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We study de Haas-van Alphen oscillations in a marginal Fermi liquid resulting from a three-dimensional
metal tuned to a quantum-critical point (QCP). We show that the conventional approach based on extensions of
the Lifshitz-Kosevich formula for the oscillation amplitudes becomes inapplicable when the correlation length
exceeds the cyclotron radius. This breakdown is due to (i) nonanalytic finite-temperature contributions to the
fermion self-energy, (ii) an enhancement of the oscillatory part of the self-energy by quantum fluctuations,
and (iii) nontrivial dynamical scaling laws associated with the quantum critical point. We properly incorporate
these effects within the Luttinger-Ward-Eliashberg framework for the thermodynamic potential by treating the
fermionic and bosonic contributions on equal footing. As a result, we obtain the modified expressions for the
oscillations of entropy and magnetization that remain valid in the non-Fermi-liquid regime.
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I. INTRODUCTION

Magnetic oscillations in metals—the periodic variation of
virtually all physical quantities with an external magnetic
field—are remarkable macroscopic quantum effects. Such
quantum oscillations are periodic in 1/B, where B is the exter-
nal magnetic field, and are routinely used in the experimental
characterization of metals [1,2]. Among the foremost exam-
ples is the field-induced oscillation of magnetization, known
as the de Haas–van Alphen (DHVA) effect, which has played
a pivotal role in the study of Fermi surfaces of elemental
metals, and even those of strongly correlated systems such
as the cuprates [3–7], iron pnictides [8,9], and heavy fermion
materials [10,11].

A quantitative theory of DHVA oscillations was first put
forward by Lifshitz and Kosevich (LK) [12], who consid-
ered the oscillatory behavior of the thermodynamic potential
of a clean, three-dimensional gas of noninteracting electrons
with arbitrary dispersion. According to the LK theory, the
oscillation frequencies reveal areas of “extremal orbits”, i.e.,
the Fermi surface orbits having extremal momentum-space
areas in the plane perpendicular to B. In addition, from the
temperature dependence of the oscillation amplitude for the
kth harmonic (also known as the LK formula)

Ak (T ) = T

2 sinh(2π2T k/ωc)
(1)

with k = 1, 2, ..., it is possible to extract cyclotron masses
associated with extremal orbits through ωc = eB/m. In the
presence of impurities, the oscillations are exponentially
damped by a finite elastic scattering rate.

Despite the obvious presence of sizable interactions in
real metals, nearly all experimental observations of DHVA
oscillations to date are interpreted in terms of the LK theory,
often with striking success. The reason for such robustness of
the predictions LK theory was given by Luttinger [13], and

by Bychkov and Gorkov [14], who showed that so long as
the metal remains a Fermi liquid, many-body interactions do
not alter the LK predictions; instead many-body effects are
manifest in renormalized parameters, such as altered extremal
orbits and the fully dressed cyclotron masses m∗ as extracted
from the LK formula in Eq. (1). We refer to such an ex-
tension of LK theory to interacting systems as the extended
LK paradigm, which provides a well-defined theoretical pre-
scription for interpreting DHVA oscillations. In practice, one
starts with the expression for the thermodynamic potential,
a functional of fully dressed propagators and self-energies.
In a magnetic field, all such quantities contain both uniform
and oscillatory components. The extended LK prescription
involves neglecting both the temperature dependence and os-
cillatory components of the fermion self-energy. Doing so,
one can show that the oscillations satisfy LK theory albeit
with renormalized parameters. Specific applications of this
theory include coupled electron-phonon systems [15–17] and
disordered two-dimensional Fermi liquids [18,19], also see
[20] for a review.

In a Fermi liquid, the extended LK method is well justified.
For instance, the Fermi-liquid self-energy is quadratic in tem-
perature, which can be neglected. Moreover, the oscillatory
piece of the self-energy is suppressed by a factor (ωc/μ)3/2

compared to the smooth part, where μ is the Fermi energy.
As a consequence, the corresponding contribution to the os-
cillations of the thermodynamic potential is suppressed by
a factor (ωc/μ)1/2 compared to the leading term, and thus,
can also be neglected. It is far from clear, however, whether
such a prescription remains valid when a metal is tuned to a
quantum critical point (QCP), where interactions induced by
soft-order parameter fluctuations become singular, resulting
in the breakdown of Fermi-liquid theory, and in nonanalytic
temperature dependence of all self-energies.

Indeed, the naive adoption of the extended LK prescrip-
tion to the case of a metal with singular interactions was
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questioned recently [21], from a perspective that it results in
the violation of the third law of thermodynamics (Nernst’s
theorem), which requires that the entropy density and the
specific heat must vanish as T → 0. A simple manipulation
shows that this requirement implies the temperature deriva-
tive of the oscillation amplitude ∂Ak/∂T must vanish in the
zero-temperature limit. For concreteness, we will consider
a 3D metal coupled to some collective bosons, which can
be either undamped or overdamped. When the system is far
away from the QCP it behaves like a conventional Fermi
liquid, and the application of the LK prescription still leads
to Eq. (1) (with renormalized quantities) from which it is
obvious to see that Ak (T ) − Ak (T = 0)∼−T 2 at T � ωc and
therefore ∂Ak/∂T = 0 as T → 0. However, when the system
is close to the QCP, singular fermion interaction mediated
by critical bosons results in a marginal Fermi-liquid (MFL)
behavior. In this regime, working within the LK paradigm
leads to Ak (T ) − Ak (T = 0) ∼ T ln T at low temperatures,
and therefore the apparent divergence of ∂Ak/∂T as T → 0,
i.e., the violation of the third law. This observation leads to the
breakdown of the LK paradigm, and calls for a more careful
analysis of the quantum oscillations for a metal in a quantum
critical regime.

In this paper, we aim to resolve this issue by providing a
theory of quantum oscillations for a quantum critical metal
at low temperatures beyond the LK paradigm. In principle,
one could follow Luttinger’s approach by carefully keeping
track of the oscillatory parts of the fermion self-energy, which
enters the thermodynamic potential. Then, the remedy of the
zero-temperature divergence stated above would require an
exact cancellation of the divergence in the thermodynamic
potential, tracking which would be a rather involved task.
Here we show that one can circumvent Luttinger’s approach
by utilizing the saddle point conditions for the thermodynamic
potential. We present an exact formulation for computing the
entropy in a magnetic field of quantum critical metals within
the Migdal-Eliashberg (ME) approximation and show that
the entropy manifestly satisfies the laws of thermodynamics.
As concrete examples, we considered two different types of
models with parabolic dispersion and MFL behavior: one with
overdamped bosons and a dynamical exponent z = 3 and the
other with undamped bosons and z = 1. Although the z = 1
model serves as a simple and elegant demonstration of the es-
sentials of our calculation, the z = 3 model is more physically
relevant. The comparison of the results based on these two
models also unveils the important role of different dynami-
cal scaling laws of the bosons in determining the oscillatory
entropy and magnetization. Proceeding further, we obtain ex-
pressions for the entropy at temperatures and magnetic fields
small compared to the bare Fermi energy of the metal, from
which the expressions for the oscillation amplitudes Ak (T )
are obtained via the Maxwell relation. Our approach naturally
captures the LK expressions in the noninteracting limit and
results in new temperature dependence for the DHVA am-
plitude near a quantum critical point. Specifically, for z = 1
bosons, we find that the low-temperature behavior of Ak (T )
is T 2 ln T , while for z = 3 case, we find that the leading
contribution to Ak (T ) is T 4/3. Both of these behaviors obey
the thermodynamic laws, and deviate from the standard LK
formula in Eq. (1). In addition, we find that the tail of Ak (T )

FIG. 1. The temperature dependence of the DHVA oscillation
amplitude A1(T ) in the undamped (z = 1) and overdamped (z = 3)
cases.

at temperatures greater than the cyclotron frequency T � ωc

is of the form T exp{−#T ln T } for both cases z = 1 and
z = 3. These asymptotic limits are summarized in Fig. 1.
Such apparent deviation from the LK formula could be, in
principle, detected in experiments by measuring the quantum
oscillations of either magnetization or specific heat, and can
be used as a direct evidence for the existence of quantum
critical point in various materials.

With hindsight, our theory also provides a clear picture
on where the recipe of Luttinger for the DHVA oscillations
breaks down. Perhaps not surprisingly, the temperature depen-
dence of the fermion self-energy cannot be neglected near a
quantum critical point, since it exhibits nonanalytic behavior.
Additionally, we show explicitly that the oscillatory parts of
the self-energy cannot be neglected; due to their singular
temperature dependence, they in fact can contribute even more
strongly to the low-temperature entropy. Lastly, we observe
that the contribution from overdamped order parameter fluc-
tuations in the metallic environment produces the dominant
correction to the entropy, which in fact can contribute signifi-
cantly to the temperature dependence of the DHVA amplitude.
This is in sharp contrast to conventional metals (Fermi-liquid
regime) where the quantum oscillations are determined only
by the fermions.

The outline of the paper is as follows. In Sec. II we sum-
marize the ME theory of a marginal Fermi liquid in three
dimensions and in the presence of a magnetic field. In Sec. III
we recall the main steps in the derivation of the extended
LK formula, and then demonstrate that, if applied to our
theory at criticality, it leads to violations of the third law of
thermodynamics. Next, in Sec. IV we consider the Luttinger-
Ward-Eliashberg thermodynamic potential corresponding to
our ME theory in a magnetic field. Starting from this rep-
resentation, in Sec. V we derive a formally exact formula
for the entropy that manifestly satisfies the thermodynamic
constraints. This formula is then used to evaluate specific heat
and magnetization oscillations in the particular case of the un-
damped critical boson in Sec. VI, while the role of the Landau
damping is discussed in Sec. VII. Discussion and conclusions
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are presented in Sec. VIII. Some details of calculations are
presented in the Appendices.

II. MODELS OF MARGINAL FERMI-LIQUID BEHAVIOR

We will study DHVA oscillations in models exhibiting
marginal Fermi-liquid behavior in zero magnetic field, as
it arises in a three-dimensional metal tuned to a continu-
ous quantum phase transition. Broadly stated, there are two
classes of symmetry breaking quantum phase transitions in
metals in the absence of disorder: those that preserve lattice
translations and those that break them. Examples in the former
category include ferromagnetic, Ising nematic transitions, and
more generally, Pomeranchuk instabilities. Examples of the
latter describe the onset of density wave order. Within the for-
mer category, we can further distinguish between conserved
order parameters (such as ferromagnetism) and nonconserved
order parameters. We will study transitions that preserve
lattice translations associated with nonconserved order param-
eters.

If such transitions are continuous, their universal properties
are governed by a low-energy theory consisting of fermions
at finite density coupled to gapless bosonic order parameter
fluctuations by a Yukawa-like coupling, which is the most
relevant coupling in the sense of the renormalization group. A
straightforward approach to such problems involves the use of
Migdal-Eliashberg (ME) theory to obtain self-consistent de-
scriptions in terms of propagators of the fermions and bosons
and their respective self-energies. The bare fermion and boson
propagators, G0, D0 respectively, are

[G0(εn, k)]−1 = iεn − ξk, ξk = k2

2m
− μ,

[D0(ωn, q)]−1 = c2q2 + ω2
n + m2

b. (2)

Here εn = 2πT (n + 1/2) and ωn = 2πT n are the fermionic
and bosonic Matsubara frequencies respectively, m is the
fermionic mass, c is the boson’s velocity, and μ is the chemi-
cal potential. The boson mass mb is varied by a nonthermal
parameter such as pressure, doping, etc., and the quantum
critical point is accessed by tuning the physical boson mass to
zero. We also note that Eq. (2) assumes a simple parabolic dis-
persion. We will comment on possible extensions in Sec. VIII.

The self-consistent relations involving these propagators
are [22,23]

G(εn, k) = 1

[G0(εn, k)]−1 + i�(εn, k)
,

D(ωn, q) = 1

[D0(ωn, q)]−1 − �(ωn, q)
,

�(εn, k) = ig2T
∑

m

∫
d3q

(2π )3
D(ωm, q)G(	m + εn, k + q),

�(ωn, q) = −g2T
∑

m

∫
d3k

(2π )3
G(ωn + εm, k + q)G(εm, k).

(3)
The first two equations are the Dyson equations whereas the
last two define the respective self-energies. Originally used in
the context of the electron-phonon problem, the ME theory
neglects all quantum corrections of the boson-fermion vertex.

It arises as a saddle point of recent theories with random-flavor
Yukawa couplings, studied in Ref. [24,25]. While this approx-
imation can be justified by invoking formal large N limits, it
is sufficient also to assume, as is done in the electron-phonon
context, that the characteristic boson speed is small compared
to the Fermi velocity (i.e., if β := vF /c � 1 where vF =√

2μ/m is the Fermi velocity, or if the bosons are Landau
overdamped), so that a version of the Migdal’s theorem ap-
plies. For our purposes, we will take the ME equations above
as the starting point for describing the quantum critical metal.

The self-consistent solution of Eqs. (3) has been exten-
sively studied before. Here we only briefly summarize its main
properties, and the details of the calculation are presented in
Appendix B. First, the boson self-energy contains a Landau
damping term [26],

�(ωn, q) ≈ g2ν − πg2ν

2vF

|ωn|
q

, (4)

where ν = k2
F /(2π2vF ) is the density of states near the

Fermi level. From this result, the z = 3 dynamical scaling
is readily recognized. Inserting this into the equation for
�(εn, k) and neglecting any weak momentum dependence
of the fermion self-energy near the Fermi surface, i.e., ap-
proximating �(εn, k) ≈ �(εn), the solution for �(εn) can be
found in a straightforward way. In the low-temperature limit
where εn is treated as a continuous variable, �(εn) contains
a leading nonanalytic temperature dependence T ln T , with
a subleading term of the order of O(T ). Keeping only the
leading term, we find, as T → 0,

�(εn) ≈ 1

3
ḡ2εn ln

�D

|εn| + 1

3
ḡ2εn + 1

3
π ḡ2T ln

T

�D
, (5)

where ḡ2 = g2/(4π2c2vF ) is the dimensionless coupling con-
stant, and �D = 2βω3

D/(πg2ν) is the energy cutoff expressed
in terms of the effective “Debye frequency”, ωD = EF /β �
EF . The first two terms of Eq. (5) is the marginal Fermi-liquid
self-energy, which was first discussed as a phenomenolog-
ical model of the normal state of cuprate superconductors
[27]. Similar MFL self-energy can also be obtained in the
undamped boson model, in which the boson self-energy is
neglected and the dynamical exponent is, therefore, z = 1.
Following completely parallel calculations, we find that the
fermion self-energy is identical to Eq. (5) with ḡ2/3 replaced
with ḡ2 and �D replaced with ωD (see Appendix B for cal-
culation details). These expressions can also be analytically
continued to the real frequency axis according to the following
convention:

�R(ω) = −i�(−iω), GR(ω, k) = 1

ω − ξ (k) − �R(ω)
.

