
PHYSICAL REVIEW B 109, 075112 (2024)

Equivariant neural network for Green’s functions of molecules and materials

Xinyang Dong ,1,* Emanuel Gull ,2 and Lei Wang3,4

1AI for Science Institute, Beijing 100080, China
2Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA

3Beijing National Laboratory for Condensed Matter Physics and Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China

4Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China

(Received 30 November 2023; revised 13 January 2024; accepted 16 January 2024; published 6 February 2024)

The many-body Green’s function provides access to electronic properties beyond density-functional theory
level in ab inito calculations. In this manuscript, we propose a deep learning framework for predicting the
finite-temperature Green’s function in atomic orbital space, aiming to achieve a balance between accuracy and
efficiency. By predicting the self-energy matrices in Lehmann representation using an equivariant message-
passing neural network, our method respects its analytical property and the E (3) equivariance. The Green’s
function is obtained from the predicted self-energy through the Dyson equation with target total number of
electrons. We present proof-of-concept benchmark results for both molecules and simple periodic systems,
showing that our method is able to provide an accurate estimate of physical observables such as energy and
density of states based on the predicted Green’s function.
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I. INTRODUCTION

The single-particle Green’s function plays a fundamental
role in the computational study of quantum field theories
in condensed matter physics, quantum chemistry, and mate-
rial science. It provides in particular information about the
single-particle excitation spectrum, which can be compared
to scanning tunneling microscopy and angle-resolved pho-
toemission spectroscopy experiments. In recent years, rapid
development in ab initio theory [1–5] and the numerical im-
plementation [6–15] of Green’s function methods has enabled
systematic calculations of interacting quantum many-body
systems.

The field theory formulation provides a theoretically rig-
orous view of the finite-temperature physics of interacting
quantum systems, complementary to results from ground-
state methodologies such as the density-functional theory
(DFT). However, computing Green’s functions is in general
orders of magnitude more expensive than a DFT calculation,
limiting the methodology to small systems.

This motivates research into the application of data-driven
machine learning approaches to quantum field theories. Such
methods balance accuracy with efficiency, and prior work
has shown considerable success. For instance, Refs. [16–18]
developed machine learning models to predict the Green’s
function of the single-site Anderson impurity model, serv-
ing as impurity solvers for the dynamical mean-field theory
(DMFT). Reference [19] employed kernel ridge regression to
predict self-energies and spectral functions of realistic sys-
tems starting from a mean-field Hartree-Fock solution. Still,
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the power of state-of-the-art deep learning models of finite-
temperature field theories when applied to realistic systems
has yet to be demonstrated.

In this manuscript, we propose a deep learning frame-
work for predicting the many-body Green’s function and
self-energy for both molecules and periodic systems in atomic
orbital space. We employ a message-passing neural net-
work [20,21] that maps atomic configurations to matrices,
in analogy to a framework that successfully predicts DFT
Hamiltonians [22–27]. To achieve better accuracy and data ef-
ficiency in the training process, we use an equivariant setup as
in Refs. [24–32]. By constructing the fundamental self-energy
matrices in the Lehmann representation using the equivariant
features, we ensure the fulfillment of their analytical proper-
ties by construction.

This paper is organized as follows: In Sec. II, we in-
troduce the theory of finite-temperature Green’s function
(Sec. II A), the equivariant message passing neural network
(Sec. II B), and how we employ the neural network to pre-
dict self-energies and Green’s functions (Secs. II C and II D).
In Sec. III, we present results of proof-of-concept bench-
marks for both molecules (Sec. III A) and periodic systems
(Sec. III B). Section IV provides the conclusion and outlook.

II. METHOD

A. Green’s function formalism

Within the Born-Oppenheimer approximation and in the
absence of relativistic effects, the second-quantized Hamilto-
nian of realistic systems can be written as [33,34]

H =
∑

i j

∑
σ

hi jc
†
iσ c jσ + 1

2

∑
i jkl

∑
σσ ′

Ui jkl c
†
iσ c†

kσ ′clσ ′c jσ , (1)

2469-9950/2024/109(7)/075112(9) 075112-1 ©2024 American Physical Society

https://orcid.org/0000-0002-7414-8476
https://orcid.org/0000-0002-6082-1260
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.075112&domain=pdf&date_stamp=2024-02-06
https://doi.org/10.1103/PhysRevB.109.075112


