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Interlayer bias effect on time-reversal symmetry breaking in twisted bilayer cuprates
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We study a one-band Hubbard model of twisted bilayer cuprates with a twist angle of 53.13◦. By introducing
an interlayer bias, we simulate heterobilayers of different dopings. Using the variational cluster approximation,
we probe the effect of this bias on the time-reversal symmetry-breaking (TRSB) phase. Doping differences
between layers affect the region where TRSB occurs; we construct a phase diagram mapping out the TRSB phase
in the n1-n2 plane, with n� being the electron density on layer �. We also map the spontaneous supercurrent on
the same plane.
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I. INTRODUCTION

Previous studies of the Hubbard model for twisted cuprates
using the variational cluster approximation (VCA) at θ =
53.13◦ [1] and 43.60◦ [2] have shown that time-reversal
symmetry is spontaneously broken in a narrow region of
the superconducting dome when strong interlayer tunneling
is considered. This shows that the time-reversal symmetry-
breaking (TRSB) phase predicted around 45◦ [3–6] is strongly
doping dependent. It was proposed that such a phase may
lead to Majorana modes when in proximity with a material
with spin-orbit coupling [7–9]. Superconducting qubits using
twisted cuprates have been proposed [10]. Extensions to mul-
tilayer systems have also been studied [11].

The realization of two-dimensional monolayers of
Bi2Sr2CaCu2O8+δ (Bi2212) with a transition temperature
close to that of bulk samples [12,13] allows cuprate bilayers to
be assembled in the laboratory and c-axis Josephson junctions
to be created. Because of the d-wave pairing symmetry in
each layer, the critical current changes depending on the twist
angle in those junctions [14–17]. The critical current can
remain finite at 45◦, pointing to the predicted TRSB phase
[18,19].

Those junctions are challenging to make due to disorder
inherent to Bi2212. It can thus be difficult for the two mono-
layers to be locally at the same doping. Indeed, the distribution
of dopants can be inhomogeneous or the preparation process
can introduce defects. On the other hand, it was proposed
that some inhomogeneity could be needed in order to induce
TRSB in twisted cuprate junctions [20].

Since changing the doping results effectively in a differ-
ent material, one can take inspiration from the heterobilayer
transition-metal dichalcogenides [21,22] and use different
monolayer cuprates to create the bilayer system. The physics
of cuprates being doping dependent, this would affect the
TRSB phase.

The Hubbard model used in Refs. [1,2] can be modified
to introduce a doping difference between the layers. This
can also simulate the effect of defects or contamination in
the junction-making process, leading to close, but different,
doping content in each layer.

In this paper, we introduce an interlayer bias in the twisted
cuprates Hubbard model at θ = 53.13◦ studied in Ref. [1].
This bias induces a doping difference between the two layers,
allowing us to simulate heterobilayer cuprates. We show that
the doping range where TRSB occurs is affected by interlayer
bias. We obtain a phase diagram mapping out the TRSB phase
in the n1-n2 plane, with n� being the electron density on layer
�. We also compute the spontaneous supercurrent circulating
in a certain loop within the TRSB phase; this can be used as a
TRSB order parameter.

II. MODEL

We use the Hamiltonian proposed in Ref. [1], where each
layer is described by a one-band Hubbard model, and each
site corresponding to a copper atom. To this layer Hamilto-
nian we add an interlayer bias term Hε , so that the complete
Hamiltonian is

H = H (1) + H (2) + H⊥ + Hε, (1)

where the intralayer Hamiltonian H (�) is

H (�) =
∑

r,r′∈�,σ

trr′c†
r,�,σ cr′,�,σ + U

∑

r

nr,�,↑nr,�,↓

− μ
∑

r,σ

nr,�,σ . (2)

Here, cr,�,σ (c†
r,�,σ ) is the annihilation (creation) operator of

an electron at site r on layer � with spin σ =↑,↓, and nr,�,σ
is the number operator. r, r′ are the site indices of a square
lattice for each layer. The on-site repulsion between electrons
is U . The hopping matrix trr′ includes nearest-neighbor hop-
ping (t) and next-nearest-neighbor hopping (t ′). To describe
Bi2212, we use the values t = 1, t ′ = −0.3, and U = 8, with
t being the energy unit [1,2,23]. Nonlocal interactions were
not considered since superconductivity can be driven by local
repulsion alone and is resilient to nearest-neighbor repulsion
at intermediate to strong coupling [24].
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The coupling between the layers is provided by interlayer
tunneling,

