MODEL AND METHODS

The bilayer square-lattice Hubbard model consists of two
square lattices stacked site to site. We consider only the
nearest-neighbor intralayer hopping t and interlayer hopping
t⊥. The Hamiltonian is

H = −
2∑

�=1

∑
〈ı,j〉,σ

tc†
�ıσ c�jσ −

∑
ı,σ

(t⊥c†
1ıσ c2ıσ + H.c.)

+
2∑

�=1

∑
ı

Un�ı↑n�ı↓. (1)
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FIG. 1. Hall coefficient (left panel) and longitudinal resistivity (right panel) of the bilayer Hubbard model as functions of the temperature
at various doping levels. The insets are close-up views of the lowest-temperature data. The solid lines are the guide to the eye. The dashed lines
in the inset of the right panel are quadratic fits ρxx = const × T 2. The error bars represent Monte Carlo sampling errors and errors arising from
DMFT iterations [25], determined by four iterations starting from a converged solution.

Here, c�ıσ (c†
�ıσ ) annihilates (creates) an electron of spin σ

(=↑,↓) at the site ı in the layer �. U is the on-site Coulomb
repulsion and n�ıσ = c†

�ıσ c�ıσ is the electron number opera-
tor. We choose t⊥ = 1.2t and U = 10t , which are relevant
to the material VO2 [15], a prototypical strongly correlated
oxide with the vanadium dimer as the basic unit [24]. In
the DMFT, we consider an interlayer dimer embedded in
a self-consistent noninteracting electron bath, thereby fully
taking into account the short-range interlayer electron cor-
relation (see Appendix A for a detailed description of the
calculation and postprocessing methods). In this case, the
vertex corrections to the conductivity should not completely
cancel, because the self-energy is not fully local. We will
neglect this part of the vertex corrections and approximate the
longitudinal and Hall dc conductivities (sheet conductances)
by the Kubo bubble (see Appendix B for the derivation of the
Kubo formulas).

III. TRANSPORT COEFFICIENTS

Figure 1 shows the calculated Hall coefficient RH and
longitudinal resistivity ρxx as functions of the temperature at
various hole doping levels p = 1 − ∑

σ 〈n�ıσ 〉. For T � 0.1t ,
the T dependence of RH is similar for all doping levels
shown, but RH shifts downward with increasing doping.
In this temperature range, as T increases, RH decreases in
0.1t � T � 0.13t , then increases in 0.13t � T � 0.5t , and
then decreases again for T � 0.5t . In 0.67t � T � 1t , RH (T )
changes more slowly with increasing doping and becomes
almost flat at p = 0.3. Depending on the doping level, RH can
be totally below zero (p = 0.3), or change sign once (p = 0.2)
or three times (p = 0.25) in this range T � 0.1t .

For T � 0.1t , the behaviors of RH (T ) at different doping
levels are radically different. In this temperature range, the T
dependence of RH quickly weakens with increasing doping.
At p = 0.2 and p = 0.25, RH changes sign once due to its
strong dependence on T . But for a heavier doping p = 0.3,
RH (T ) is almost a negative constant. Therefore, the total num-
ber of times RH (T ) changes its sign counts to zero at p = 0.3,
two at p = 0.2, and as many as four at p = 0.25, in contrast to
the single or double sign reversal normally observed in high-

temperature superconductors [2,6,26] and the single-orbital
Hubbard model [8,12].

The longitudinal resistivity ρxx(T ) also shows unfamiliar
behavior (Fig. 1, right panel). There are two temperature
ranges, 0.26t � T � 0.5t and T � 0.1t , where ρxx(T ) is al-
most constant, and these ranges become broader for heavier
doping. Especially at low temperatures, ρxx(T ) deviates sig-
nificantly from the quadratic fits ρxx = const × T 2 expected
for a Fermi liquid (Fig. 1, right panel, inset). Neverthe-
less, the quadratic fit is improved for heavier doping, along
with the weaker T dependence of RH for heavier doping
(Fig. 1, left panel, inset), demonstrating that the system at
low temperatures approaches the Fermi-liquid phase as dop-
ing increases. The constant value of ρxx in T � 0.1t does
not change much as the doping level is varied, whereas at
high temperatures, ρxx exceeds the Mott-Ioffe-Regel limit
(∼√

2π h̄/e2 ≈ 2.5h̄/e2 [5]) and is lower for heavier doping
consistent with more charge carriers.