(6)

Here the superscript “R” denotes retarded functions, which
are analytic in the upper half-plane.

Midgal-Eliashberg equations in a magnetic field

To study DHVA oscillations in the marginal Fermi liquid
described above, we will need to adapt the ME relations to
allow for the presence of a magnetic field. Since the field
reduces translation symmetry to a set of magnetic transla-
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tions, the fermion propagators and self-energies (which are
also gauge-dependent quantities) will no longer be transla-
tionally invariant. This results in a modified Dyson equation,
expressed in the position representation as

i
∫

d3r′′ �(r, r′′, εm)G(r′′, r′, εm)

+
[

iεm − π2

2m
+ μ

]
G(r, r′, εm) = δ(r − r′), (7)

where π = p − eA is the canonical momentum operator in
the presence of a magnetic field B̂z. Hereafter, we will
adopt the Landau gauge in which the vector potential is
A = (−yB, 0, 0). By contrast, since the boson is taken to be
electromagnetically neutral, both D,� remain translationally
invariant. Consequently, the proper self-energy in the position
representation is expressed in terms of the self-consistency
equation

�(r, r′, εm) = ig2T
∑

m′
D(εm − εm′ , r − r′)G(r, r′, εm′ ). (8)

Using the properties of the bare fermionic Green’s func-
tion in a magnetic field, as well as the structure of the
self-consistency condition (8), it is easy to show that the self-
energy can be factorized into a product of a phase factor and
a translation-invariant part

�(r, r′, εm) = ei�(r,r′ )�̄(r − r′, εm),

�(r, r′) = (x′ − x)(y + y′)/2l2
B,

(9)

where lB is the magnetic length. This allows us to solve the
Dyson equation (7) exactly, without resorting to the explicit
form of �̄(r − r′, εm). We find

G(r, r′, εm) = ei�(r,r′ )Ḡ(r − r′, εm), (10)

with the same phase factor as in Eq. (9). The Fourier transform
of the translation-invariant part of G reads as

Ḡ(k, εm) =
∑
n=0

2(−1)ne−l2
Bk2

‖ Ln
(
2l2

Bk2
‖
)
Gn(kz, εm), (11)

where n labels the Landau levels, ωc is the cyclotron fre-
quency, and k‖ is the in-plane component of momentum
perpendicular to the magnetic field. The Green’s function
for a given Landau level and kz momentum is denoted as
Gn(kz, εm), and given by

Gn(kz, εm) = 1

iεm − ωc(n + 1
2 ) − k2

z

2m + μ + i�n(kz, εm)
,

(12)
and the associated self-energy �n(kz, εm) is related to the
Fourier transform of �̄(r, εm) defined in Eq. (9) as follows:

�n(kz, εm) =
∫ +∞

0
dte−t Ln(2t )�̄(

√
t/lB, kz, εm). (13)

Here Ln(t ) is the Laguerre polynomial, and
√

t/lB replaces k‖.
Given the structure of the full Green’s function Eqs. (10) and
(11), the bosonic self-energy can be then conveniently written

as

�(ωm̄, q)

= −g2T
∑

m

∫
d3k

(2π )3
Ḡ(ωm̄ + εm, k + q)Ḡ(εm, k)

= −g2T
∑

m
nn̄

Xnn̄(q‖)

(2π lB)2

∫
kz

Gn(kz + qz, εm + ωm̄)Gn̄(kz, εm).

(14)

Also,
∫

kz
in the second line in Eq. (14) stands for the integral

over kz, and we defined the matrix element Xnn̄(q) as

Xnn̄(q) = (−1)n̄−ne− l2Bq2

2 Ln̄−n
n

(
l2
Bq2

2

)
Ln−n̄

n̄

(
l2
Bq2

2

)
. (15)

We also note that for high Landau levels and for the typical
momenta such that q � kF , this form factor can be approxi-
mated as

Xnn̄(q) ≈ J2
|n−n̄|(Rcq), q � kF , (16)

where Jn(x) is the Bessel function, and Rc = vF /ωc is the cy-
clotron radius. Finally, the bosonic self-energy is related to the
full bosonic propagator in the same way as in the second line
of Eq. (3). It is convenient to use Eq. (13) and transform the
self-consistency condition (8) into a closed-form equation that
contains �n only

�n(εm, kz ) = ig2T
∑
m̄,n

∫
d3q

(2π )3
D(εm − εm̄, q)

× Xnn̄(q‖)Gn̄(kz + qz, εm̄). (17)

Equations (14) and (17) in combination with Eq. (12) and
the second line of Eq. (3) form a closed system generalizing
the standard one-loop equations (3) to the finite magnetic
field case. We will make use of these relations in Sec. V
when we evaluate the entropy in a magnetic field of the
marginal Fermi liquid. We emphasize that these equations are
valid up to all orders in both ωc/μ and the dimension-
less coupling strength, as long as the Migdal approximation
still holds. On the technical level, this means that the ver-
tex corrections are negligible. Similarly to the conventional
electron-phonon problem (see [28] for a recent critical analy-
sis of the ME approximation there), this requires temperatures
much lower than some characteristic (“Debye”) temperature
scale at which the critical-order parameter becomes strongly
Landau-overdamped due to its fast decay into a particle-hole
continuum. This scale should also be much smaller than the
Fermi energy μ so that the bosonic degrees of freedom are
effectively much slower than the fermionic ones. In addition,
the presence of the magnetic field requires that the cyclotron
frequency is much smaller than the Debye frequency so that
the boson is still overdamped on the scale of the magnetic
length. Therefore, we expect the ME approach to remain valid
in the present problem provided two conditions: (i) T, ωc �
ωD, and (ii) ωD � μ, with not too strong interactions.
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III. EXTENDED LK FRAMEWORK AND ITS BREAKDOWN

Before constructing a theory of DHVA oscillations of
marginal Fermi liquids described in the previous section, we
recount the standard approach to DHVA oscillations and show
how they break down at a quantum critical point. Since the
breakdown of the extended LK approach to DHVA is not
specific to the ME approximation, we present a more general
discussion in what follows.

A clean, three-dimensional spherically symmetric Fermi
gas in a magnetic field B ẑ has the following thermodynamic
potential per unit volume (h̄ = kB = 1):

�0 = −mωc

2π
T
∫

d pz

2π

∑
n

log [1 + e(μ−εnpz )/T ], (18)

where εnpz = p2
z

2m + ωc(n + 1/2). Upon summing over the
Landau levels via the Poisson formula [29],
+∞∑
n=0

Fn+ 1
2

=
∫ +∞

0
dxFx + 2

+∞∑
k=1

(−1)k
∫ +∞

0
dx cos (2πkx)Fx,

(19)
and performing the pz integration via saddle point methods,
one finds the following expression for the oscillatory compo-
nent of the thermodynamic potential [2,12]:

�0
osc(T ) = (mωc)3/2

2π2

∞∑
k=1

(−1)k

k3/2
Ak (T ) cos

(
2πμk

ωc
− π

4

)
,

(20)
where Ak , the amplitude of the harmonic of the noninteracting
system is given by Eq. (1). Throughout the rest of the paper,
we are going to use the terms “smooth”, “nonoscillatory”,
or “uniform” interchangeably to denote contributions to var-
ious quantities (i.e., observables, self-energies, etc.) that are
smooth functions of the magnetic field. Such contributions
are typically produced by the first term in the Poisson sum-
mation formula, Eq. (19). On the other hand, the remaining
contributions that exhibit oscillations as a function of μ/ωc

will be referred to as “oscillatory” terms, which originate from
the second term on the right-hand side (r.h.s.) of Eq. (19).
Upon introducing the scaling variable λ = 2π2T/ωc, it be-
comes evident that �osc/�n−osc ∼ (ωc/μ)5/2, where �n−osc

denotes the nonoscillatory piece of the thermodynamic poten-
tial. Next, including interactions, the thermodynamic potential
for a system with Hamiltonian H = H0 + Hint (and H0 is the
free Fermi gas Hamiltonian), namely,

� = �0 − T log 〈Tτ e−[∫ T
0 dτHint (τ )

]
〉 (21)

can equivalently be expressed as [30]

� = −T
∑

m

Tr[log [−Ĝ(εm)−1] − iĜ(εm)�̂(εm)] + �,

(22)
where the Green’s function Ĝ and electron self-energy �̂ are
matrix valued, the trace operation takes care of momentum
integration and Landau level summation, and the regulariza-
tion factor eiεm0+

is assumed. The last term � is the so-called
Luttinger-Ward functional, which involves an infinite set of
closed connected skeleton diagrams (i.e., those that have no
self-energy insertions but with fully dressed propagators on
each internal line). It can be shown that the expression for �

in Eq. (22) is stationary with respect to variation of the exact
self-energy.

In a magnetic field, the self-energy will consist of a uni-
form piece and an oscillatory piece, �̂(εm) = �̂(n−osc)(εm) +
�̂(osc)(εm). In three dimensions, �̂(osc) is smaller than its
nonoscillatory component by a factor (ωc/μ)3/2, provided
that the interactions responsible for self-energy corrections
are sufficiently short-ranged (as an example, in Appendix A
we explicitly demonstrate this suppression in case of the
electron-phonon interaction). Thus, expanding the thermo-
dynamic potential in powers of �̂(osc) and making use of
the stationary condition, the correction to the thermodynamic
potential from the oscillatory self-energy is O([�̂(osc)]2) ∼
(ωc/μ)3. It is thus parametrically smaller than the bare LK
expression above, and can be neglected.

Upon neglecting all contributions from �̂(osc), it is a simple
matter to convince oneself that a cancellation occurs between
the second term in Eq. (22) and �. We therefore arrive at
Luttinger’s starting expression from which to extract DHVA
oscillations,

�osc ≈ −T
∑

m

eiεm0+
Tr[log [−Ĝ0(εm) − i�̂(n−osc)(εm)]].

(23)
After performing the Landau level summation and the kz

integral, we can extract the expression for the oscillation am-
plitudes,

Ak = T
∑
m�0

exp

{
−2πk

ωc
(εm + �(εm, kF , kz = 0))

}
. (24)

Here we assumed that �̂(n−osc)(εm) is only weakly dependent
on the magnetic field, and thus, can be diagonalized in the
momentum basis as �(εm, k‖, kz ) at the leading order in ωc/μ

[14]. Note that by setting � = 0 we immediately arrive at
Eq. (1).

For later convenience, we convert the Matsubara sum
above into a real frequency integral [31], to obtain the fol-
lowing expression for the amplitude:

Ak =
∫ ∞

−∞

dω

2π
eω0+

nF (ω) exp

[
2πk

ωc
Im�R(ω)

]
× sin

(
2πk

ωc
[ω − Re�R(ω)]

)
, (25)

where the self-energy appearing above is the nonoscillatory
self-energy. In the absence of self-energy corrections, the
expression above reproduces the LK form for the amplitude.
We next discuss thermodynamic constraints on the expression
above in the case of interacting systems.

Thermodynamic constraints

The third law of thermodynamics requires that the entropy
S = −∂�/∂T and the specific heat C = −T ∂2�/∂T 2 must
both vanish in the zero-temperature limit. For this to hold in
the presence of the field, the DHVA amplitudes must satisfy

lim
T →0

∂Ak

∂T
= 0, lim

T →0
T

∂2Ak

∂T 2
= 0. (26)
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These constraints are trivially obeyed for case of the free
Fermi gas [Eq. (1)]. With interactions treated within Lut-
tinger’s approach, we must consider derivatives with respect
to T of the amplitude given in Eq. (25). Temperature depen-
dence in this expression arises from nF (ω) and �R(ω). In the
first case, temperature derivatives of nF (ω) are sharply peaked
at ω = 0 in a width of the order of T , which guarantees that
the integral vanishes in the low-temperature limit. The second
contribution contains temperature derivatives of �R(ω). In a
generic Fermi liquid, such derivatives vanish at T = 0. For
instance, the imaginary part of the self-energy in a Fermi
liquid is typically of the form Im�R(ω) ∼ T 2 + ω2, and thus,
(∂Im�R(ω)/∂T )T =0 = 0.

Now, let us imagine using these approximations in the
case of a marginal Fermi liquid, described in the previous
section. In addition to the expression above, we would have a
contribution to the thermodynamic potential from the bosonic
sector. But let us proceed in a cavalier fashion and ignore
this contribution, since after all, the bosonic fluctuations are
neutral. Later on, we will show that surprisingly, the bosonic
contribution is the dominant one, and cannot be neglected,
but for now, we proceed naively and ignore the bosons. As
we showed in Sec. II, the self-energy typically of a marginal
Fermi liquid exhibits nonanalytic temperature dependence,

Im�R(ω) ≈ −ḡ2 π

2
|ω| − π ḡ2T log

(
βT

|ω|
)

, (27)

where ḡ, β are constants defined in the previous section.
Clearly, in the zero-temperature limit,

lim
T →0

∂Im�R(ω)

∂T
≈ −π ḡ2 − π ḡ2 log

(
βT

|ω|
)

(28)

results in the divergence in ∂Ak (T )/∂T as T → 0. More
specifically, as shown in the Appendix, the asymptotic eval-
uation of the expression in Eq. (25) leads to the following
low-temperature dependence:

Ak (T = 0) ≈ ωc

4π2ḡ2k ln(2πk ωD
ωc

)

[
1 + O

(
ln ln(kωD/ωc)

ln(kωD/ωc)

)]
,

(29)
and

Ak ≈ Ak (T = 0) + A(a)
k + A(b)

k ,

A(a)
k ≈ −π2ḡ2kT 2

6ωc
ln

ωD

2πT
+ O(T 2),

A(b)
k ≈ 2π2ḡ2kT

ωc
ln

ωD

βT
Ak (T = 0) + O(T ). (30)

These nonanalyticies could be regularized by keeping the
correlation length finite (i.e., by introducing a finite boson
mass mb > 0). In this case, the thermal part of the self-energy
crosses over to ∼T 2 at sufficiently low temperatures (i.e., out-
side of a quantum critical fan), where we expect the extended
LK scheme again to work well.