H⊥ =
3∑

n=1

Vn

∑

〈r,r′〉⊥,n,σ

[c†
r,1,σ cr′,2,σ + H.c.], (3)

with 〈r, r′〉⊥,n,σ representing the set of sites r on layer 1 and
r′ on layer 2, such that their projections on the plane are
nth neighbors. We consider interlayer hopping up to third
interlayer neighbors. The strength of the tunneling is given
as in Ref. [2] by

Vn = Ve−λ(|dn|−dz )/a, (4)

where |dn| = |r − r′| is the three-dimensional distance be-
tween the two sites corresponding to the nth neighbors on
different layers, dz is the distance between the two layers, and
a is the lattice constant of the square lattice. The interlayer
tunneling between sites that are on top of each other is V .
We use a damping parameter λ, the same as in Ref. [2]:
dz = a and λ = 11.13. This set of parameters leads to similar
interlayer tunneling as in Ref. [1]. We use V = 0.4 since a
strong interlayer tunneling is needed to have a clear TRSB
[1,2].

This model is obviously a simplification of actual cuprate
bilayers. It neglects, among other things, the fact that each
monolayer of Bi2212 contains two CuO2 planes. It is based
on a one-band effective model of each CuO2 plane and ignores
the precise structure of the interplane regions. Moreover, the
values of the effective interlayer tunneling parameters should
be lower in order to better describe real twisted bilayers [23].
The strong values of V that we are using are needed in order
to observe a clear TRSB phase in our system [1,2]. However,
the effective model used here allows us to probe the range of
parameters needed for chiral superconductivity to be observ-
able.

The interlayer bias term takes the form

Hε = −ε
∑

r,σ

(nr,1,σ − nr,2,σ ). (5)

This contribution effectively shifts the chemical potential on
each layer by ±ε. The density n� in each layer is then different
from the total density n. The transformation ε → −ε effec-
tively swaps both layers so we can concentrate on positive
values of ε.

The two layers are assumed to have the same lattice
constant. Different lattice constants would not lead to a com-
mensurate unit cell with a reasonable number of orbitals with
twist angle close to 45◦.

Model (1) is applied to the bilayer with twist angle θ =
53.13◦. At this twist angle, the unit cell of the bilayer system is
made of 10 sites, as illustrated in Fig. 1. That twist angle was
chosen over 43.60◦ because of the relatively low computing
resources needed.

The superconducting phase in this model is probed us-
ing the VCA [25,26] with an exact-diagonalization solver at
zero temperature, like in Refs [1,2]. This variational method
on the electron self-energy, based of Potthoff’s self-energy
functional approach, allows us to probe broken symmetries
while preserving strong correlations. It has been used to study
magnetic phases [26,27] and superconductivity [28,29] in

FIG. 1. Unit cell of the twisted bilayer cuprate system at θ =
53.13◦, containing 10 sites between the two layers. The top (bottom)
layer correspond to the blue (red) lattice. The A clusters contain eight
sites and the B cluster contains only two sites that are on top of each
other. The green arrow show the direction of the current defined by
Eq. (9).

various systems. For a detailed review of the method, see
Refs. [1,30,31].

As shown in Ref. [1], we expect the superconducting order
parameter of the bilayer system to belong to the irreducible
representations B1 or B2 of the D4 point group of the bilayer.
We define the VCA Weiss field belonging to these two repre-
sentations as

B̂1 = �̂(1) + �̂(2), B̂2 = �̂(1) − �̂(2), (6)

where the d-wave pairing operator on layer l is defined as

�̂(�) =
∑

r∈�

cr,�,↑cr+x(�),�,↓ − cr,�,↓cr+x(�),�,↑

− cr,�,↑cr+y(�),�,↓ + cr,�,↓cr+y(�),�,↑. (7)

For a more detailed description and justification of these defi-
nitions, see Refs. [1,2].

In the VCA procedure, we can use B̂1 or B̂2 to probe
the superconducting phase. One of them should lead to a
lower-energy state and be favored. It is also possible that
the complex combination B̂1 + iB̂2 lowers the energy even
more; this combination corresponds to the TRSB state. In such
cases, we can express the relative phase φ between the order
parameters 〈�̂(1)〉 and 〈�̂(2)〉 of the two planes as

tan
φ

2
= ImψB2

ReψB1

, (8)

with ψBi the order parameter ψBi = 1
L 〈B̂i〉, where L is the

number of site and i = 1, 2. A value of φ = 0 (φ = π ) cor-
responds to a pure B1 (B2) case. The interesting case is the
one where φ �= 0 or π , where there is a coexistence of both
states, indicating a TRSB.