XINYANG DONG, EMANUEL GULL, AND LEI WANG PHYSICAL REVIEW B 109, 075112 (2024)

where c†
iσ (ciσ ) are the creation (annihilation) operators with

orbital index i and spin index σ , hi j is the one-electron kinetic
and electron-nuclei integral, and Ui jkl the Coulomb repulsion
integral. The atomic orbitals gi(r) considered in this work may
be nonorthogonal, defining an overlap matrix in orbital space
[34]:

Si j =
∫

drg∗
i (r)g j (r). (2)

We will use i as spin-orbital index to omit the explicit spin
index σ and use bold symbols for matrices in spin-orbital
space in the rest of this paper.

To compute physical properties of an electron system, we
introduce the single-particle finite-temperature Green’s func-
tion [33,35]

Gi j (τ ) = −〈T ci(τ )c†
j (0)〉, (3)

where τ ∈ [0, β] is the imaginary time, β = 1
kBT the in-

verse temperature, and T the time-ordering operator [33].
The imaginary time Green’s function G(τ ) corresponds to
a frequency space or Matsubara Green’s function with the
transform

G(iωn) =
∫ β

0
dτ G(τ )eiωnτ , (4)

where the fermionic Matsubara frequencies ωn are defined as
ωn = (2n + 1)π/β, n ∈ Z. The connection between the non-
interacting Green’s function G0 and the full Green’s function
G is given by the Dyson equation

G(iωn) = G0(iωn) + G0(iωn)�(iωn)G(iωn), (5)

where G0(iωn) = [(iωn + μ)S − h]−1, with μ the chemical
potential, h as in Eq. (1), and �(iωn) the Matsubara frequency
self-energy which is a function of the full Green’s function
� ≡ �[G]. The self-energy can be split into two parts

�[G](iωn) = �(HF)[G] + �̃[G](iωn), (6)

where �(HF)[G] is the static Hartree-Fock (HF) self-energy
and �̃[G](iωn) denotes the frequency-dependent dynamical
self-energy. Usually �(HF)[G] is combined with the one-body
integral h into the so-called Fock matrix F = h + �(HF). The
total energy of the system is given by

Etot = 1
2 Tr[P(h + F)] + 1

2 Tr[�̃ ∗ G] + Enn, (7)

where Enn is the nuclei-nuclei Coulomb energy, P = G(τ =
0−) is the density matrix, ∗ is the imaginary time convolution
operator, and the trace is defined as Tr[A] = −∑

i Aii(β−).
The Green’s function can be analytically continued from

the Matsubara frequencies to the entirety of the complex
plane, and will be analytic in the upper half of the complex
plane. The limit of the Green’s function taken towards the real
frequency axis corresponds to the so-called retarded Green’s
function. It can be obtained from Matsubara data with nu-
merical analytical continuation and directly yields the spectral
function (DOS) of the system

A(ω) = − 1

π
Im(Tr[SG(ω)]). (8)

Refs. [8,15,36–41] contain further references and detailed
explanations of the finite-temperature formalism and its nu-
merical implementation.

B. Equivariant message-passing neural networks

In graph neural networks (GNN) or message-passing neu-
ral networks (MPNN), atomic structures of isolated molecules
or periodic solids are represented by nodes and edges, where
nodes indicate atoms and edges demonstrate the connection
between atom pairs [20,21]. In the “message passing” process,
starting from the initial element-based embedding such as the
one-hot encoding of nuclear charge, the feature vector fi asso-
ciated with node i is iteratively updated through convolutions
with its neighbors based on their features f j and distances ri j .

The node features of the graph can be used to construct
desired physical quantities such as the interatomic potential
[31,32] or DFT (tight-binding) Hamiltonian [22–27]. The
GNN (MPNN) setup can be either rotational invariant or
equivariant. Since the objects we are interested in are matrices
in atomic orbital space which are equivariant under rotations,
we choose to use the equivariant message-passing neural net-
work.