In Fig. 2 we show the numerically evaluated first harmonic
amplitude A1(T ) and its temperature derivative ∂A1/∂T based
on the extended LK formula Eq. (25), and the self-energy is
calculated from Eq. (B11). Here we choose β ≡ vF /c = 100,
ωD = 10ωc, and set ḡ2 = 6. All the energy scales are mea-
sured in units of the cyclotron frequency. For comparison,

FIG. 2. Numerical evaluation of the first oscillation amplitude
A1(T ) and its temperature derivative ∂A1/∂T (inset), based on the
extended LK formula Eq. (25). For comparison, two different ex-
pressions for the fermionic self-energy are used: The full fermion
self-energy Eq. (B11), and the marginal Fermi-liquid self-energy in
the absence of any thermal effects �(εm ) = ḡ2εm(1 + ln ωD/|εm|).
We note that A1(T = 0) is the same for both cases. The parameters
used are ḡ2 = 6, �D = 10ωc, vF /c = 100.

we show two different results based on two different self-
energies. The blue curve is for the result obtained by using
the full MFL self-energy, whereas the orange curve is for the
result obtained by explicitly excluding the thermal contribu-
tions [the last term in Eq. (27)] from the self-energy. From
the inset in Fig. 2, one can clearly see that the temperature
derivative of A1(T ) diverges logarithmically at small T when
the full self-energy is used. This leads us to conclude that the
divergence is caused by the explicit nonanalytic ∼T ln T tem-
perature dependence of the self-energy. Thus, it is manifest
that the naïve application of Eq. (25) with our NFL self-energy
leads to a divergence of ∂A1/∂T as T → 0. This is consistent
with our analytical results in Eq. (30) above.

Although the extended LK scheme breaks down for the
marginal FL at low temperatures, it works perfectly well in
the opposite regime T � ωc (but still T � ωD), where finite-
temperature smearing of oscillations occurs. In this case, one
can easily see that Eq. (24) is dominated only by the first
Matsubara frequency ε0 = πT term. Thus, we recover the
standard result [15]

Ak ≈ T exp

{
−2πk

ωc
(πT + �(πT ))

}
, T � ωc. (31)

In our marginal Fermi-liquid model, we thus obtain [see
Eq. (B10) and Appendix B for details]

Ak ≈ T exp

{
−2π2ḡ2kT

ωc
ln

(
βωD

π ḡ2T

)}
, (32)

where we neglected the bare πT contribution compared to
�(πT ). Therefore, we see that the oscillations are strongly
damped by thermal smearing at high temperatures T � ωc,
and are qualitatively different than the smearing in a Fermi
liquid, given by Eq. (1). We emphasize that �(πT ) is con-
tributed only by the static mode—the “dynamical” part of the
self-energy (i.e., the inelastic scattering rate) always vanishes
at the first Matsubara frequency [15,18,32].

075107-6



ENTROPY AND DE HAAS–VAN ALPHEN OSCILLATIONS … PHYSICAL REVIEW B 109, 075107 (2024)

Thus, to obtain the physically correct low-temperature
(T � ωc) form of DHVA oscillations at a quantum critical
point, one must proceed with a more careful analysis of
the full thermodynamic potential, including the contribution
from the oscillatory part of the self-energy, and from �, the
Luttinger-Ward functional. Also, as we demonstrate below,
nontrivial dynamical scaling laws also contribute and cannot
be ignored. In the Migdal-Eliashberg limit, all these effects
can be incorporated.

IV. LUTTINGER-WARD-ELIASHBERG
THERMODYNAMIC POTENTIAL

In this section, we return to the marginal Fermi liquid in
the ME approximation. For a generic coupled electron-boson
system, the corresponding thermodynamic potential, viewed
as a variational free-energy functional of propagators and self-
energies, yields the self-consistent relations as a saddle point
condition [22]. A key advantage of the ME approximation
is that the Luttinger-Ward functional � becomes especially
simple and could be expressed as a single skeleton diagram
(rather than an infinite number of them), such that the resulting
saddle point conditions coincide with the ME equations. A
thermodynamic potential having these properties can be writ-
ten as the sum of three different contributions,

� = �el + �bos + �, (33)

where the fermionic part �el is given by

�el = −T
∑

m

ln det((π2/2m − μ − iεm)

× δ(r − r′) − i�(r, r′, εm))

+ iT
∑

m

∫
drdr′G(r, r′, εm)�(r′, r, εm). (34)

Here the fermionic Green’s function and the self-energy are
expressed in the coordinate-frequency representation. The
bare Green’s function G0 is defined through the standard
equation (iεm − π2/2m + μ)δ(r − r′) = G−1

0 (r, r′, εm).
The bosonic contribution to the thermodynamic potential

�bos has the following form:

�bos = 1

2
T
∑

m

∫
d3q

(2π )3
ln
(
[D0(ωm, q)]−1 − �(ωm, q)

)
+ 1

2
T
∑

m

∫
d3q

(2π )3
�(ωm, q)D(ωm, q), (35)

The bare propagator D0 is defined in the same way as in
Eq. (2). Finally, the Luttinger-Ward functional � in the ME
approximation captures the interaction between the bosons
and fermions, and is given by

� = g2T 2

2

∑
mm′

∫
drdr′D(εm − εm′ , r − r′)

× G(r, r′, εm)G(r′, r, εm′ ). (36)

At zero magnetic field, the thermodynamic potential can be
evaluated in the momentum basis, yielding the following ex-

pression for the fermionic part:

�el = −T
∑

n

eiεn0+
∫

d3k

(2π )3
ln
(−[G0(εn, k)]−1 − i�(εn, k)

)
+ iT

∑
n

eiεn0+
∫

d3k

(2π )3
G(εn, k)�(εn, k), (37)

and the Luttinger-Ward functional reads as

� = g2T 2

2

∑
mn

∫
d3kd3q

(2π )6
D

× (ωm, q)G(	m + εn, k + q)G(εn, k). (38)

Viewing � above as a functional of G, D,�,�, it is evident
that the first two relations in Eq. (3) follow from ∂�/δ� = 0
and δ�/δ� = 0, whereas the latter two relations in Eq. (3)
derive from ∂�/δG = 0 and δ�/δD = 0.

In a similar way, the thermodynamic potential � in a finite
magnetic field results in Eqs. (7), (8), and (14) upon varying it
with respect to propagators and self-energies. One could also
directly express the thermodynamic potential in the basis of
Landau levels. The fermionic part is then given by

�el = mωc

2π
T
∑

m

+∞∑
n=0

∫ +∞

−∞

dkz

2π
{ln (−Gn(εm, kz ))

+ i�n(εm, kz )Gn(εm, kz )}, (39)

and the electron-boson interaction (the Luttiner-Ward func-
tional) takes the form

� = g2mωc

4π
T 2
∑
mm̄

+∞∑
nn̄=0

∫
d3q

(2π )3
D(q, εm̄)Xnn̄(q‖)

×
∫ +∞

−∞

dkz

2π
Gn(εm + ωm̄, kz + qz )Gn̄(εm, kz ), (40)

with the Green’s functions Gn(εm, kz ) and self-energies
�n(εm, kz ) defined for a given Landau level, and related to
each other via Eq. (12). Variations of � with respect to these
propagators directly lead to the Eq. (17) and the second line
of Eq. (14).

At this point, there are multiple ways of how one could
proceed. For instance, by following the logic outlined in [33],
one could note that the second term in the bosonic part of
the thermodynamic potential Eq. (35) exactly cancels the LW
(interaction) term �, Eq. (40). As a result, � can be written in
the following form:

� = 1

2
T
∑

m

∫
d3q

(2π )3
ln
(
[D0(ωm, q)]−1 − �(ωm, q)

)
+ mωc

2π
T
∑

m

+∞∑
n=0

∫ +∞

−∞

dkz

2π
{ln (−Gn(εm, kz ))

+ i�n(εm, kz )Gn(εm, kz )}. (41)
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Next, if �n(εn, kz ) does not have any essential dependence
on the Landau level n then the “smooth” contributions to the
Poisson summation in the last two terms cancel each other,
and we obtain

� = (mωc)3/2

2π2

+∞∑
k=1

(−1)k

k3/2
Bk cos

(
2πkμ

ωc
− π

4

)

+ 1

2
T
∑

m

∫
d3q

(2π )3
ln
(
[D0(ωm, q)]−1 − �(ωm, q)

)
.

(42)

Note that the bosonic term also contains oscillatory contribu-
tions via oscillations of �(ωm, q). The amplitude in the first

term is given by

Bk = T
∑
m�0

(
1 + 2πk

ωc
�(εm, 0)

)
e− 2πk

ωc
(εm+�(εm,0)). (43)

However, Eqs. (42) and (43) are not very convenient for
extracting the low-temperature behavior of the oscillation
amplitudes since here one has to evaluate the self-energy
dependence on temperature T . Instead, one can make the
temperature dependence more manifest by considering the
low-T asymptotic of the entropy instead of the thermody-
namic potential itself, which we derive in the next section.
The DHVA magnetization can be then obtained via a Maxwell
relation. To this end, we analytically continue the expression
for the thermodynamic potential and express it in terms of real
frequencies. Doing so, we find

� = mωc

2π2

∫ +∞

−∞
d	nF (	)

+∞∑
n=0

∫ +∞

−∞

dkz

2π

{
Im ln

(− [GR
n (	, kz )

]−1)+ Im
[
GR

n (	, kz )�R
n (	, kz )

]}
+
∫

d	

2π
nB(	)

∫
d3q

(2π )3
{Im ln([DR(	, q)]−1) + Im[�R(	, q)DR(	, q)]} + �, (44)

where � can be expressed in terms of the fermion and boson spectral functions as

� = mωcg2

8π6

∑
nn̄

∫
d3q

(2π )3
Xnn̄(q‖)

∫ +∞

−∞

dxdyd	dkz

x − 	 − y
Im DR(y, q) Im GR

n (x, kz ) Im GR
n̄ (	, kz + qz )

× (nF (x) − nF (	 + y))(1 + nB(y) − nF (	)). (45)

Thus, starting with a thermodynamic potential whose
saddle point yields the Migdal-Eliashberg self-consistency
relations, we obtained an alternate expression for the ther-
modynamic potential expressed in the basis of Landau levels,
which will prove to be more convenient in analyzing DHVA
oscillations. In the next section, we obtain an exact expression
for the entropy, from which the low-temperature behavior
of the DHVA oscillations can be extracted via a Maxwell
relation.

V. EXACT EXPRESSION FOR THE MIGDAL-ELIASHBERG
ENTROPY IN A MAGNETIC FIELD

In this section, we derive the exact expression for the
entropy that only involves temperature derivatives of the dis-
tribution functions. Our derivation extends the result of [34]
to the finite magnetic field case. Starting with the expression
for the thermodynamic potential in terms of real frequencies

derived in the previous section, we make use of the following
schematic relation:

S = −∂�

∂T
= −

(
∂ ′�
∂ ′T

)
�,�

− δ�

δ�︸︷︷︸
=0

∂�

∂T
− δ�

δ�︸︷︷︸
=0

∂�

∂T
, (46)

where � is viewed as a functional of � and � (assuming that
G and D are expressed in terms of � and � via the Dyson
equation). The partial derivative ∂ ′/∂ ′T in the first term acts
only on the distribution functions while keeping � and �

fixed. The derivatives of � and � do not contribute due to
the stationary condition on � [34].

Next, one can easily check that ∂ ′�/∂ ′T can-
cels the corresponding terms in Eq. (44) involving
the combinations Im[GR

n (	, kz )] Re[�R
n (	, kz )] and

Im[DR(	, q)] Re[�R(	, q)]. In order to see that explicitly,
one has to express Re[�R

n (	, kz )] and Re[�R(	, q)] in terms
of the spectral functions by means of the following integral
representation:

�R
n (	, kz ) = g2

∑
n̄

∫
d3q

(2π )3
Xnn̄(q‖)

∫ +∞

−∞

dxdy

π2

Im GR
n̄ (x, kz + qz ) Im DR(y, q)

x + y − 	 − i0+ (1 + nB(y) − nF (x)), (47)

�R(y, q) = mωcg2

2πN

∑
nn̄

Xnn̄(q‖)
∫ +∞

−∞

dkz

2π

∫ +∞

−∞

dxd	

π2

Im GR
n (x, kz + qz ) Im GR

n̄ (	, kz )

x + y − 	 + i0+ (nF (	) − nF (x)), (48)
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which follows directly from analytic continuation of Eqs. (17) and (14). After symmetrizing the integrals and making use
of some identities involving the Fermi and Bose distributions, such as nB(−y) = −1 − nB(y), nF (	 + y) = nF (	)nB(y)/(1 +
nB(y) − nF (	)), as well as Im DR(−y, q) = − Im DR(y, q), we obtain the following exact expression for the entropy:

S = −mωc

2π2

∫ +∞

−∞
d	

∂nF (	)

∂T

+∞∑
n=0

∫ +∞

−∞

dkz

2π

{
Im ln

(− [GR
n (	, kz )

]−1)+ Re GR
n (	, kz ) Im �R

n (	, kz )
}

−
∫

d	

2π

∂nB(	)

∂T

∫
d3q

(2π )3

{
Im ln([DR(	, q)]−1) + Im �R(	, q) Re DR(	, q)

}
. (49)

We emphasize that Eq. (49) is formally exact in powers
of ωc/μ and g2 within the ME approximation (i.e., if the
vertex corrections are absent). It is worth mentioning that
one can still express the entropy S in terms of temperature
derivatives acting only on the distributions even beyond the
ME theory, but the simple structure in Eq. (49) will be then
supplemented by additional terms [34]. The crucial advan-
tage of this representation is that the temperature derivatives
of the distributions are sharply peaked around 	 = 0, with
the characteristic width of the order of T . Thus, in order
to determine the leading-order low-temperature behavior of
the entropy it is sufficient to use the T = 0 expressions for
the self-energies. The explicit temperature dependence of the
retarded self-energies is always sub-leading since the effective
range of frequencies contributing to the integrals in Eq. (49)
already shrinks to zero at low temperatures. In other words,
thermodynamic properties at the lowest temperatures are de-
termined by the spectrum of the elementary excitations near
the Fermi surface [i.e., by the poles of the Green’s function
GR

n (	, kz ) as a function of εnkz−μ at T = 0], see §19.5 in [35].
In particular, this property demonstrates that Eq. (49) mani-
festly preserves the thermodynamic constraints in Eq. (26).