IV. MECHANISMS

To understand the anomalous behaviors of the Hall co-
efficient and longitudinal resistivity, we plot in Fig. 2 the
total single-particle excitation spectra A(k, ω) and densities
of states A(ω) = ∑

k A(k, ω)/N at various temperatures for
p = 0.25. The noninteracting band structure is also super-
imposed (dotted lines). In the noninteracting limit, at light
doping, the bonding (lower-lying) band has a hole pocket at
the M point and the antibonding (higher-lying) band has a
smaller electron pocket at the � point, which is the case for
p = 0.25. At heavy doping, both the bonding and antibonding
bands have an electron pocket at the � point.

At a high temperature T = 2t , the spectrum is highly in-
coherent and continuous, showing only two broad Hubbard
bands centered around ω = −1t and ω = 10t , respectively,
with a pseudogap in between. Charge excitation across this
pseudogap produces a negative RH [8]. As T is lowered to
1t , the spectrum near the Fermi level becomes more coherent,
and the peak of the density of states of the lower Hubbard
band moves to a higher energy. Fewer electrons are excited
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FIG. 2. Single-particle excitation spectra A(k, ω) along a path connecting high-symmetry reciprocal points, and corresponding densities of
states A(ω) at indicated temperatures for p = 0.25. The black dotted lines are the noninteracting bands for the same doping. The Fermi level
lies at ω = 0.

onto the upper Hubbard band, leading to a more holelike RH ,
that is, a larger RH .

At a moderate temperature T = 0.5t , two dispersive quasi-
particle bands develop near and above the Fermi level,
whereas the two incoherent Hubbard bands persist. The quasi-
particle bands are renormalized by the Kondo screening [15]
to be approximately twice as narrow as their noninteracting
counterparts. To see the interlayer Kondo screening, we show
in the left panel of Fig. 3 the nearest-neighbor interlayer

spin correlation function 〈Sz
1ıS

z
2ı〉 as a function of temperature

at various doping levels, where Sz
�ı = n�ı↑ − n�ı↓ is the spin

density operator. The neighboring interlayer spins do tend to
be antiparallel, resulting in mutual screening. The singlet cor-
relation strength peaks at a nonzero temperature that increases
with increasing doping. For T � 0.5t , the singlet correlation
strength is significant [14] and considerably larger than that
at T = 2t , compatible with the observed crossover from the
totally incoherent spectrum at T = 2t to the renormalized

FIG. 3. Left panel: Interlayer singlet correlation as a function of the temperature at various doping levels. Vertical dotted lines mark the
temperatures of the maximum correlation strength, Tm. Dashed lines are extrapolations to zero temperature by fitting the data for T < Tm to
cubic functions. Shaded patches indicate the approximate T regions of the two resistivity plateaus. Right panel: Scattering rate spectrum (see
text) in the low-energy range at p = 0.25 for the various temperatures in correspondence to Fig. 2.
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coherent bands at T = 0.5t , which can thus be viewed as
interlayer singlet bands [15]. Compared to the spectrum at
T = 1t , the hole pocket at the M point is relatively well
defined owing to the coherent singlet bands, while the electron
pocket at the � point remains incoherent, leading to an overall
positive RH (Fig. 1, left panel).

As T is lowered from 0.5t to 0.267t , the spectral function
does not change much. In particular, the smearing of the
quasiparticle bands at these two temperatures is similar, both
being ∼0.5t wide and having a spectral weight of ∼3t−1. This
is consistent with the Kondo resonance, in which the width
and height of the resonance peak are temperature independent
and are only determined by one energy scale, the Kondo
temperature [27]. In this temperature range, T is less than
the smearing width of the quasiparticle bands, resulting in
approximately T -constant resistivity (Fig. 1, right panel) rem-
iniscent of resistivity saturation in the Kondo problem. There
are two slight, yet visible changes in the spectral function as T
is lowered from 0.5t to 0.267t . One is that the electron pocket
at the � point becomes more well defined and deeper on the
way to the complete formation of the coherent singlet bands.
The other is the appearance of a weak incoherent flat band
with a smearing width of ∼1t at the Fermi level, which hosts
electrons. These two changes tend to reduce RH (Fig. 1, left
panel).