The core operation in equivariant neural network archi-
tecture is the tensor product operation that couples two
representations in an equivariant way [30]

z(l3 ) = x(l1 ) ⊗ y(l2 ), (9)

zl3
m3

=
l1∑

m1=−l1

l2∑
m2=−l2

Cl3,l2,l1
m3,m2,m1

xl1
m1

yl2
m2

, (10)

where C denotes the Clebsch-Gordan (CG) coefficients, l ∈ N
are angular-momentum quantum numbers, and m are mag-
netic quantum numbers. l3 satisfies the relation |l1 − l2| �
l3 � l1 + l2, and the parity of z is given by p(z) = p(x)p(y).
When building neural networks, the tensor product operation
is usually supplemented with an equivariant linear operation
to mix channels of each irreducible representation

z(l3 )
c =

∑
c′

Wcc′z(l3 )
c′ , (11)

where W is a trainable weight matrix. We will use the ⊗
operator to denote the weighted tensor product operation in
the rest of this paper for better readability.

The network structure we use in this work is similar
to the tensor field network [28] and NequIP [31]. In each
message-passing layer, the features on each node are updated
by collecting information from all its neighbors:

f ′
i =

∑
j∈neigh(i)

f j ⊗ ei j, (12)

ei j = R(B(‖xi j‖))Y (xi j/‖xi j‖). (13)

Here Y (xi j/‖xi j‖) denotes spherical expansion of the di-
rection of distances between different nodes, R denotes a
multilayer perceptron, and B is a trainable edge-length em-
bedding layer as described in Ref. [31]

B(x) = 2

xc

sin
(

bπ
xc

x
)

x
f (x, xc), (14)
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where b is a trainable parameter, xc is a given cutoff length,
and f is a polynomial envelope function defined in Ref. [42].
An equivariant nonlinear activation function [30] is applied to
all the node features after the updates. Note that the spherical
expansion of interatomic distances fits into the construction
of atomic basis functions such as Gaussian-type orbitals or
linear combination of atomic orbitals (LCAO), whose angular
components are spherical harmonics. Since Eq. (13) takes rel-
ative distances between atom pairs, this type of construction
is equivariant with respect to the E (3) group which comprises
translations, rotations, and reflections [30].

The full matrix in atomic orbital space is constructed in a
block-wise manner where each block corresponds to the inter-
action between two atoms. To obtain these pairwise features,
we use a pair interaction layer to get diagonal and off-diagonal
features as in PhiSNet [24] and QHNet [27]:

fii = f̃i + ResBlock(f̃i ⊗ f̃i ), (15a)

fi j = f̃i + ResBlock(f̃i ⊗ ei j ⊗ f̃ j ). (15b)

The features f̃ are computed from the node features f via
a ResBlock that contains equivariant linear and activation
functions

f̃ = ResBlock(f ) = Linear(f + Linear(Activation(f ))).
(16)

Each matrix block in the full matrix is constructed using the
inverse operation of the tensor product

Ml1,l2
i j =

l2+l1∑
l3=|l2−l1|

l1,l2
⊗ f (l3 )

i j . (17)

C. Predicting Green’s functions and self-energies
with equivariant neural networks

We aim to predict both the static quantity �(HF) (or the Fock
matrix F) and the dynamical quantities G and �̃ using a neural
network. In finite-temperature theories, G(iωn) and �̃(iωn)
are functions of imaginary time or Matsubara frequency. Both
functions are strongly constrained by their analytical proper-
ties, and respecting these properties guarantees, among others,
causality and the conservation of probability density [43–45].

To construct such functions, we start from a Lehmann
representation

Gi j (z) = 1

Z

∑
mn

〈n|ci|m〉〈m|c†
j |n〉

z + En − Em
(e−βEn + e−βEm ), (18)

�̃i j (z) =
∑

s

tist∗
js

z − tss
, (19)

where z is a complex frequency value defined on the upper
half plane z ∈ C+, and Z = ∑

n e−βEn is the partition func-
tion. In the Lehmann representation of �̃, s represents virtual
orbitals in addition to the physical orbitals, and txy are terms
in a corresponding effective Hamiltonian. See Ref. [46] for a
detailed derivation.