VI. OSCILLATIONS WITH UNDAMPED BOSONS

Using the formulation for the exact Migdal-Eliashberg en-
tropy, Eq. (49), we will now study the oscillatory entropy
from which we will extract the DHVA magnetization. While
our main interest is in studying the case where the boson is
overdamped with dynamic exponent z = 3, we will study, in
this section a somewhat artificial theory in which the boson
remains undamped, while the fermion remains dressed into a
marginal Fermi liquid. Our reasons for studying this theory
are twofold. First, it serves as a pedagogical “warm-up” exer-
cise, since the bosons remain free and the bosonic contribution
to the entropy will remain negligible. Moreover, the remain-
ing fermionic contributions can be computed in a controlled
fashion. Second, it illustrates the importance of dynamical
scaling laws and Landau damping: the DHVA magnetization
extracted from this theory will be drastically different from
that of the more physical case with an overdamped boson.

Such undamped bosons can also arise from ME equa-
tions but with a key alteration in the bosonic sector: a small
parameter 1/N(with N → ∞) as a prefactor in the expression
for �,

�(ωm̄, q)

= −g2T

N

∑
m

∫
d3k

(2π )3
Ḡ(ωm̄ + εm, k + q)Ḡ(εm, k)

= −g2T

N

∑
m
nn̄

Xnn̄(q‖)

(2π lB)2

∫
kz

Gn(kz + qz, εm + ωm̄)Gn̄(kz, εm).

(50)

The appropriate thermodynamic potential having the altered
form of the saddle point equations is the same as before, but
with a different prefactor in the bosonic sector of �,

�bos = NT

2

∑
m

∫
d3q

(2π )3
ln
(
[D0(ωm, q)]−1 − �(ωm, q)

)
+ NT

2

∑
m

∫
d3q

(2π )3
�(ωm, q)D(ωm, q). (51)

Such a theory can formally be derived in the case of a fermion
belong to a fundamental representation of a SU (N ) global
symmetry group, whereas the boson belongs to an adjoint
representation of the group. It describes intermediate scale
behavior [i.e., at scales larger than O(1/N ), where physical
effects such as Landau damping set in] at a quantum critical
point. Although Landau damping is an O(1/N ) effect, the
fermions are dressed into a marginal Fermi liquid at leading
order [36–39]. The critical point in this theory is reached by
simply setting m2

b = 0 in the bare bosonic propagator.
From the modified thermodynamic potential above, one

can repeat the steps of the previous section to obtain the
exact expression for the ME entropy in this theory that differs
from Eq. (49) only by an extra factor of N in front of the
bosonic contribution. Since the bosonic self-energy �R is now
suppressed by 1/N [cf. Eq. (50)], then the term containing
Im ln([DR(	, q)]−1) can be expanded up to the first order in
�R. This gives

S = −mωc

2π2

∫ +∞

−∞
d	

∂nF (	)

∂T

+∞∑
n=0

∫ +∞

−∞

dkz

2π

{
Im ln

(− [GR
n (	, kz )

]−1)+ Re GR
n (	, kz ) Im �R

n (	, kz )
}

+ NSfree bos +
∫

d	

2π

∂nB

∂T

∫
d3q

(2π )3
Im DR

0 (	, q) Re[N�R(	, q)]. (52)

075107-9



P. A. NOSOV, YI-MING WU, AND S. RAGHU PHYSICAL REVIEW B 109, 075107 (2024)

Note that here the combination N�R(	, q) ∼ O(1) is eval-
uated with the full interacting fermionic Green’s functions
according to Eq. (48), whereas the fermionic self-energy
obeys the simplified self-consistency equation (47) with
DR(	, q) replaced by the bare propagator DR

0 (	, q). In addi-
tion, Sfree bos in Eq. (52) is the entropy of a single free bosonic
mode (this term does not oscillate in a magnetic field, and thus
we can ignore it).

Let us pause here and briefly summarize the remaining
steps in the evaluation of (52) that will be done below. First,
we will single out the leading-order oscillatory contribution
to the entropy assuming (and then verifying later) that the
full fermionic self-energy is essentially independent of the
Landau level n in the regime of interest (i.e., at T = 0 and
for ωc � ωD � EF ). Next, we will argue that the contribu-
tion to the oscillations from the undamped bosonic modes
is irrelevant at low temperatures, and thus, can be neglected.
After that, we will evaluate the fermionic self-energy at T = 0
including its oscillatory behavior as a function of frequency,
and demonstrate that only the self-energy integrated over the
perpendicular component of momentum kz retains a nonana-

lytic form (i.e., marginal Fermi-liquid features) at frequencies
smaller than ωc, thus yielding a T ln T scaling of the entropy
oscillations. In contrast, the non-nonanalyticity of the self-
energy at the extremal orbit kz ≈ 0 is strongly smeared and
no longer contributes to the low-temperature dependence of
the entropy. Finally, we use the Maxwell relation

∂S

∂B
= ∂M

∂T
(53)

in order to extract the corresponding T 2 ln T scaling of the
magnetization M.

Let us now carry out these steps explicitly. First, instead
of following Luttinger’s paradigm and expanding Eq. (52)
in powers of the oscillatory self-energies, here we simply
evaluate Eq. (52) by assuming that the full fermionic
self-energy is essentially independent of the Landau level n
at T = 0 and for ωc � ωD � EF . Summing over Landau
levels using the Poisson summation formula, and, whenever
possible, evaluating the kz integrals in the stationary-phase
approximation, we obtain

Sosc = (mωc)3/2

4π3

+∞∑
k=1

(−1)k

k3/2

∫ +∞

−∞
d	

∂nF

∂T
e

2πk
ωc

Im �R (	,0) sin

(
2πk

ωc

[
	 + μ − Re �R(	, 0)

]− π

4

)(
1 − 2πk

ωc
Im �R(	, 0)

)

− m

4π2

∫ +∞

−∞
d	

∂nF

∂T

∫ +∞

−∞
dkz Re �R

osc(	, kz ) +
∫

d	

2π

∂nB

∂T

∫
d3q

(2π )3
Im DR

0 (	, q) Re
[
N�R

osc(	, q)
]
. (54)

We emphasize that Im �R(	, 0) appearing in the first line
of Eq. (54) contains both “smooth” and “oscillatory” contri-
butions (i.e., this expression is beyond the usual Luttinger’s
expansion). Let us now briefly emphasize the origin of various
terms in Eq. (54). The first line in this formula stems from
the “oscillatory” part of the Poisson resummation of the first
line in Eq. (52). As a result, the kz integral is dominated
by the extremal orbit at kz = 0 (the deviations from it are
suppressed by extra powers of

√
ωc/μ), and the rest of this

expression depends on �R(	, kz = 0) only. In contrast, the
first term of the second line in Eq. (54) originates from the
“smooth” part of the Poisson resummation. Thus, the integral
over kz is not confined to the extremal orbit yielding an
“averaged” quantity

∫
dkz Re �R

osc(	, kz ). As we will see
below,

∫
dkz Re �R

osc(	, kz ) and �R(	, kz = 0) have very
different behavior at frequencies below ωc.

The computation of the contribution from the bosons [the
last term in Eq. (54)] is the easiest, thus we proceed with
obtaining the leading temperature dependence from this term
first. This can be done by rescaling the frequencies as 	 =
2T x (where x is a dimensionless integration variable ∼1) and
taking into account that the spectral function of the undamped
boson has the following simple form

Im DR
0 (	, q) = π

2cq
[δ(cq − 	) − δ(cq + 	)]. (55)

As a result, we find

NT

2π2c3

∫ +∞

0

dx x2

sinh2 x
Re �R

osc

(
2T x,

2T x

c

)
≈ π2ḡ2

3
βνoscT .

(56)

Also, in Eq. (56) we used νosc ≡ N
g2 �

R
osc(0, q → 0) (this limit

appears because for the typical frequency and momenta in
Eq. (56) we have ω/vF q = 1/β � 1). Note that νosc is just
the oscillatory part of the compressibility (see Appendix C)

νosc = ν

√
ωc

2μ

∑
k=1

(−1)k

√
k

cos

(
2πkμ

ωc
− π

4

)

= ν

√
ωc

2μ
Re(e

iπ
4 Li1/2(−e− 2iπμ

ωc )). (57)

Note also that Eq. (56) contributes only at the linear order in
temperature, and thus, it corresponds to just a weak renormal-
ization of the free Fermi gas result.

On the other hand, the leading-temperature contribution
stemming from the remaining (fermionic) terms in Eq. (54) is
a nonanalytic function of temperature. In order to determine
it, one has to first analyze the fermionic self-energies at T = 0
including the oscillatory part, which we now present in the
following subsection.

A. Oscillatory part of the fermionic self-energy at T = 0

Our starting point is Eq. (47) at T = 0, a self-consistency
equation with the self-energy incorporated into the fermionic
Green’s functions, and with the bare bosonic spectral func-
tion Im DR

0 (	, q), given in Eq. (55), instead of the full one
Im DR(	, q), a simplification of the large-N theory. Since the
integral over 	 in Eq. (54) is confined to the range |	| �
T � ωc, then we are only interested in the low-frequency
asymptotic of �R

n (	, kz ) for |	| � ωc. Under these condi-
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tions, we solve the self-consistency equation iteratively, by
first computing the r.h.s. of Eq. (47) with the marginal Fermi-
liquid propagators[

G̃R
n

]−1 = 	

(
1 + ḡ2 ln

ωD

|	|
)

+ iπ ḡ2

2
|	| − ε(n, kz ) + μ.

(58)

The delta function appearing in the r.h.s. of Eq. (55) could be
represented in the following form:

δ

(√
q2

‖ + q2
z − 	

c

)
= 	θ (	 − c|qz|)√

	2 − c2q2
z

δ

(
q‖ −

√
	2

c2
− q2

z

)
.

(59)

Next, we note that the form factor Xnn′ (q‖) in Eq. (15), describ-
ing the matrix elements of exp(iq‖r‖) in the Landau basis, can
be approximated as

Xnn′ (q) ≈ 1

πRcq
, 1/Rc � q � kF . (60)

The upper limit on typical momentum transfer q � kF here
allows one to replace Eq. (15) with the Bessel function [see
Eq. (16)], whereas the lower limit R−1

c � q guarantees that
only the large-argument asymptotic of that Bessel function
matters, yielding Eq. (60). We emphasize that both of these
conditions are well satisfied for the typical in-plane momen-
tum transfer on the r.h.s. of Eq. (47) since for the undamped
bosonic propagator we have (q‖)typ ∼ ωc/c = β/Rc � 1/Rc

and vF /c � 1, but also at the same time (q‖)typ � kF since
ωc � ωD. Thus, under these circumstances, Xnn̄(q‖) does
not depend on n and n̄. As a consequence, �n

R(	, kz ) ≡
�R(	, kz ) becomes essentially independent of the Landau
level n, justifying our simple expression for the entropy
Eq. (54).

With this approximation, we first compute the imaginary
part of the self-energy. After making use of the Poisson sum-
mation formula, and neglecting higher-order corrections of
the order of ωD/μ � 1, we obtain the following oscillatory
contribution for kz = 0 and for the average over all kz:

Im �R
osc(	, 0) = −π ḡ2

∫ |	|

0
dε

+∞∑
k=1

(−1)ke− π2 ḡ2k
ωc

|ε|J0

(
πk(|	|−ε)2

2mc2ωc

)
cos

(
2πk

ωc

(
μ + sgn(	)ε

[
1+ ḡ2 ln

ωD

|ε|
])

−πk(|	|−ε)2

2mc2ωc

)
,

∫ +∞

−∞
dkz Im �R

osc(	, kz ) = −π ḡ2kF√
2

√
ωc

μ

∫ |	|

0
dε

+∞∑
k=1

(−1)k

√
k

e− π2 ḡ2k
ωc

|ε| cos

(
2πk

ωc

(
μ + sgn(	)ε

[
1 + ḡ2 ln

ωD

|ε|
])

− π

4

)
.

(61)

In the first line in Eq. (61), the integral over qz was performed
by means of the following identity:∫ +a

−a

dt√
a2 − t2

cos(b − ct2) = πJ0

(
a2c

2

)
cos

(
b − a2c

2

)
,

(62)

where J0(x) is the Bessel function. Note that this Bessel
function cannot be simply replaced by its large argument
asymptotic in the naive limit ωc → 0 (this limit corresponds
to the saddle point approximation of the original qz integral)
because the remaining integral over frequency would be log-
arithmically divergent. In contrast, the frequency integral in
the second line of Eq. (61) is well behaved even after the qz

integral is carried out in the saddle point limit.
Our next step is to estimate the low-frequency behavior of

the imaginary part of the full self-energy evaluated at kz = 0,
i.e., Im �R(	, 0) for |	| � ωc. To this end, we perform the
rescaling ε = |	|t in Eq. (61), and expand in |	|/ωc � 1. As
a result, we obtain

Im �R
osc(	, 0) ≈ −π ḡ2|	|

+∞∑
k=1

(−1)k cos

(
2πkμ

ωc

)
=π ḡ2

2
|	|.