At a relatively low temperature T = 0.1t , a small single-
particle gap in the incoherent spectrum (∼0.4t) opens at the
Fermi level. Concomitantly, the coherent singlet bands within
the incoherent spectrum gap (spectral weight ∼30t−1) become
much sharper and flatter than those at T = 0.267t (spectral
weight ∼3t−1). This results in a very sharp peak in the density
of states at the Fermi level, which is the manifestation of a
strong Kondo resonance. The opening of the gap in the inco-
herent spectrum depopulates the upper Hubbard band, and the
hole pocket of the well-defined singlet bands is larger than
its electron pocket, resulting in an increase in RH (T ) from
T 
 0.13t to T 
 0.1t (Fig. 1, left panel).

As T decreases from 0.1t to 0.05t , the quasiparticle bands
again remain almost unchanged, with a ∼0.1t smearing width
and ∼30t−1 spectral weight at the Fermi level. Therefore, the
resistivity in T � 0.1t should also be approximately temper-
ature independent (Fig. 1, right panel). The two plateaus in
ρxx(T ) are smoothly connected by a crossover spanning from
T 
 0.1t to T 
 0.26t . At T = 0.05t , a flat band (not the
quasiparticle band) with weak intensity (∼0.1t−1) appears at
the Fermi level, which hosts electrons leading to a decrease in
RH (T ) from T 
 0.1t to T 
 0.05t (Fig. 1, left panel).

The non-Fermi-liquid behavior down to very low tempera-
tures also has a manifestation in the interlayer spin correlation,
which does not vanish at zero temperature (Fig. 3, left panel).
Instead, the singlet correlation extrapolated to zero tempera-
ture is ∼ − 0.06, which is very close to the nearest-neighbor
spin correlation responsible for the non-Fermi-liquid scatter-
ing in the overdoped monolayer square-lattice Hubbard model
at low temperatures [14]. A dynamical cluster approximation
study of the doped bilayer Hubbard model suggested that
there exists non-Fermi-liquid behavior even in the absence
of a finite scattering rate at vanishing temperature, attributed
to short-range interlayer antiferromagnetic fluctuation [28].
This observation is consistent with our results, nevertheless

we showed that the resulting non-Fermi-liquid behavior is not
the T -linear resistivity but a resistivity plateau.

To show where the Kondo saturation comes from, we de-
pict in the right panel of Fig. 3 the scattering rate spectrum,
γ (ω) = {∑o,σ [−Im 	oσ (ω)]−1}−1 [14], where 	oσ (ω) is the
oth diagonal element of the diagonalized self-energy matrix
of spin σ in the layer-index space. At the lowest temperature
shown, T = 0.05t , γ (ω) has two peaks in the low-energy
range located at ω 
 0 and ω 
 0.9t , respectively, which are
separated by a gap spanning 0.05t � ω � 0.3t ≡ ωg. These
two peaks are absent in the DMFT result of the single-orbital
Hubbard model [following the Fermi-liquid behavior at low
temperatures, γ (ω) ∼ ω2 at small ω [19,29]] and represent
two low-energy scattering modes arising from short-range in-
terlayer antiferromagnetic fluctuations. The zero-energy mode
should be the simultaneous flip of spins in the inert interlayer
singlet costing no energy, while the second mode should be
the flip of a single spin in the singlet. There is also a pseu-
dogap at ω 
 2t that separates the second scattering mode
and a broad peak at a high energy ω 
 7.8t (not shown)
corresponding to scattering off doubly-occupied-site states.

The zero-energy scattering mode is responsible for nonzero
resistivity at vanishing temperatures. For T � 0.1t 
 ωg/3,
electrons near the Fermi level thermally fluctuate so weakly
that they cannot cross the gap to scatter off the second scatter-
ing mode [30]. Therefore, the scattering rate γ (0) at T = 0.1t
saturates and is close to that at T = 0.05t , leading to the
lower resistivity plateau at T � 0.1t . Similarly, the pseudogap
renders the scattering rates γ (0) at T 
 0.267t and T 
 0.5t
near and both close to that of the second scattering mode
[γ (0.9t ) at T = 0.05t], forming the higher resistivity plateau
at 0.26t � T � 0.5t . But because the pseudogap is not a
genuine gap, the higher resistivity plateau is not as flat as
the lower resistivity plateau (Fig. 1, right panel). For heavier
doping, the Kondo resonance peak will get wider [19,29],
i.e., the (pseudo)gap in γ (ω) will become wider, resulting in
wider resistivity plateaus (Fig. 1, right panel). This reconcil-
iation between the frequency dependence of γ at the lowest
temperature shown and the temperature dependence of ρxx

also increases our confidence in the accuracy of the analytical
continuation of self-energies.