We use the VCA procedure with Weiss fields from both
representations (B1 and B2), with varying values of ε, to
probe the effect of different layer-doping content on the TRSB
phase.
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FIG. 2. Superconducting order parameter as a function of elec-
tron density n in the twisted cuprate bilayer at θ = 53.13◦ for
different interlayer bias parameters ε. (a) Norm

√|ψ1|2 + |ψ2|2 of
the order parameter obtained from the VCA procedure with both
representation as Weiss field for different values of ε. The order
parameter drops when |ε| increases. (b) Relative phase φ between
the two layers. We observe a shift in the range of the TRSB close to
half filling (n = 1) when |ε| increases.

III. RESULT AND DISCUSSION

A. Interlayer bias

Figure 2 shows the superconducting order parameter and
relative phase φ as a function of electron density in model (1)
with θ = 53.13◦, for different values of ε. In Fig. 2(a), we
observe that the difference in doping between the two layers
causes a drop of the order parameter. Assuming a monotonous
relation between the order parameter and the critical tem-
perature Tc, we can infer that Tc should be maximal when
ε = 0 (when both layers are identical). As expected from the
symmetry of the system, the effect depends on the absolute
value |ε| only. This can also be seen in Fig. 2(b), where
we show the relative phase φ. The TRSB phase corresponds
to the region where φ �= 0 or π . We observe a shift in the
TRSB region towards half filling with increasing |ε|. While
increasing |ε|, the TRSB doping range also becomes narrower,
making it more difficult to detect at high values of bias ε. If
the doping discrepancy between the two layers is too large, the
system may not show the TRSB behavior. This might explain
the difficulty to observe a nonzero critical current in some
45◦ c-axis Josephson junctions [14–17].

For all values of ε considered, the TRSB occurs in the
overdoped region, i.e., beyond optimal doping according to
Fig. 2, in at least one of the layers. There are theoretical signs
that the superconducting states in the under- and overdoped
regions are qualitatively different, even though they share the
same symmetry [32]. Correlation effects being lower in the
overdoped region, the superconducting state is closer to the
BCS state than in the underdoped region. This seem to impact
the TRSB phase.

FIG. 3. Phase diagram of the TRSB phase for different sets of
layer doping (n1, n2). The points indicate that a nontrivial relative
phase was found with this combination of layer dopings. The color
map represents the order parameter. The order parameter is maxi-
mum when the bias |ε| vanishes (dotted line).

In Fig. 3, we show a map of the TRSB phase as a function
of doping n1,2 on each layer. The diagram has a crescent form
and is symmetric around the zero bias (ε = 0), corresponding
to n = n1 = n2. The order parameter drops when deviating
from ε = 0, as seen in Fig. 2.

The distribution of the TRSB phase is not uniform. In
fact, some combinations offer a bigger tolerance to doping
differences. Indeed, when one of the layers is in the overdoped
region n� ∈ [0.90, 0.92], TRSB occurs in a larger interval of
doping for the second layer. On the other hand, near the tips
of the crescent, the system has a small tolerance to doping
difference and a TRSB phase will be hard to observe.

The three points close to n = 0.88 on the dotted line corre-
spond to the small bump seen in Fig. 2 for ε = 0. We believe
that those results are an artifact of the method and do not
hold physical meaning since no other values of ε exhibit this
behavior.

B. Interlayer current

It is possible to define an interlayer current operator Î
between the sites of the different layers on cluster A as

Î = i
∑

{r,r′}I

(c†
r,1,σ cr′,2,σ − c†

r′,2,σ cr,1,σ ), (9)

where {r, r′}I is the set of pairs of sites defining the green
path in Fig. 1. This operator can be used to extract information
related to a Josephson current, with the order parameter given
by I = 1

L 〈Î〉. Experimentally, a nonzero Josephson current
appears when the relative phase between both layers is non-
trivial. The maximal current corresponds to a relative phase of
φ = π

2 . This behavior is observed within our data while using
Eq. (9) as the definition of our Josephson current.

Figure 4 shows the phase diagram for different sets of layer
doping (n1, n2). The points indicate that a current |I| > 10−4
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FIG. 4. Map of the spontaneous current I along the loop defined
in Fig. 1 for different sets of layer doping (n1, n2). A dot indicates a
nonzero spontaneous current (|I| > 10−4) and the color map repre-
sents the value of the current. The dotted line corresponds to ε = 0.

was found, whose intensity is mapped in color. This criterion
makes sure that the current is significantly larger than the
numerical precision (10−7). The current is maximum when
φ is close to π

2 and when the two layers have similar doping
levels. The crescent has the same shape as in Fig. 3, except
that the current falls to zero outside of the crescent, whereas
the superconducting order parameter does not. The current is
indeed an order parameter for TRSB. The choice of current
loop in Fig. 1 is not the only one possible. Other closed paths
between the two layers would yield similar results, except
for the overall current amplitude. Without external bias, we
expect the net current between the two layers to vanish.