The Lehmann representation implies that both G(z) and
�̃(z) are Carathéodory functions up to a conventional factor
of the imaginary unit i [44]. This mathematical property con-
strains the values that the functions can assume in the complex

plane: Given a set of frequency-dependent values G(z) or
�̃(z), a generalized Pick criterion states that the so-called
generalized Pick matrix should be positive semidefinite [44].
Additionally the behavior of G(z) and �̃(z) for z → i∞ is
constrained by the short-time evolution of the Hamiltonian
and, via the Hamburger moment problem [47], defines the
moments of the spectral function. Values of G or �̃ in the
complex plane, and in particular on the real or the imaginary
axis, can therefore not be considered as independent quantities
and should not be predicted independently.

The issue can be circumvented by using the Lehmann rep-
resentations of G and �̃ [Eqs. (18) and (19)] directly, which
share a general form [44,46,48]

Y(z) =
∑

l

Xl

z − λl
, (20)

with Xl positive semidefinite (PSD) matrices and λl real
numbers. Predicting PSD matrices Xl associated with real fre-
quency sampling points λl ensures that the resulting Green’s
function and self-energy fulfill the Carathéodory constraint by
construction.

To obtain universal real frequency grids that are applicable
to all systems and that scale well as temperature is lowered, we
employ the discrete Lehmann representation (DLR) [49,50],
which is derived from the truncated spectral Lehmann repre-
sentation of the imaginary time Green’s function

G(τ ) =
∫ 	

−	

K (τ, ω)ρ(ω)dω. (21)

Here 	 = βωmax is a finite truncation parameter, ρ(ω) is
the spectral density, and the analytical continuation kernel is
defined as

K (τ, ω) = − e−ωτ

1 + e−βω
. (22)

The DLR frequencies ωk are chosen based on the discretiza-
tion of K (τ, ω), such that within given accuracy,

G(τ ) ≈
N∑

l=1

K (τ, ωl )gl , (23)

and the corresponding spectral function is given by

ρ(ω) =
N∑

l=1

glδ(ω − ωl ). (24)

The dynamical self-energy �̃ follows similar expression as G.
See Ref. [49] for further derivations and additional references.

D. Work flow

Figure 1 demonstrates the general workflow of our method.
In finite-temperature grand canonical ensemble calculations,
the values of the Green’s function are subject to a strict con-
straint in order to give the correct total number of electrons
of the system Ne = Tr[PS]. Therefore, we choose to use the
neural network as a self-energy solver to predict �(HF) and
�̃(iωn) instead of predicting G(iωn) directly. All Matsubara
frequency-dependent quantities are sampled on the sparse
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FIG. 1. Flow chart of predicting the Green’s function and down-
stream physical observables from atomic charges {Zi} and positions
{ri}. The green boxes indicate the neural network model with train-
able parameters. The yellow box specifies the μ-search procedure in
Eq. (30). Various physical observables that can be computed from the
predicted self-energy and Green’s function (blue boxes) are listed in
the gray box.

sampling grid [12] to assure accurate and efficient transfor-
mations between the time and frequency domain.

Starting from the nuclear charges Z and positions r of
atoms, we construct N + 1 matrices M using the equivariant
message-passing neural network explained in Sec. II B, where
N is the number of DLR frequencies used for constructing
�̃(iωn). The predicted matrices are symmetrized to ensure the
Hermitian and PSD properties needed for constructing �(HF)

and �̃(iωn) :

M(Herm) = M + M†, (25)

M(PSD) = MM†. (26)

During the training process of the neural network, the loss is
computed by summing over the square of Frobnius norms of
matrix differences in �(HF) and �̃(iωn) on all frequency points
of all data points x:

ltot =
∑

x

lx,1 + lx,2, (27)

lx,1 = ∣∣∣∣�(HF)
x,pred − �

(HF)
x,label

∣∣∣∣2

F , (28)

lx,2 =
∑

n

||�̃x,pred(iωn) − �̃x,label(iωn)||2F . (29)

With the predicted self-energies, the Green’s function can
be computed using the Dyson equation [see Eq. (5)]

G(iωn) = 1

(iωn + μ)S − h − �(HF) − �̃(iωn)
, (30)

with the chemical potential μ determined through a chemical
potential search procedure such that the total number of elec-
trons matches the target value. The overlap matrix S and the
one-body integral h are easy to compute with given atomic
structures and basis functions so we treat them as input.

With the predicted �(HF), �̃(iωn), G(iωn), we have full
access to the one-particle properties of the given electron sys-
tem. We will show and compare the predicted total energies
[Eq. (7)] and spectral functions (DOS) [Eq. (8)] of different
systems in this manuscript.