V. CONCLUSIONS AND DISCUSSIONS

In conclusion, we have calculated the Hall coefficient and
longitudinal resistivity of the hole-doped bilayer Hubbard
model and found that its transport properties are very different
from those of the monolayer or single-orbital Hubbard model.
The Hall coefficient has a strong nonmonotonic dependence
on temperature at low temperatures, and it can change sign
four times for some range of doping. The resistivity at low
temperatures is not linear in temperature as that of strange
metals or quadratic in temperature as that of Fermi liquids.
Rather, it exhibits two plateaus with a smooth crossover
between them. These anomalous transport behaviors can be
traced back to the formation of coherent interlayer singlets,
which scatter off gapped collective modes arising from short-
range interlayer antiferromagnetic fluctuations.

The vertex corrections to the dc conductivities could be
significant in low-dimensional systems. The evaluation for the
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monolayer Hubbard model may hint at the effect of the vertex
corrections in the bilayer Hubbard model. At high temper-
atures, the inclusion of the vertex corrections shifts ρxx(T )
downward but preserves its temperature dependence [31,32],
whereas at low temperatures it only slightly modulates ρxx

for moderate doping levels [33,34]. Neither does it alter the
trend of RH (T ) [7,8,12]. Compared to the monolayer model,
the bilayer Hubbard model should host even smaller vertex
corrections due to its larger coordination number. Therefore,
we do not expect the vertex corrections to give rise to resistiv-
ity behaviors qualitatively different from our conclusions. Our
results could stimulate future works to calculate the transport
coefficients of the bilayer Hubbard model more precisely by
incorporating the vertex corrections, which could be possibly
done within the cluster extension of the DMFT [35], the
dynamical vertex approximation [36,37], or by approximating
the vertex function with its molecular limit [38].
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APPENDIX A: SIMULATION METHODS

We use the continuous-time auxiliary-field Monte Carlo
method (CT-AUX) [39,40] to solve the corresponding quan-
tum impurity problem. In the CT-AUX, we directly measure
the Green’s function and its stochastic error in the Matsubara
frequency domain. We then employ the recently developed
maximum quantum entropy method (MQEM) [41] to analyt-
ically continue the self-energy matrix to the real-frequency
axis. Unlike in most previous maximum entropy calculations
in which the analytical continuation was performed for data
in the imaginary time domain, we analytically continue the
self-energy in the Matsubara frequency domain [41], which

is directly measured in the CT-AUX. We decompose the
self-energy into a static part, which is obtained by analyt-
ical asymptotic expansion, and a dynamical part, which is
analytically continued directly. We utilize a robust standard
for determining α, the entropy weight in the MQEM [42].
The reliability of this standard does not depend on the prox-
imity between the spectrum and the default model, so very
little prior information is needed from the spectrum to obtain
good results. We also adopted cubic splines with nonuniform
real-frequency grids to help resolve small features [42]. These
strategies have been proven to yield quite accurate results that
almost perfectly match the exact spectra [42].

APPENDIX B: KUBO FORMULAS

To derive the Kubo formulas for the conductivities of
the bilayer Hubbard model, we follow the derivation for
the monolayer Hubbard model [20] and start from the
Hamiltonian with a constant out-of-plane magnetic field
Bzez = ∇×A and an infinitesimal uniform in-plane electric
field E = Ȧext,

H = −t
∑

�,r,u∈{ax,ay},σ

[
ei( fr,r+u+eAext

r ·u/h̄)c†
�,r,σ c�,r+u,σ + H.c.