C. Topology

We investigated the topological nature of the TRSB phase
by computing the Chern number using the Green function
obtained from the VCA [33,34]. Unfortunately, we found
that the topology is always trivial in the region of interest:
The Chern number vanishes. The Brillouin zone has regions
of opposite Berry curvature that compensate exactly, despite
the system being clearly gapped everywhere. A typical plot
of the Berry curvature is shown on the left panel of Fig. 5,
where regions of opposite signs are evident; so is the full
superconducting gap, as shown on the right panel. The trivial
topology is likely due to the strong interaction regime that
applies here; topologically nontrivial to trivial transitions as
U increases have been theoretically observed in other systems
[35].

D. Effect of t ′ and U

The value of the next-nearest-neighbor hopping (t ′) was
chosen to best describe Bi2212. It is possible to change this
value to probe the effect of considering different compounds.
We looked at two other values of t ′ (−0.2 and −0.45) while
keeping every other parameter the same (t = 1, U = 8, and

FIG. 5. Left panel: Color plot of the Berry curvature in the Bril-
louin zone (blue is negative, red is positive). The integrated Berry
curvature (the Chern number) vanishes. Right panel: Corresponding
spectral function along high-symmetry axes. The superconducting
gap is very clear. The parameters are U = 8, V = 0.4, e = 0, and
μ = 1.34 (n = 0.923).

V = 0.4). We also looked at the effect of varying U (U = 7)
while keeping t ′ = −0.3.

Figure 6 show the relative phase φ obtained by VCA for
two other values of t ′ and for U = 7. The doping range where
the TRSB phase is observed is shifted when t ′ is changed
from −0.3. For t ′ = −0.2, the region is shifted toward higher
doping, while for t ′ = −0.45, it is shifted toward half filling.

FIG. 6. (a) Relative phase φ between the two layers for t ′ =
−0.2. The TRSB region is shifted to higher doping compared to
t ′ = −0.3 (Fig. 2). (b) Relative phase φ between the two layers for
t ′ = −0.45. In this case, the TRSB region is shifted to lower doping
compared to to t ′ = −0.3. (c) Relative phase φ between the two
layers for U = 7. The TRSB region is shifted toward higher doping
compared to U = 8.
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FIG. 7. Phase diagram of the TRSB phase for different sets of
layer density (n1, n2) for t ′ = −0.45. The features observed here are
similar to what is observed for t ′ = −0.3 (Fig. 3).

At U = 7, the TRSB phase is shifted toward higher doping
compared to U = 8. This was also observed in Ref. [2]. This
shows that the TRSB phase is robust against changes in the
dispersion or interaction strength.

Figure 7 shows the phase diagram of the TRSB phase for
combinations of layer density (n1, n2) for t ′ = −0.45. The
shape of the diagram is similar to that for t ′ = −0.3, but
shifted closer to half filling. Some data points show a density
n� > 1, which can be attributed to the error on the electron
density typical of VCA when the chemical potential within the
cluster is not treated as an additional variational parameter.

From the results presented here for model (1), it is possible
to explain the sensibility of the cuprate Josephson junction

to impurities and doping. At the same time, if one layer is
in the high-tolerance region, the TRSB phase could be easier
to obtain. We note that our model is an oversimplification of
the cuprate bilayer since it is based on the one-band Hubbard
model and ignores the fact that each layer of the twisted
system is, in fact, itself a bilayer. Still, we hope that the effects
of doping asymmetry presented here are robust.

IV. CONCLUSION

We used a one-band Hubbard model describing twisted
bilayer cuprates at θ = 53.13◦ with an interlayer bias ε,
simulating a doping asymmetry between layers. Using the
variational cluster approach, we probed the superconducting
phase and found that |ε| affects the doping range and order
parameter of the time-reversal symmetry-breaking state. We
use the spontaneous current along a small loop as a TRSB or-
der parameter. Increasing the interlayer bias pushes the TRSB
region towards half filling, while making it narrower. The
SC order parameter also decreases when the interlayer bias
increases. Overall, the TRS region has a crescent shape in the
n1-n2 plane (n1,2 being the electron densities on layers 1 and
2). One of the layers has to be in the overdoped region for the
bilayer to break time reversal. But once a layer is overdoped,
there is some tolerance to a doping difference with the other
layer.
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