III. RESULTS

To demonstrate that our method is general, we bench-
mark the neural network self-energy solver using both small
molecules and periodic systems with different temperatures,
Matsubara frequency grids, and self-energy approximations.
The results for molecules are obtained at relatively high
temperature using the self-consistent second-order Green’s
function perturbation theory (GF2) [1,39–41,51] with a
Chebyshev sparse sampling grid [7,22]. The convergence to
the zero-temperature limit is achieved by requiring that the
total energy differences between the finite temperature and
ground-state Hartree Fock (HF) calculations are below 10−10

hartree. For periodic systems the calculations are performed
at lower temperature using the self-consistent GW approxi-
mation [15] with the intermediate representation (IR) sparse
sampling grid [6,22,52,53], which has a better scaling as a
function of temperature. The GF2 calculations are performed
with the full interaction tensor, while the GW calculations are
performed with the decomposed interaction using def2-svp-ri
auxiliary basis. See Appendix for explicit equations for com-
puting the GF2 and GW self-energy. The interaction tensor,
overlap matrix S, and one-body integral h are all generated
using the PySCF [54,55] package. The DLR frequencies are
generated using LibDLR [50] with ωmax = 100 for all tem-
peratures. Diagrammatic calculations are performed using the
Green [56] open source software package.

In the graph neural network setup, molecules are treated as
fully connected graphs, i.e., all atom pairs are connected by
edges. A cutoff radius rmax is set for periodic systems such
that each atom is only connected to all other atoms within
this range, see Sec. III B for detailed explanations. We use a
three-layer message-passing network for all systems.

In the post-processing procedure, A(ω) is computed from
G(iωn) using the Nevanlinna analytical continuation method
[43,56] which is good at resolving sharp peaks around the
Fermi level. Each diagonal component of G(iωn) in orthogo-
nal basis is continued separately with a broadening parameter
η, and A(ω) is scaled with 1/(πη) in all plots. We use hartree
as energy unit through out the paper with all other quantities
presented in units that are in correspondence with the energy
unit.
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FIG. 2. Learning curve for a single water molecule with STO-3G
basis in terms of the MAE of total energy.

A. Molecules

1. Single water molecule

As a first proof-of-concept application of the neural net-
work self-energy solver, we compute the Green’s functions,
total energies, and spectral functions of a single water
molecule using both the STO-3G and cc-pVDZ basis. All
results are obtained at β = 100 with 320 Chebyshev sparse
sampling points. The configurations are taken from the data
set used by Refs. [57,58], which are sampled from ab initio
molecular dynamics trajectories [59]. 100 randomly selected
configurations are used as test data set, and the rest are used
as training data set.

Figure 2 shows the improvement of accuracy in terms of
the mean absolute error (MAE) of total energy in STO-3G
basis as we increase the training set size. With 100 training
data, both the training and testing errors are below 1 mHa per
atom, and the train-test gap vanishes with 300 training data.

The testing MAE of various predicted quantities with 300
training data are summarized in Table I. The values of HOMO,
LUMO, and gap are obtained from the Nevanlinna analytical
continuation with η = 0.01 and a resolution of 10−4. Figure 3
shows the comparisons of Tr[SG(iωn)] and DOS for data
points with the largest MAE in G(iωn) in the test data sets.
The results presented in Table I and Fig. 3 demonstrate that
our method consistently gives accurate estimations for both
basis sets.

2. Small organic molecules

We further benchmark our method with two small organic
molecules, benzene and ethanol, taken from the original MD-
17 [60] data set. We trained our model with 800 randomly
selected configurations and used an additional 100 randomly

TABLE I. MAE of 100 testing data for single water molecule.

×10−3

�(HF) �̃(iωn) G(iωn) Etot HOMO LUMO gap

STO-3G
0.0312 0.00335 0.0971 0.380 0.163 0.251 0.361

cc-pVDZ
0.0371 0.00320 0.190 0.819 0.162 0.265 0.253

FIG. 3. Comparisons of the label and predicted Green’s function
[(a), (b)] and DOS [(c), (d)] of single water molecule. (a), (c): Data
point with largest MAE in G(iωn) with STO-3G basis. (b), (d): Data
point with largest MAE in G(iωn) with cc-pVDZ basis.

selected configurations as test data set for each molecule. All
calculations are performed at β = 100 with 320 Chebyshev
sparse sampling points using the STO-3G basis.