(63)

Here the series is assumed to be regularized by an extra
factor exp{−k0+}. A few comments are in order. First, we
emphasize that, despite its appearance, Eq. (63) contains no
assumptions about the strength of the coupling—higher-order
dependence on ḡ2 enters only via the irrelevant corrections to

Eq. (63), which we ignore for now. Second, even though the
sum over all harmonics in Eq. (63) yields a formally nonoscil-
lating result at the lowest frequencies |	| � ωc, we stress that
higher-order contributions beyond this asymptotic limit still
oscillate both as a function of μ/ωc and 	/ωc [this can be
seen from numerical evaluation of Im �R(	, 0), see Fig. 3].
Next, most crucially, Eq. (63) coincides with the “smooth”
part of Im �R(	, 0), but has the opposite sign. Thus, the
|	|-linear term cancels out, and higher powers of |	| must be
retained. Stated differently, this cancellation between the two
parts of Poisson resummation (“smooth” and “oscillatory”)
implies that the total Im �R(	, 0) vanishes faster than |	|
at small |	| � ωc. Numerical evaluation of Im �R(	, 0) at
several values of ḡ2 is shown in Fig. 3, from which one can see
that the marginal Fermi-liquid effects are strongly suppressed
by magnetic field for the excitations at the extremal orbit
kz = 0. This result is reminiscent of the behavior observed
in purely two-dimensional NFL models in a magnetic field
[40–42].

The real part of the self-energy can be obtained via the
Kramers-Kronig relation

Re �R(	, 0) = 1

π

∫ ωD

−ωD

dω

ω − 	
Im �R(ω, 0), (64)

where the integral is understood in the principle value sense.
First, we note that the value at 	 = 0 remains finite due to the
fact that Im �R(	, 0) is not an even function of frequency (see
Fig. 3). However, this oscillating temperature-independent
constant corresponds to a shift of the chemical potential,
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(a) (b)

FIG. 3. (a) Imaginary part of the full self-energy (“smooth” and “oscillatory” parts combined) evaluated at the extremal orbit kz = 0. The
dashed line indicates the marginal FL self-energy at B = 0. (b) Imaginary part of the “oscillatory” contribution to the self-energy averaged over
all values of kz. Here 〈...〉kz stands for

∫
dkz.../2kF . In both (a) and (b), the parameters are ωc/μ = 200 and ωD/ωc = 20, with two different

values of the coupling constant ḡ2.

and thus, has no significance. The lowest-order frequency-
dependent term could be computed by looking at the odd part

[Re �R(	, 0)]odd = 	

π

∫ ωD

−ωD

dω Im �R(ω, 0)

ω2 − 	2
. (65)

The crucial point here is that one can now safely set 	=0 in
the integrand because Im �R(ω, 0) vanishes faster than |ω| at
|ω| � ωc rendering the integral convergent. This implies that
the total real part of the self-energy has the following low-
energy expansion:

Re �R(	, 0) ≈ const − ḡ2	 ln

(
ωD

ωc

)
+ O(	). (66)

We emphasize that the logarithm in the second term is cut-off
at ωc instead of |	| (as it happens in the absence of magnetic
field) due to the smearing of nonanalyticity in Im �R(	, 0)
at low frequencies. This result, once more, illustrates that the
excitations near the extremal orbit kz = 0 remain coherent at
lowest scales in the presence of a magnetic field.

Next, we deal with the second line in Eq. (61), representing
the self-energy averaged over all values of kz. Although we are
still only interested in the low-frequency limit, i.e., |	| � ωc,
we note that the perturbative self-energy at the leading order
in ḡ2 can be computed exactly even for a much broader range
of frequencies |	| � ωD,∫ +∞

−∞
dkz Im �R

osc(	, kz )

≈ −ḡ2m1/2ω3/2
c

+∞∑
k=1

(−1)k

k3/2
sin

(
πk|	|

ωc

)

× cos

(
2πk

ωc

[
μ + 	

2

]
− π

4

)
+ O(ḡ4). (67)

If now, in addition, the low-frequency limit is taken, then the
expression above results in a linear-in-|	| scaling, whereas
the omitted terms O(ḡ4) contribute only to the higher powers
of |	| [i.e., they are irrelevant, similarly to the situation with
Eq. (63)]. Therefore, even for a finite value of ḡ2, the leading

asymptotic for |	| � ωc is given by∫ +∞

−∞
dkz Im �R

osc(	, kz ) ≈ −πkF ḡ2 νosc

ν
|	|, (68)

irrespective of the presence of the marginal Fermi-liquid
self-energy in the r.h.s. of Eq. (61). Numerical evaluation of∫

dkz Im �R
osc(	, kz ) is shown in Fig. 3.

These expressions allow us to compute the integral over kz

of the real part of the self-energy by means of the Kramers-
Kronig relations. We find∫ +∞

−∞
dkz Re �R

osc(	, kz )

=
∫ ωD

−ωD

dω

π

∫ +∞

−∞
dkz

Im �R
osc(ω, kz )

ω − 	

≈ −2kF ḡ2 νosc

ν
	 ln

ωc

|	| (69)

at low frequencies |	| � ωc � ωD. Note that the limits of
integration over ω could be extended to infinity—the con-
vergence at large frequencies is guaranteed by the oscillatory
behavior of the self-energy as a function of ω [for instance,
note the factor sin(πk|	|/ωc) in Eq. (67)].

It is also worth mentioning that the same results for the
self-energy can be obtained on the Matsubara axis at T = 0.
For instance, one can start with Eq. (17) with D0(ωm, q) in-
stead of D(ωm, q), make use of the approximation in Eq. (60),
and then perform the Poisson resummation. The result at
kz = 0 reads as

�osc(ε, 0) ≈ ḡ2

2

∞∑
k=1

∫
d ε̄ sgn(ε̄)K0

(
iπk(ε − ε̄)2

2c2mωc
sgn(ε̄)

)

× exp

{
−2πk

ωc
|ε̄|
(

1 + ḡ2 ln
ωD

|ε̄|
)

+ 2π ik

ωc

(
μ + (ε − ε̄)2

4mc2

)
sgn(ε̄)

}
, (70)
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where we replaced the Matsubara sum with the continuous
integral at T = 0, and K0(x) is the modified Bessel function
of the second kind. After taking the low-ε limit, we obtain

�osc(ε, 0) ≈ const − ḡ2ε ln
ωc

|ε| + O(ε), (71)

where, once again, the sum over all harmonics resulted
in a formally nonoscillating contribution that cancels the
“smooth” part � (ε, 0) = ḡ2ε ln ωc

|ε| leaving behind only
higher-order terms, in agreement with Eq. (66).

In principle, one can now substitute these one-loop oscil-
latory self-energies back into the r.h.s. of Eq. (61) in order
to check if it affects the result in any way. However, since
the low frequency asymptotics that we found turned out to
be completely insensitive to the presence of the self-energies,
then it is clear that Eqs. (66) and (69) will remain fully self-
consistent upon further iterations of Eq. (61).

B. Oscillations of the entropy and magnetization

The analysis of the self-energies performed in the pre-
vious section now allows us to evaluate the leading-order
temperature scaling of the entropy in Eq. (54). As was already
mentioned before, the bosonic part only yields a T -linear con-
tribution, which is of no interest to us. Moreover, the absence
of any nonanalyticities in �R(	, 0) at |	| � ωc results in a
trivial T -linear scaling of the first term in Eq. (54) as well.
Finally, it turns out that the main contribution stems from the
second term in (54) involving the the self-energy averaged
over all kz. This self-energy still retains a marginal Fermi-
liquid form with some oscillatory prefactor, see Eq. (69). As a
result, we obtain the following expression:

Sosc ≈ π2ḡ2

3
νoscT ln

ωc

T
+ O(T ). (72)

This expression has a clear physical interpretation: In the
absence of the field, the entropy is given by S(B = 0) =
π2 ḡ2

3 νT ln ωD
T , and thus, Eq. (72) simply captures the fact that

the compressibility ν oscillates in a magnetic field.
Finally, we can make use of the Maxwell relation (53), and

obtain the low-temperature behavior of the DHVA magnetiza-
tion

Mosc =
∫ T

0
dT

∂Sosc

∂B
≈ Mosc(T = 0)

+ π2ḡ2

6

dνosc

dB
T 2 ln

ωc

T
+ O(T 2). (73)

The ∼T 2 ln T scaling of the magnetization, together with the
expression for the entropy (72), are the central results of this
section. In particular, they imply that the oscillatory part of
the thermodynamic potential acquires the same form as in
Eq. (20), with the amplitude Ak (T ) given by

Ak (T ) − Ak (T = 0) ≈ −π2ḡ2k

6ωc
T 2 ln

ωc

T
, (74)

for T � ωc. We will discuss these results in Sec. VIII in more
detail.

VII. EFFECT OF LANDAU DAMPING ON DHVA
OSCILLATIONS

In this section we return to the full ME problem in-
volving both fermionic and bosonic degrees of freedom on
equal footing, as described by a system of two coupled equa-
tions (47) and (48). The derivation leading to Eq. (54) remains
essentially unchanged, with the only minor modification con-
cerning the bosonic contribution. The full expression now
reads as

Sosc = (mωc)3/2

4π3

+∞∑
k=1

(−1)k

k3/2

∫ +∞

−∞
d	

∂nF

∂T
e

2πk
ωc

Im �R (	,0) sin

(
2πk

ωc
[	 + μ − Re �R(	, 0)] − π

4

)(
1 − 2πk

ωc
Im �R(	, 0)

)

− m

4π2

∫ +∞

−∞
d	

∂nF

∂T

∫ +∞

−∞
dkz Re �R

osc(	, kz ) −
∫

d	

2π

∂nB

∂T

∫
d3q

(2π )3
{Im ln([DR(	, q)]−1) + Im �R(	, q) Re DR(	, q)}.

(75)

As a first step, we consider the bosonic contribution. We recall
that the spectral function of the Landau overdamped boson
in the absence of the field is given by (see Appendix B for
details)

Im D̃R(	, q) = γ	q

c4q6 + γ 2	2
, Im �̃R(	, q) = γ	

q
, (76)

where we defined γ ≡ πg2ν/2vF . Here we already assumed
that the boson is tuned to criticality by setting the bare mass to
be m2

b = νg2 in order to cancel the static part of �̃R(	, q) [see
the first term in Eq. (4)]. In order to single out the oscillatory
contribution stemming from �R

osc(	, q) it is useful to add and
subtract the same expression but with �R

osc(	, q) set to zero.

This leads to

S(bos)
osc =

∫
d	

2π

∂nB

∂T

∫
d3q

(2π )3

{
Im ln

1

1 − D̃R(	, q)�R
osc(	, q)

− Im �̃R(	, q) Re
[D̃R(	, q)]2�R

osc(	, q)

1 − D̃R(	, q)�R
osc(	, q)

}
. (77)

Moreover, since we are only interested in the leading order
O(

√
ωc/μ) contribution to the oscillations, it is sufficient to

expand Eq. (77) up to the first power of �R
osc(	, q) (as we

show in Appendix C, the oscillatory part of the bosonic self-
energy always remains a small correction. This is in contrast
to the fermionic self-energy that could be strongly enhanced
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FIG. 4. (Left) Numerical evaluation of the imaginary part of the full self-energy at extremal orbit kz = 0 in the overdamped case, based
on Eq. (80), with μ/ωc = 200.6, �D/ωc = 10. (Right) The same but on a log-log scale, with emphasized asymptotic ∼|	|2/3 behavior for
|	| � ωc [cf. Eq. (82)].

at low frequencies, cf. Eq. (63). We obtain

S(bos)
osc ≈

∫
d	

2π

∂nB

∂T

∫
d3q

(2π )3

{
Im D̃R(	, q) Re �R

osc(	, q)

− Im �̃R(	, q) Re
(
[D̃R(	, q)]2�R

osc(	, q)
)}

. (78)

The low-temperature behavior of this expression can be
estimated as follows. As in the previous section, we rescale
frequencies as 	 = 2T x, where x is a dimensionless vari-
able of the order of one. This eliminates any temperature
dependence from the derivative of the distribution function.
Next, one can make use of the z = 3 dynamical scaling
[see Eq. (76)], and rescale all momenta as q → T 1/3y. In
this case, the oscillatory part of the bosonic self-energy
becomes �osc(2T x, T 1/3y). In the T → 0 limit, this quan-
tity approaches the oscillatory part of the compressibility
�osc(2T x, T 1/3y) ≈ g2νosc since in this regime we have
ω/vF q ∼ T 2/3 → 0. The remaining integrals over y and x can

be evaluated exactly and yield

S(bos)
osc ≈ 8c1π

1/3

9
√

3
ḡ8/3(βωD)2/3νoscT 1/3, (79)

where c1 = ∫ +∞
0 dx x4/3/ sinh2 x ≈ 3.4.

Next, we turn to the evaluation of the fermionic contri-
bution to Eq. (75). As in the undamped z = 1 case, we first
need to consider the low-frequency limit of the fermionic
self-energy.

A. Oscillatory part of the fermionic self-energy at T = 0

As in Sec. VI, we begin by evaluating Eq. (47) iteratively
while neglecting the oscillatory parts of the self-energy in the
r.h.s. of this equation. At the same time, we retain the marginal
FL self-energy and the Landau damping term for the bosons.
The latter only improves the accuracy of our approximation
in Eq. (60) since the dynamical exponent z = 3 implies the
typical transferred momentum qtyp ∼ k2/3

F R−1/3
c � R−1

c . The
resulting expression for the imaginary part of the self-energy
has the following form:

Im �R
osc(	, 0) = − 25/6ḡ4/3

3
√

3π1/3
(βωD)1/3

√
ωc

μ

∑
k

(−1)k

√
k

∫ |	|

0
dε

e− π2 ḡ2k
3ωc

ε

(|	| − ε)1/3
cos

(
2πk

ωc

(
μ + sgn(	)ε

[
1 + ḡ2

3
ln

�D

ε

])
− π

4

)
∫ +∞

−∞
dkz Im �R

osc(	, kz ) = −π ḡ2kF

3
√

2

√
ωc

μ

+∞∑
k=1

(−1)k

√
k

∫ |	|

0
dεe− π2 ḡ2k

3ωc
ε cos

(
2πk

ωc

(
μ + sgn(	)ε

[
1 + ḡ2

3
ln

�D

ε

])
− π

4

)
.