]

−t⊥
∑
r,σ

(c†
1,r,σ c2,r,σ + H.c.) + U

∑
�,r,σ

n�,r,↑n�,r,↓, (B1)

where fr,r′ = (e/h̄)
∫ r′

r A · dr is a part of the Peierls phase, r
is the in-plane position vector of a site, and ax and ay are the
in-plane lattice constants. Note that within the nearest hopping
approximation, A and Aext only enter the in-plane hopping
terms in the Hamiltonian Eq. (B1) because they are perpen-
dicular to the out-of-plane direction. Therefore, the current
density operator along an in-plane direction η ∈ {x, y},

jηr = − 1

a2c

∂H

∂Aη,ext
r

∣∣∣∣
Aext→0

(B2)

= ite

h̄ac

∑
�,σ

ei fr,r+aη c†
�,r,σ c�,r+aη,σ + H.c., (B3)

differs from that of the monolayer Hubbard model only by an
additional summation over the layer index �, where c is the
distance between the two layers. It does not explicitly contain
t⊥. Then we have for the Kubo bubble (without the vertex
corrections) of the current-current correlation function,



ηη′,bubble
r,r′ (τ ) = 〈

jηr (τ ) jη
′

r′ (0)
〉
bubble − 〈

jηr
〉〈

jη
′

r′
〉

(B4)

= − t2e2

h̄2a2c2

∑
�,�′,σ,σ ′

∑
b,b′∈{0,1}

(−1)b+b′
Cb(ei fr,r+aη )Cb′

(e
i fr′ ,r′+a

η′ )

×〈c†
�,r+baη,σ

(τ+)c�,r+(1−b)aη,σ (τ )c†
�′,r′+b′aη′ ,σ ′ (0+)c�′,r′+(1−b′ )aη′ ,σ ′ (0)〉bubble − 〈

jηr
〉〈

jη
′

r′
〉

(B5)

= t2e2

h̄2a2c2

∑
�,�′,σ

∑
b,b′∈{0,1}

(−1)b+b′
Cb(ei fr,r+aη )Cb′

(e
i fr′ ,r′+a

η′ )G�,�′,r+(1−b)aη,r′+b′aη′ ,σ (τ )G�′,�,r′+(1−b′ )aη′ ,r+baη,σ (−τ ) (B6)

= t2e2

h̄2a2c2

∑
σ

∑
b,b′∈{0,1}

(−1)b+b′
Cb(ei fr,r+aη )Cb′

(e
i fr′ ,r′+a

η′ )Tr[Ĝr+(1−b)aη,r′+b′aη′ ,σ (τ )Ĝr′+(1−b′ )aη′ ,r+baη,σ (−τ )], (B7)
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where τ is imaginary time, C(·) is the complex conjugation operator with C0 = 1, and G is the Green’s function. Compared to
Eq. (B7), 


ηη′,bubble
r,r′ (τ ) of the monolayer Hubbard model [20] is just Eq. (B7) with its second line replaced by

Gr+(1−b)aη,r′+b′aη′ ,σ (τ )Gr′+(1−b′ )aη′ ,r+baη,σ (−τ ), (B8)

showing that the current-current correlation function without the vertex corrections of the bilayer Hubbard model is just a
matrix-multiplication counterpart of that of the monolayer Hubbard model. Therefore, the longitudinal and Hall dc conductivities
(sheet conductances) without the vertex corrections in a vanishing out-of-plane magnetic field Bz → 0 can be directly extended
from those for the monolayer Hubbard model [8,29,43],

σxx =e2π

h̄N

∑
k,σ

(
∂εk

∂kx

)2 ∫
dωTr[Âkσ (ω)2]

[
−dnF (ω)

dω

]
, (B9)

σxy

Bz
=2π2e3a2

3h̄2N

∑
k,σ

(
∂εk

∂kx

)2
∂2εk

∂k2
y

∫
dωTr[Âkσ (ω)3]

[
−dnF (ω)

dω

]
. (B10)

Here, N is the number of unit cells in the lattice. k = (kx, ky) is the reciprocal vector in the first Brillouin zone. nF (ω) =
(1 + eh̄ω/T )−1 is the Fermi distribution function. The energy of the bonding or antibonding band up to a constant shift is
εk = −2t (cos kx + cos ky). Â is the spectral function, which is a matrix in the layer-index space. The interlayer correlation is
incorporated through the off-diagonal elements of Â.

The longitudinal resistivity and the Hall coefficient are related to the conductivities by ρxx = σ−1
xx and RH = σxy/(Bzσ

2
xx ),

respectively.
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