Table II summarizes the prediction errors of the two
molecules. The values of HOMO, LUMO, and gap are ob-
tained from the Nevanlinna analytical continuation with η =
0.01 and a resolution of 10−3. Comparing the results in Ta-
bles I and II, we see that the prediction errors of benzene
and ethanol are larger than those of a single water molecule.
This can be primarily attributed to the more complicated
atomic configurations of these organic molecules, and the
prediction accuracy of benzene is slightly better than ethanol
due to its more rigid structure. Analogous occurrences have
been observed in other machine learning models, such as in
Refs. [27,57,60]. Moreover, as the required matrices become
larger in orbital space, the prediction task becomes more
difficult. As we are only predicting the self-energies, G(iωn)
and Etot are derived properties that do not factor into the
supervised learning procedure. With the current setup, we

TABLE II. MAE of 100 testing data for benzene and ethanol.

×10−3

�(HF) �̃(iωn) G(iωn) Etot HOMO LUMO gap

Benzene
0.158 0.00926 0.225 7.23 1.97 1.12 2.11

Ethanol
0.612 0.0622 3.19 9.54 3.35 6.01 7.96
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FIG. 4. μ − Ne curve of ethanol with (a) largest MAE in G(iωn),
(b) smallest MAE in G(iωn).

manage to control the MAE of total energy to around 1 mHa
per atom, and the errors of HOMO, LUMO, and gap are also at
the order of 10−3. For applications demanding higher energy
accuracy, it is possible to supplement the current workflow
with a fine-tune procedure utilizing energy as the learning
target for better results.

Part of the error amplification from � to G and Etot comes
from the chemical potential search procedure introduced in
Sec. II D. Figure 4 shows the μ − Ne curve of data points with
the largest and smallest MAE in G(iωn) for ethanol. Since
the μ − Ne curve is relatively flat around the target electron
number, small errors in �HF and �̃(iωn) might cause a non-
negligible μ-shift that propagates to G(iωn). The comparison
of Tr[SG(iωn)] and DOS of these two data points are shown
in Fig. 5. For data point with the largest G error, the shift in μ

causes an obvious shift in the low-frequency part of G(iωn) as
shown in panel (a). However, this shift would not significantly

FIG. 5. Comparisons of the label and predicted Green’s function
[(a), (b)] and DOS [(c), (d)] of ethanol. (a), (c): Data point with
largest MAE in G(iωn). (b), (d): Data point with smallest MAE in
G(iωn).

FIG. 6. Schematic plot for periodic system set up. Dark blue dots
represent atoms in the center unit cell, dotted lines indicate the cutoff
range, and light blue dots are the considered images of atoms.

affect the band gap or HOMO LUMO as shown in panel (c)
since the frequency grid is shifted by μ in the mean time.

B. Periodic system

The neural network self-energy solver can be applied to
periodic systems in a similar way as isolated molecules. For
periodic system calculations carried out in k space, the matrix
elements are determined by summing the contributions from
all unit cells, each labeled by R, within the periodic lattice

M(k) =
∑

R

e−ik·R M(R). (31)

In the corresponding graph neural network setup, each atom
in the center unit cell is connected to all atom images within a
given cutoff radius rmax. This setup employs a local approxi-
mation to address the periodicity of the system [22,26,31,61].
See Fig. 6 for a schematic plot. Unlike constructing the real-
space matrices in LCAO which naturally fits into this type
of tight-binding setup [22,25,26], recovering k-space matrices
in Gaussian basis requires summing over the features from
different unit cells with k-dependent phase factors given in
Eq. (31).

As an example, we apply our method to Gamma-point
calculations of diamond and silicon using their conventional
cell with lattice parameters 3.57 Å and 5.43 Å. The config-
urations are taken from the data set of Ref. [62]. 100 (200)
randomly drawn configurations are used as training data for
diamond (silicon) and the models are tested with another
100 randomly selected configurations. rmax is set to be 6 Å
for diamond and 10 Å for silicon. To improve prediction
accuracy, we trained two neural networks separately for �(HF)

and �̃(iωn) in this example. All calculations are performed at
β = 500 with 136 IR sparse sampling points generated with
	 = 105 using the STO-3G basis.