(80)

It is instructive to compare these equations with the z = 1 undamped case, Eq. (61). The self-energy at the extremal orbit
kz = 0 acquires an additional small prefactor

√
ωc/μ stemming from the limited phase volume available in the saddle point

approximation of the intermediate kz momentum integral. At the same time, the self-energy averaged over all kz has the same
structure as in the undamped case Eq. (61), up to a trivial replacement ḡ2 → ḡ2/3. Numerical evaluation of the full self-energy
Im �R(	, kz = 0), including the oscillatory part Eq. (80), is depicted in Fig. 4 for several values of the coupling constant ḡ2. At
the leading order in ḡ2, the integral over frequency ε in Eq. (80) can be computed analytically, and we obtain

Im �R
osc(	, 0) ≈ − ḡ4/3(βωD)1/3

21/6
√

3π1/3

√
ωc

μ
|	|2/3

∑
k

(−1)k

√
k

[
cos

(
2πkμ

ωc
− π

4

)
1F2

(
1;

5

6
,

4

3
; −π2k2 	2

ω2
c

)

−6πk	

5ωc
sin

(
2πkμ

ωc
− π

4

)
1F2

(
1;

4

3
,

11

6
; −π2k2 	2

ω2
c

)]
+ O(ḡ4). (81)
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FIG. 5. (Left) In the ME theory at B = 0, typical transferred
momentum is predominantly transverse to the Fermi surface due to
the z = 3 overdamped dynamics of the bosons. This leads to a ∼|	|
scaling of the imaginary part of the self-energy for all momentum
states on the Fermi surface. (Right) At finite B, only the states in the
width ∼√

ωc/μ around the extremal orbit kz = 0 contribute to the
oscillations. Thus, the oscillatory part of the self-energy at the exter-
nal momenta kz = 0 is contributed only by the scattering processes
that do not take the fermion away from kz ≈ 0 in the intermediate
state. This condition makes the bosonic kinematics essentially two
dimensional, leading to the |	|2/3 scaling.

where 1F2 is the hypergeometric function. After taking the
low-frequency limit |	| � ωc, we find

Im �R
osc(	, 0) ≈ −21/3ḡ4/3

√
3π1/3

(βωD)1/3|	|2/3 νosc

ν
. (82)

Remarkably, this expression exhibits a ∼|	|2/3 scaling
which, is a well-known characteristic feature of a NFL self-
energy emerging from the zero-field ME equations (3) but in
two spatial dimensions. Intuitively, this “dimensional reduc-
tion” can be understood from Fig. 5 emphasizing a reduction
of the phase volume available for scattering processes that
keep the fermion on the extremal orbit kz = 0, rendering the
boson’s kinematics effectively two dimensional. We also note
that the presence of the marginal self-energy in the r.h.s. of
Eq. (80) is not essential for the resulting lowest-frequency
∼|	|2/3 asymptotic in Eq. (82) [in fact, Eq. (82) is self-
consistent upon further iterations of Eq. (47)].

The expression for the kz-averaged self-energy is identical
to our previous result in Eq. (67), up to an additional prefactor
1/3. Thus, in the low frequency limit, we again obtain∫ +∞

−∞
dkz Im �R

osc(	, kz ) ≈ −πkF ḡ2

3

νosc

ν
|	|, (83)

for |	| � ωc. As before, the real part of the self-energy can
be recovered by means of the Kramers-Kronig relation. In
particular, for the odd part we obtain

[
Re �R

osc(	, 0)
]

odd = −
(

2ḡ4βωD

π

)1/3
νosc

ν
sgn(	)|	|2/3,∫ +∞

−∞
dkz Re

[
�R

osc(	, kz )
]

odd = −2ḡ2kF

3

νosc

ν
	 ln

ωc

|	| ,
(84)

where in the first line we used the integral identity

1

π

∫ �

−�

dω|ω|2/3

ω − 	
=

√
3 sgn(	)|	|2/3 + O

(
	

�

)
. (85)

We also note that the second line in Eq. (84) is exactly the
same as Eq. (69), again up to an additional overall factor 1/3.

There is also a way to obtain the same results by working
on the Matsubara axis. Specifically, the oscillatory part of the
Matsubara self-energy at kz = 0 reads as

�osc(ε, 0) ≈ 25/6ḡ4/3(βωD)1/3

3
√

3π1/3

√
ωc

μ

∑
k

(−1)k

k1/2

×
∫

d ε̄ sgn(ε̄)

|ε − ε′|1/3
exp

{
−2πk

ωc
|ε̄|
(

1+ ḡ2

3
ln

�D

|ε̄|
)

+ i

(
2πkμ

ωc
− π

4

)
sgn(ε̄)

}
. (86)

After expanding this expression in powers of |ε| � ωc, we
obtain

�osc(ε, 0) ≈ �osc(0, 0) + 24/3(ḡ4βωD)1/3

√
3π1/3

νosc

ν
sgn(ε)|ε|2/3.

(87)
Upon performing analytic continuation as �R(	, kz ) =
−i�(−i	 + 0+, kz ), we find an additional factor

√
3/2 (1/2)

for the real (imaginary) part of �R(	, kz = 0). The final result
is thus in agreement with Eqs. (84) and (82). A constant
contribution �osc(0, 0) can be evaluated exactly at the leading
order in ḡ2. In this case, after setting ε = 0 in Eq. (86), we
obtain

Re �R
osc(0, 0) ≈ 27/6�(2/3)

3
√

3π
(ḡ4βωDω2

c )1/3
√

ωc

μ

×
∑

k

(−1)k

k7/6
sin

(
2πkμ

ωc
− π

4

)
. (88)

The asymptotic estimation of Re �R
osc(0, 0) in the presence of

the marginal FL self-energy in Eq. (86) (i.e., for ḡ2 of the order
of one) could be easily performed in the same fashion as it was
done in Eq. (29). However, we emphasize that this would only
reduce the value of Re �R

osc(0, 0). As we discuss below, even
in its present form, Eq. (88) contributes only at the subleading
order in ωc/μ to the final expression for the entropy, so there
is no need to keep higher orders of ḡ2.

It is clear from our derivation that the obtained low-
frequency asymptotic form of �R(	) does not change upon
further iterations of the self-consistency equation even if the
oscillations of �R(	) itself are taken into account. Moreover,
one could also check that Eq. (87) survives the inclusion of
the oscillatory part of the bosonic self-energy in Eq. (17). The
latter can be found by generalizing the derivation in [43]. In
the appropriate kinematic regime, we obtain (see Appendix C
for details)

�(ωm, q‖, qz ) ≈ − πg2ν|ωm|
2vF

√
q2

‖ + q2
z

(
1 − (eB)2

4πkF q3
‖

)

+ g2ν|ωm|
vF q‖

√
π

2

sin(2Rcq‖)

sinh(πωm/ωc)
, (89)
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for R−1
c � q‖, qz � kF , and |ωm| � vF q‖. Indeed, the second

term of the first line here is just a small anisotropic correction
to the conventional Landau damping, whereas the second line
has the same scaling, but quickly oscillates (Rcq‖ � 1), and
thus its contribution to the integral over q‖ is suppressed by
additional powers of ωc/μ.

B. Oscillations of the entropy and magnetization

Our next step to evaluate the fermionic contribution to the
entropy in Eq. (75). In contrast to the z = 1 case, the oscilla-
tory corrections to the self-energy turned out to be all small
by an extra factor

√
ωc/μ compared to the smooth marginal

FL self-energy �̃R, so we can simply expand Eq. (75) up to
the lowest order in �R

osc. As a result, we find

S(el)
osc = (mωc)3/2

4π3

+∞∑
k=1

(−1)k

k3/2

∫ +∞

−∞
d	

∂nF

∂T
e

2πk
ωc

Im �̃R (	) sin

(
2πk

ωc
[	 + μ − Re �̃R(	)] − π

4

){
1 − 2πk

ωc
Im �̃R(	)

− 4π2k2

ω2
c

Im �̃R(	) Im �̃R
osc(	, 0)

}
− m

4π2

∫ +∞

−∞
d	

∂nF

∂T

∫ +∞

−∞
dkz Re �R

osc(	, kz ) − m3/2ω1/2
c

2π2

+∞∑
k=1

(−1)k

k1/2

∫ +∞

−∞
d	

× ∂nF

∂T
e

2πk
ωc

Im �̃R (	) cos

(
2πk

ωc
[	 + μ − Re �̃R(	)] − π

4

)(
1 − 2πk

ωc
Im �̃R(	)

)
Re �̃R

osc(	, 0). (90)

As before, �̃R and �̃R denote the “smooth” parts of the self-energy. First, we argue that all the terms in Eq. (90) proportional
to Im �̃R(	) = −π ḡ2|	|/6 contribute only to a subleading temperature dependence, which is even of higher order in terms of
T scaling than O(T ). Indeed, we note that for each of this terms, after performing rescaling 	 = 2T x, we obtain schematically
∼T

∫ +∞
−∞

dx x|x|
cosh2 x

g(2T x) (note that this expression is already proportional to T ). Here g(	) denotes the remaining sum over
harmonics k. Thus, by parity, only the odd part of g(2T x) contributes, which further increases the overall order in T . Therefore,
we can neglect all such terms. This leaves us with the only three remaining terms

S(el)
osc ≈ (mωc)3/2

4π3

+∞∑
k=1

(−1)k

k3/2

∫ +∞

−∞
d	

∂nF

∂T
e

2πk
ωc

Im �̃R (	) sin

(
2πk

ωc
[	 + μ − Re �̃R(	)] − π

4

)

− m3/2ω1/2
c

2π2

+∞∑
k=1

(−1)k

k1/2

∫ +∞

−∞
d	

∂nF

∂T
e

2πk
ωc

Im �̃R (	) cos

(
2πk

ωc
[	 + μ − Re �̃R(	)] − π

4

)
Re �̃R

osc(	, 0)

− m

4π2

∫ +∞

−∞
d	

∂nF

∂T

∫ +∞

−∞
dkz Re �R

osc(	, kz ). (91)

The first term in Eq. (91), which we denote as S(el,1)
osc , essen-

tially corresponds to the extended LK formula [cf. Eq. (25)]
but with a temperature derivative acting only on the distri-
bution function nF (	). Its low-temperature behavior can be
easily computed in the same way as it was done in Sec. III,
see Eq. (30). Here we just state the final result

S(el,1)
osc ≈ π2ḡ2

9
νoscT ln

�D

T
. (92)

The remaining two terms in Eq. (91), together denoted as
S(el,2)

osc , are analyzed in a similar fashion by performing a
rescaling 	 = 2T x and expanding the integrand in the limit
T → 0. As a result, we obtain the following integral over x:

S(el,2)
osc ≈ −ν

∫ +∞

−∞

dx x

cosh2 x

[
2ḡ2xT

3ν

dνosc

dμ
ln

�D

2T |x| Re �R
osc(0, 0)

+ νosc

ν
Re �R

osc(2T x, 0)

+
∫ +∞

−∞

dkz

2kF
Re �R

osc(2T x, kz )

]
, (93)

where the derivative d/dμ in the last line is acting only on μ

in the argument of cos(...) in Eq. (57). Next, one can easily see
that even though the first term in Eq. (93) in combination with

Eq. (88) scales as T ln T , it has an overall prefactor (ωc/μ)2/3,
as opposed to the last term in Eq. (93), which also scales as
T ln T but is of the order of (ωc/μ)1/2. Thus, we ignore this
higher-order correction and obtain

S(el,2)
osc ≈ π2ḡ2

9
νoscT ln

ωc

T
+ 4c2ḡ4/3

π1/3
(βωD)1/3 ν2

osc

ν
T 2/3 (94)

where c2 = ∫ +∞
0 dxx5/3/ cosh2 x ≈ 0.74. After combining

Eqs. (92), (94), and (79), we finally arrive at the following
result for the total entropy:

Sosc = S(bos)
osc + S(el,1)

osc + S(el,2)
osc

≈ 2π2ḡ2

9
νoscT ln

√
ωc�D

T

+ 4c2ḡ4/3

π1/3
(βωD)1/3 ν2

osc

ν
T 2/3

+ 8c1π
1/3ḡ8/3

9
√

3
(βωD)2/3νoscT 1/3, (95)

and the total entropy is given by the sum of the smooth
and oscillatory contributions S = π2 ḡ2

9 νT ln(�D/T ) + Sosc. It
is worth noting that the last term ∼T 1/3 in Eq. (95) can
exceed the smooth contribution ∼T ln(�D/T ) at sufficiently
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low temperatures. This, in turn, could indicate a potential
thermodynamic instability towards an ordered state at certain
values of μ/ωc such that νosc is negative. In this case, the
total compressibility in a field ν + νosc is less than the bare
compressibility ν, which we used to tune to the critical point
at B = 0. As a consequence, the boson condenses at low
temperatures since the actual position of the critical point is
shifted by the magnetic field.

The DHVA magnetization is obtained via a Maxwell rela-
tion as

Mosc ≈ Mosc(T = 0) + π2ḡ2

9

dνosc

dB
T 2 ln

√
ωc�D

T

+ 24c2ḡ4/3

5π1/3
(βωD)1/3 νosc

ν

dνosc

dB
T 5/3

+ 2c1π
1/3ḡ8/3

3
√

3
(βωD)2/3 dνosc

dB
T 4/3. (96)

The unconventional low-temperature power-law asymptotic
∼T 5/3 and ∼T 4/3 of the DHVA oscillations is the main result
of this section. At the lowest temperatures, the ∼T 4/3 term
dominates, and the thermodynamic potential asymptotically
behaves as in Eq. (20), where the amplitude Ak (T ) has the
form

Ak (T ) − Ak (T = 0) ≈ −2c1π
1/3ḡ8/3k

3
√

3ωc

(βωD)2/3T 4/3. (97)

We will discuss Eqs. (95) and (96) in the next section, and
compare them to the z = 1 result Eq. (73) obtained in the
previous section.

VIII. DISCUSSION AND CONCLUSIONS

In this paper, we have developed a theory of the DHVA
oscillations that can capture both conventional Fermi-liquid
regime and, more crucially, the quantum critical regime for
which the Lifshitz-Kosevich paradigm fails to work due to
singular fermion interactions mediated by massless critical
bosons. The naive adoption of the LK paradigm at criticality
results in the violation of the third law of thermodynamics. We
have shown that at a quantum critical point, the breakdown of
Luttinger’s extension to LK’s theory is due to the oversim-
plification of neglecting the oscillatory part of the fermion
self-energy, and the bosonic contribution. By contrast, our
approach, which is based on the analysis of the Luttinger-
Ward functional within the Migdal-Eliashberg approximation,
is capable of treating the fermionic and bosonic contributions
on equal footing and manifestly satisfies the third law of
thermodynamics.

The oscillatory magnetization resulting from a thermody-
namically viable entropy exhibits significant deviations from
the standard LK theory, especially at low temperatures T �
ωc, and the leading temperature dependence of the oscillation
amplitude Ak (T ) depends on the dynamical scaling of the
critical bosonic mode. In case of the undamped z = 1 boson,
we find that Ak (T ) exhibits a T 2 ln(ωc/T ) attenuation, which
differs from the usual LK behavior T 2 by an extra logarithmic
factor ∼ ln(ωc/T ) [see Eq. (74)]. The origin of this nonan-
alytic contribution can be traced back to the oscillatory part

of the fermionic self-energy averaged over all values of kz,
which retains a marginal Fermi-liquid form even at frequen-
cies smaller than ωc, see Eq. (68). We also note the proposed
∼T 2 ln(ωc/T ) low-temperature asymptotic behavior of A1(T )
formally resembles the results of [44,45] obtained from a
different phenomenological model.

In contrast, the Landau overdamped z = 3 critical boson
leads to several nonanalytic low-T contributions, with the
most dominant one scaling as T 4/3 at lowest temperatures,
see Eq. (97). The latter contribution is formally associated
with the bosonic part of the thermodynamic potential, and
results from the combination of the z = 3 dynamical scaling
and the finite oscillatory part of the compressibility νosc, cf.
Eq. (57). In addition, Eq. (96) also contains a subleading term
∼T 5/3 stemming from the oscillatory part of the fermionic
self-energy at the extremal orbit. Its nonanalytic behavior is
related to the “dimensional reduction” of the phase volume
available for scattering processes that do not take the fermion
away from the extremal orbit, see Fig. 5 and discussion in
Sec. VII A. It is also worth mentioning that this contribution
appears with an unconventional oscillating pre-factor νosc

dνosc
dB

[all other terms in our Eq. (96) or in the extended LK the-
ory are accompanied by a single factor of νosc only]. The
appearance of two factors of νosc can already be seen per-
turbatively, by considering the lowest-order diagram for the
LW functional � and singling out the oscillatory contribution
from the Poisson summations of both Green’s functions at the
same time. In the conventional Luttinger’s expansion, such
contributions are of the order of ∼T 2 and further suppressed
by an extra factor of ωc/μ. However, here they produce a
strong nonanalytic temperature dependence, and thus, must
be retained. It is also worth mentioning that if the system
is slightly detuned from a quantum critical point (i.e., if
the dressed bosonic propagator has a small but finite phys-

ical “mass” Mb =
√

m2
b − g2ν > 0), then at sufficiently low

temperatures the conventional LK-type behavior is recovered
Ak (T ) − Ak (T = 0) ∼ −ḡ2kω2

DT 2/(M2
bωc). As a result, the

anomalous temperature dependence of the oscillation ampli-
tudes in Eq. (97) should be cut off at the crossover scale that
could be estimated as Tcross ∼ ḡβM3

b/ω2
D.

For higher temperatures T � ωc (but still T � ωD, μ), we
find that the tail of the oscillation amplitude Ak (T ) is strongly
smeared by thermal fluctuations in both z = 1 and z = 3 cases
and has the asymptotic form T exp{−#(T/ωc) ln ωD/T }, cf.
Eq. (32), as opposed to the conventional LK prediction
T exp{−#T/ωc}. We note that this result could be interpreted
as an effective temperature-dependent Dingle factor resulting
from scattering by “static” fluctuations of the order param-
eter. Our main findings in both regimes T � ωc and T �
ωc are summarized in Fig. 1. Our theory can be applied to
three-dimensional metals near quantum critical points, which
exhibit marginal Fermi-liquid behavior, such as ZrZn2, an itin-
erant electron ferromagnet [46]. A search for deviations of the
LK behavior in this system would be an interesting direction
for future experimental investigation. In order to make a more
detailed comparison with experiments, one also would have
to account for possible deviations from strict parabolicity of
the bare electron dispersion, in the same way as it was done
in the conventional LK theory. In principle, this extension
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could be analyzed in full detail based on Eqs. (14), (17), and
(49), which remain valid for arbitrary dispersion. However, we
expect the temperature dependence of the DHVA amplitude at
low temperatures T � ωc � ωD to remain the same since it
is supposed to be sensitive only to the universal dynamical
scaling laws and phase volume arguments.

A natural extension of our theory would involve the
study of quantum oscillations in two-dimensional (2D) met-
als, where non-Fermi-liquid behavior is a far more singular
phenomenon. It is possible that magneto-oscillations in 2D
exhibit more conventional behavior at low temperatures due
to the fact that the Landau level spectrum is gapped in 2D. By
contrast, in three dimensions, gapless excitations persist in the
third direction, along the magnetic field, and produce singular
effects, as we have shown here. However, it is known that
there are some subtleties even in the case of two-dimensional
Fermi liquids, as discussed in Refs. [18,47,48]. In particu-
lar, one should distinguish between the situation when the
chemical potential is fixed between Landau levels, and when
the total number of electrons is fixed instead (i.e., there is a
partially occupied Landau level) [47]. In the latter case, it is
known [43] that the electron dynamics at energies less than
ωc (which ultimately determines thermodynamic properties
at T � ωc) is rather intricate even for a weakly interacting
Fermi gas. At the same time, the thermal smearing of quan-
tum oscillations at T � ωc is expected to be much stronger
in 2D than in 3D due to the singular static contributions
to the self-energy at the first Matsubara frequency [49,50].
Another intriguing future direction would be to study the
effect of quenched disorder on DHVA oscillations in our
three-dimensional marginal Fermi-liquid model. Beyond the
appearance of the conventional Dingle factor [1,2], one could
expect some additional temperature-dependent renormaliza-
tion effects of the effective fermion mass due to the interplay
of the critical interaction and impurity scattering [18,19].
Finally, it would be interesting to investigate how quantum
critical fluctuations affect the emergence of the diamagnetic
Condon domains [51] when the correlation length exceeds the
cyclotron radius [52].
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APPENDIX A: OSCILLATORY PART OF THE
SELF-ENERGY FOR ELECTRON-PHONON INTERACTION

In this Appendix, we replace the critical interaction in
Eq. (17) with a simple optical phonon propagator

D0(ωm, q) = 1

ω2
m + ω2

D

, (A1)

and analyze the oscillatory part of the fermionic self-energy
arising in the limit N � 1, and to all orders in the coupling
strength g2. The corresponding contribution to the thermody-
namic potential at the lowest order in g2 was first discussed
in [16]. At B = 0, the self-consistency equation is essentially
one-loop exact, and the Matsubara self-energy reads as

�(εn) = πνg2T
∑

m

sgn(εm)

(εn − εm)2 + ω2
D

= νg2

2ωD
Im

{
ψ

(
iωD − εn

2πT
+ 1

2

)
− ψ

(
iωD + εn

2πT
+ 1

2

)}
.

(A2)
Here ν = k2

F /(2π2vF ) is the density of states at the Fermi
level. In particular, for the first Matsubara frequency, we find

�(πT ) = πνg2T/ω2
D. (A3)

Here we made use of some properties of the digamma function

Im ψ (σ + ib) = π

2
coth (πb) + (−1)σ

2b
, σ = 0, 1

Im ψ

(
1

2
+ ib

)
= π

2
tanh(πb), (A4)

for b ∈ R. The absence of any momentum dependence of the
bare propagator dramatically simplifies the self-consistency
equation in the presence of the field Eq. (17). Indeed, the
integral over q‖ just gives the normalization condition for the
associated Laguerre polynomials l2

B

∫ +∞
0 dq‖ q‖Xnn′ (q‖) = 1

independent of n and n′. After making use of the Poisson
summation formula Eq. (19), and performing the qz integral
by the stationary phase method, we obtain

�(εm) ≈ �(εm)B=0 +
√

ωc

μ

+∞∑
k=1

(−1)k

√
2k

σk (εm), (A5)

where the self-consistency condition for the amplitudes is
given by

σk (εm) = πνg2T
∑

m̄

sgn(εm̄)

(εm − εm̄)2 + ω2
D

× exp

{
− 2πk

ωc
|εm̄ + �(εm̄)|

+ i

(
2πkμ

ωc
− π

4

)
sgn(εm̄)

}
. (A6)

In principle, Eqs. (A5) and (A6) result into an infinite set of
equations for the amplitudes �k (εm), k = 1, 2, .... However, if
we are only interested in the leading-order correction in terms
of ωc/μ � 1, then it is sufficient to replace the full �(εm̄)
in Eq. (A6) by its zero field value �(εm̄)B=0 computed in
Eq. (A2). In this case, it is easy to see that �k (εm) is of the
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order of ωc due to the exponential suppression factor. Thus,
the full oscillatory part of the self-energy [the second term in
Eq. (A5)] is of the order of (ωc/μ)3/2 compared to �(εm)B=0.

APPENDIX B: SELF-ENERGY IN THE ABSENCE
OF THE FIELD

In this Appendix, we revisit the calculation of the fermionic
finite-temperature self-energy at criticality in the absence of
the magnetic field, paying special attention to the thermal
part of the self-energy. We first show the calculations for the
Landau-overdamped boson case, which leads to dynamical
scaling exponent z = 3, and then discuss undamped boson
case where z = 1. In both situations, the fermion self energies
behave like marginal Fermi liquid.

1. Landau-overdamped limit: z = 3

The full fermionic self-energy in Eq. (3) acquires the fol-
lowing form in the momentum space

�(εn) = ig2T
∑

m

∫
d3q

(2π )3

1

(m2
b + c2q2 + ω2

m − �(ωm, q))

× 1

iεn + iωm + i�(εn + ωm) − ξk+q
, (B1)

where ξk = k2/2m − μ. In principle, the self-energy also has
a very weak (and regular) momentum dependence near the
Fermi surface, so we ignore it. We also assume that the boson
velocity is much smaller than the Fermi velocity, c � vF .
In this case, defining β = vF /c � 1, the effective “Debye
frequency”, ωD = EF /β � EF , i.e., the transferred energy is
much smaller than the Fermi energy. In addition, Eq. (B1)
should be supplemented by the equation for the bosonic self-
energy �(ωm, q),

�(ωn, q)

= −g2T
∑

m

∫
d3k

(2π )3

1

(iεm + i�(εm) − ξk )

× 1

iωn + iεm + i�(ωn + εm) − ξk+q

= g2ν−2πg2νT

vF q

|n|−1∑
m=0

arctan

(
vF q

�(εm)+�(|ωn|−εm)+|ωn|
)

,

(B2)

assuming that q � kF . In the absence of the self-energy ef-
fects (i.e., in the RPA-type approximation), we recover the
usual expression for the polarization function of a three-
dimensional electron gas at small momenta q � kF ,

�(ωn, q) ≈ g2ν

(
1 − |ωn|

vF q
arctan

vF q

|ωn|
)

. (B3)

where the second term leads to the usual Landau damping of
the boson due to its decay into a particle-hole continuum. The
condition for criticality is then given by m2

b − �(0, q → 0) =
0. In the regime vF q � |ωn|, we find

D(ωn, q) ≈ 1

c2q2 + πg2ν

2vF

|ωn|
q

. (B4)

From this expression, we read the usual z = 3 dynamical
scaling associated with Landau damping.

In principle, Eq. (B1) should be now solved together with
Eq. (B2) as a coupled system of equations. However, it
turns out [39] that the fermionic self-energy computed with
this RPA-dressed bosonic propagator is asymptotically self-
consistent in the low-energy limit. Inserting Eq. (B4) into
Eq. (B1) and performing the momentum integration, we ob-
tain

�(εn) = 2ḡ2T Im Li2

(
iβωD

εn + �(εn)

)
+ π ḡ2T

3

∑
m �=0

sgn (εn + 	m) ln

(
1 + �D

|ωm|
)

, (B5)

where �D = 2βω3
D/(πg2ν) and ḡ2 = g2/(4π2c2vF ) is the

dimensionless coupling constant. Li2(x) is the polyloga-
rithm. Since �(−εn) = −�(εn), we consider the case n �
0. Assuming that εn + �(εn) � EF , we can approximate
Im Li2(ix) ≈ (π/2) ln x, and evaluate the sum explicitly. The
result can be written in a compact way as

�(εn) = π ḡ2T ln

(
βωDζn

εn + �(εn)

)
, n � 0, (B6)

where we defined

ζn =
(

�
(
1 + �D

2πT + n
)

n!�
(
1 + �D

2πT

) )2/3

. (B7)

Here �(x) is the Gamma function. The equation above admits
a solution in terms of the Lambert function W (x) (“product
log”)

�(εn) = −εn + π ḡ2TW

(
βωD

π ḡ2T
ζn exp

{
εn

π ḡ2T

})
. (B8)

For large n, we use the approximation

ζn ≈ 1

(n!)2/3

(
�D

2πT

)2n/3

, n � 1, T � �D. (B9)

At the first Matsubara frequency, ε0 = πT , and in the limit of
low temperature T , we obtain

�(πT ) ≈ π ḡ2T ln

(
βωD

π ḡ2T

)
, (B10)

where we used W (x) ≈ ln x − ln ln x + o(1) for x � 1. Note
that this expression is nonanalytic as a function of ḡ2 and
stems from the thermal mode alone since the dynamical con-
tribution [in the second line of Eq. (B14)] vanishes at n =
−1, 0 (this can be seen from the fact that ζ0 = 1), as expected
from the first Matsubara frequency rule [32].