The prediction MAE are summarized in Table III with
the Nevanlinna continuation performed with η = 0.005 and
a resolution of 10−3. As illustrated in the table, our method
demonstrates the ability to predict the total energies and
spectral properties of periodic systems with an accuracy com-
parable to that achieved for molecules, indicating that this
method is promising for more complicated applications in real
material calculations.
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TABLE III. MAE of 100 testing data for diamond and silicon.

×10−3

�(HF) �̃(iωn) G(iωn) Etot HOMO LUMO gap

Diamond
0.0808 0.0118 0.507 3.36 1.09 1.21 1.55

Silicon
0.0933 0.00371 0.528 8.01 0.463 1.67 1.72

IV. CONCLUSION AND OUTLOOK

In this manuscript, we introduce a general framework
for predicting the finite-temperature self-energy and Green’s
function using equivariant neural network. The proof of con-
cept examples demonstrate that from the predicted self-energy
and Green’s function, we are able to obtain fairly accurate
energy and band gap values for both molecules and periodic
systems.

The inference of the neural network scales quadratically
with the number of atoms, which is much more efficient
than performing actual many-body calculations. Therefore, a
trained model could be used for rapid preliminary calculations
of electron systems to identify desired properties. On the
other hand, the predicted self-energy and Green’s function
can also serve as a reasonable initial guess of correspond-
ing self-consistent diagrammatic method which accelerates
the convergence. For future developments, including specific
observables such as energy in the loss function, Eq. (29) is
expected to give improved accuracy when accurate results
are required. Integrating recent developments of equivariant
graph neural network [27,32,63] into our model is anticipated
to further improve the prediction accuracy and efficiency.
Besides observables that are directly related to the Green’s
function and self-energy, force and other response properties
would also be accessible via automatic differentiation through
the trained model.

In summary, the equivariant neural network self-energy
solver provides a new opportunity to leverage the rapid de-
velopment of geometric deep learning to fast and accurate
prediction of molecular and material properties at many-body
level.
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APPENDIX: SELF-CONSISTENT
DIAGRAMMATIC METHODS

This Appendix provides the equations for approximating
the self-energy within self-consistent diagrammatic methods.
The orbital index i and spin index σ will be written separately
for clarity.

The HF self-energy is static (frequency independent) and
only depends on the density matrix P:

�
(HF)
i j,σ =

∑
kl

∑
σ ′

(Ui jkl − Uilk jδσσ ′ )Pkl,σ ′ , (A1)

Pkl,σ = Glk,σ (τ = 0−). (A2)

In the GF2 approximation, the dynamical part of � is approx-
imated with two second-order bold self-energy diagrams. The
corresponding second order self-energy is given by

�
(GF2)
i j,σ (τ ) = −

∑
klmnpq

UilnpGlk,σ (τ )

×
∑
σ ′

Gpq,σ ′ (τ )Gmn,σ ′ (−τ )(Uk jqm − Uq jkmδσσ ′ ).

(A3)

Within the self-consistent GW approximation, the dynamical
part of the self-energy consists of an infinite series of RPA-like
bubble diagrams. The self-energy �(GW) reads as

�
(GW)
i j,σ (τ ) = −

∑
kl

W̃ilk j (τ )Glk,σ (τ ), (A4)

where W̃ is the effective screened interaction. The GW self-
energy is usually computed using decomposed interaction to
get a better scaling, i.e., the interaction tensor is written in a
decomposed form

Ui jkl =
∑

Q

Vi j (Q)Vkl (Q), (A5)

and the effective screened interaction is given by

W̃i jkl (i�n) =
∑
QQ′

Vi j (Q)PQQ′ (i�n)Vkl (Q
′), (A6)

with �n = 2nπ/β, n ∈ Z the bosonic Matsubara frequencies.
P is an auxiliary function given by

P(i�n) = [I − P0(i�n)]−1P0(i�n), (A7)

P0,QQ′ (τ ) = −
∑
σσ ′

∑
abcd

Vda(Q)

× Gcσ ′,dσ (−τ )Gaσ,bσ ′ (τ )Vbc(Q′). (A8)
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