Next, let us consider the limit when εn is fixed, and T goes
to zero. In this case, we obtain

�(εn) = �0(εn) + π ḡ2T ln

(
(πβ2ḡ2ω2

DT )1/3

εn + π ḡ2T ln β

π ḡ2 + �0(εn)

)
,

�0(εn) = ḡ2

3
εn ln

(
�D

2πT

)
− 2π ḡ2

3
T ln

[
�
(

εn
2πT + 1

2

)
√

2π

]
.

(B11)
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As a special case, if T � εn, then we can expand

�0(εn) ≈ 1

3
ḡ2εn ln

�D

εn
+ 1

3
ḡ2εn + O(T 2). (B12)

And thus, we obtain the following asymptotic expression:

�(εn) ≈ �0(εn)T =0 + π ḡ2T ln

(
(πβ2ḡ2ω2

DT )1/3

εn + �0(εn)T =0

)
, (B13)

for T � εn. The dynamical part of the self-energy, �0(εn),
leads to the usual marginal Fermi-liquid behavior.

2. Undamped limit: z = 1

In this limit, there is no feedback from the fermions to
the bosons, and the bosonic self-energy �(ωm, q) can be
neglected. Thus, the integral equation (B1) represents a sum
over the “rainbow” diagrams. The condition for criticality is
then simply m2

b = 0.
At zero temperature, the momentum integration in Eq. (B1)

can be carried out by treating the density of states as a constant
[53]. In this case, solution of Eq. (B1) turns out to be one-
loop exact: Higher-order rainbow diagrams contain pairs of
Green’s functions with the same momentum and frequency,
and thus the integration over their momenta vanish since both
poles occur in the same complex half-plane. At finite tempera-
ture, the situation is more delicate due to the discrete nature of
the Matsubara frequencies. Indeed, Eq. (B1) always contains
a term with m = 0 exhibiting an IR divergence ∼1/q2 from
the static bosonic fluctuations. The standard way of dealing
with this problem is to split the self-energy into the “thermal”
(m = 0) and “dynamical” (m �= 0) contributions, and treat the
density of states as a constant only in the latter, whereas in the
former the full momentum integration is performed [38,50].
This procedure leads to the following equation:

�(εn) = 2ḡ2T Im Li2

(
iβωD

εn + �(εn)

)
+ π ḡ2T

2

∑
m �=0

sgn (εn + 	m) ln

(
1 + ω2

D

ω2
m

)

= π ḡ2T ln

(
βωDζn

εn + �(εn)

)
, (B14)

which is similar to Eq. (B6) but with a different ζn given by

ζn = sinh(ωD/2T )

(ωD/2T )

|�(1 + n + iωD
2πT )|2

�2(n + 1)
. (B15)

For large n, we find

ζn ≈ 1

(n!)2

(
ωD

2πT

)2n

, n � 0, T � ωD. (B16)

The solution of �(εn) is similar to z = 3 case in the limit
when εn is fixed, and T goes to zero. The results are

�(εn) = �0(εn) + π ḡ2T ln

(
βT

εn + π ḡ2T ln β

π ḡ2 + �0(εn)

)
,

�0(εn) = ḡ2εn ln
( ωD

2πT

)
− 2π ḡ2T ln

[
�
(

εn
2πT + 1

2

)
√

2π

]
.

(B17)

FIG. 6. Self-energy obtained in different ways at T = 2 × 10−4.
All the energy scales are measured in units of g2, and we have made
the dimensionless coupling ḡ2 = 1. Here the exact result (blue) is
obtained by directly solving Eq. (B1) in the limit of mb → 0 and
neglecting �. The first asymptotic result (red) is obtained from
numerically solving Eq. (B14), which does not require iteration. And
the second asymptotic result (brown) is from Eq. (B19).

This can be compared to Eq. (B11) As a special case, if T �
εn, then we can expand

�0(εn) ≈ ḡ2εn ln
ωD

εn
+ ḡ2εn + O(T 2). (B18)

Comparing with Eq. (B12), we see that both give rise to
marginal Fermi-liquid behavior, and the only differences are
a factor of 1/3 in the z = 3 case, and the cut-offs �D versus
ωD. And thus, we obtain the following asymptotic expression
for z = 1 case:

�(εn) ≈ �0(εn)T =0 + π ḡ2T ln

(
βT

εn + �0(εn)T =0

)
, (B19)

for T � εn. One can also directly verify this result by substi-
tuting it back into the r.h.s. of Eq. (B6), expanding in T , and
making use of the following asymptotic expression

ln ζn = εn

πT
+ εn

πT
ln

ωD

εn
+ ln

T

ωD
+ O(T ). (B20)

The dynamical part of the self-energy �0(εn) leads to the
usual marginal Fermi-liquid behavior.

Complementary to the above analytical results, the so-
lution to the self energy can also be obtained numerically,
even without any approximation. As a test of the reliability
of our analytical results, we show in Fig. 6 a comparison
between numerical results and Eq. (B19) for a small enough
T . The exact solution to Eq. (B1) in the limit of mb → 0
and neglecting � is found by numerical iteration, for which
the momentum integrations in both thermal and dynamical
part is treated in the same way. We also solve Eq. (B14),
which is an approximated equation in which the momentum
integration for the dynamical part is carried out by separating
the tangential and perpendicular direction with respect to the
local Fermi surface. This simplified equation does not require
iteration since �(εn) is determined by quantities only at εn.
And lastly the analytical results in Eq. (B19) is plotted for
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comparison. We see a good agreement among these different
approaches.

APPENDIX C: LANDAU DAMPING IN A MAGNETIC
FIELD

In this Appendix, we revisit the calculation of the one-loop
bosonic self-energy in Eq. (14) in the presence of a weak
magnetic field and in three dimensions. The analogous result
in two dimensions was obtained in Ref. [43], and here we fol-
low their approach. We first recall that in a three-dimensional
system without a magnetic field, the bosonic self-energy
�(ωm, q) on the Matsubara axis is given by Eq. (B3), where
the small frequency and momentum limit |ωm|, vF q � EF

is assumed. It is clear that a finite magnetic field along the
z direction introduces anisotropy in the bosonic self-energy
turning it into a nontrivial function of both the in-plane mo-
mentum q‖ and qz. In the absence of the fermionic self-energy
insertions, Eq. (14) acquires the following form:

�(ωl , q‖, qz ) = g2mωc

4π2

∑
n,n̄

∫
dkz

nF (εn̄(kz+qz ) ) − nF (εnkz )

iωl + εnkz − εn̄(kz+qz )

× e− q2‖ l2B
2

n!

n̄!

(
q2

‖l2
B

2

)n̄−n[
Ln̄−n

n

(
q2

‖l2
B

2

)]2

,

(C1)

where Ln̄
n (x) is the associated Laguerre polynomial.

First, we consider the static limit of Eq. (C1), describ-
ing the oscillations of the compressibility. To this end, we
set ωm = 0 and q‖ = 0 before taking qz → 0. In this limit,
�(ωm = 0, q‖ = 0, qz ) acquires the form

�(0, 0, qz ) = g2mωc

2π

∑
n

∫
dkz

2π

nF (εn(kz+qz ) ) − nF (εnkz )

εnkz − εn(kz+qz )
,

(C2)
where we have used

∫∞
0 dxe−xLn(x)Lm(x) = δm,n. In the zero-

temperature limit, and also assuming qz → 0, we obtain

�(0, 0, qz → 0) = g2mωc

2π

∑
n

∫ ∞

−∞

dkz

2π
δ(εnkz − μ). (C3)

After performing the Poisson summation and integrating over
kz in the stationary phase approximation, we find

�(0, 0, qz → 0) ≈ g2ν

(
1 + ωc

4μ

)
+ g2νocs. (C4)

Here the second term corresponds to a small correction to the
smooth part of the compressibility, whereas the last term is
given by Eq. (57) and contains oscillations.

Our next task is to evaluate Eq. (C1) in the zero-
temperature limit and at the leading order in ωc/μ, but now
assuming that the external momenta are in the range R−1

c �
q‖, qz � kF . At T = 0, the Fermi distribution nF (x) reduces
to a step function, so it is convenient to define an integer-
valued function Nc(kz ) (i.e., the number of filled Landau levels
for a given kz), such that

εnkz > 0 for n > Nc(kz ), εnkz < 0 for n < Nc(kz ). (C5)

In the weak magnetic field limit, and assuming that kz � kF

(the case when kz is close to kF requires special care, and
we will return to it later), we have Nc(kz ) � 1, and thus, it
can be approximated as Nc(kz ) ≈ (μ − k2

z /2m)/ωc. In these
terms, the sum in (C1) can be compactly written as

�(ωl , q‖, qz )

= g2m

π

∫ kF

−kF

dkz

2π

∑
n

′∑
n̄

′ n!

n̄!
e− q2‖ l2B

2

× n̄ − n + kzqz

mωc

(ωl/ωc)2 + (n̄ − n + kzqz

mωc
)2

×
(

q2
‖l2

B

2

)n̄−n[
Ln̄−n

n

(
q2

‖l2
B

2

)]2

, (C6)

where
∑

n
′ stands for the sum over n with the constraint

n < Nc(kz ), whereas
∑

n̄
′ denotes the sum over m with the

constraint n̄ > Nc(kz + qz ). In the general case, we need to
know the difference between the two summation bounds. Us-
ing the expression for Nc(kz ), we obtain

Nc(kz ) − Nc(kz + qz ) = kzqz

mzωc
. (C7)

This indicates that the bound difference depends on the sign of
kzqz. To proceed, we assume that qz > 0, and split the integral
over kz into two terms:

∫ kF

0 ... and
∫ 0
−kF

..., and change the
variables kz → −kz in the second term. Then both kz and qz

are positive, and we define

N0 = kzqz

mzωc
> 0, t = q2

‖ł2
B

2
. (C8)

We then obtain

�(ωl , q‖, qz ) = g2m

π

∫ kF

0

dkz

2π

⎧⎨⎩
N0∑

s=1

Nc−s∑
n=Nc−N0

−s + N0

(ωl/ωc)2 + (s − N0)2

n!

(n + s)!
t se−t [Ls

n(t )]2

+
∞∑

s=0

Nc∑
n=max{Nc−N0−s,0}

s + N0

(ωl/ωc)2 + (s + N0)2

n!

(n + s)!
t se−t [Ls

n(t )]2

+
∞∑

s=N0

Nc∑
n=max{Nc+N0−s,0}

s − N0

(ωl/ωc)2 + (s − N0)2

n!

(n + s)!
t se−t [Ls

n(t )]2

⎫⎬⎭, (C9)

where we have used the relation L−s
n (t ) = (n−s)!

n! (−t )sLs
n−s(t ). Note that both Nc and N0 depend on kz, thus the summation has to

be performed before the integration over kz.
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We are interested in the case when the magnetic field is weak. In this case, typical n is of the order of Nc, which is very large.
On the other hand, we can keep t finite, and arrive at the situation when t � n ∼ Nc. In this limit, after approximating Ls

n(t )
using the Bessel function Js(t ) and summing over n, we obtain

�(ωl , q‖, qz ) = g2m

π

∫ kF

0

dkz

2π

[
1 −

(
ωl

ωc

)2 ∫ π

0

dy

π
J0

(
4
√

Nct sin
y

2

) ∞∑
s=−∞

cos(sy)

(ωl/ωc)2 + (s + N0)2

]
. (C10)

Note for the s summation we have used the following identities:
∞∑

s=−∞
J2

s (2
√

Nct ) = 1, J2
s (x) =

∫ π

0

dy

π
cos(sy)J0

(
2x sin

y

2

)
. (C11)

The last term in (C10) containing s summation can be done using Poisson summation formula. Defining κNc = ωl/ωc, we
have (for N0 being integer valued)

∞∑
s=−∞

cos(sy)

(κNc)2 + (s + N0)2
= π

κNc

cosh[κNc(y − π )]

sinh πκNc
cos(N0y). (C12)

Note the additional oscillation term cos(N0y) is absent in 2D. To summarize, we have

�(ωl , q‖, qz ) = g2m

π

∫ kF

0

dkz

2π

[
1 − ωl

ωc
ϒ(N0, Nc)

]
,

ϒ(N0, Nc) =
∫ π

0
dyJ0

(
4
√

Nct sin
y

2

)
cosh[κNc(y − π )]

sinh πκNc
cos(N0y). (C13)

In the limit of small κ , Nc � 1, and N0 � Nc, we can expand the integrand near y = 0, and obtain

J0

(
4
√

Nct sin
y

2

)
≈ J0(2

√
Ncty) + 1

12

√
Ncty3J1(2

√
Ncty),

cosh[κNc(y − π )]

sinh πκNc
≈ e−κNcy, cos(N0y) ≈ 1 − N2

0 y2

2
. (C14)

The contribution to ϒ(N0, Nc) originating from the vicinity of the point y = 0 (denoted as ϒ0) is given by

ϒ0 ≈
∫ ∞

0
dye−κNcyJ0(2

√
Ncty) + 1

12

√
Nct
∫ ∞

0
dye−κNcyy3J1(2

√
Ncty)

− N2
0

2

∫ ∞

0
dye−κNcyy2J0(2

√
Ncty) − N2

0

√
Nct

24

∫ ∞

0
dye−κNcyy5J1(2

√
Ncty)

= 1√
4Nct + (κNc)2

+ N2
0

2Nct − (κNc)2

(4Nct + (κNc)2)5/2 + 2Nct[(κNc)2 − Nct]

(4Nct + (κNc)2)7/2 − 30N2
0 Nct

2(Nct )2 − 6Nct (κNc)2 + (κNc)4

(4Nct + (κNc)2)11/2 . (C15)

Next, we need to evaluate the integral over kz. In order to
properly determine the UV cutoff we need to recall that our
analysis relied on the asymptotic approximation for Ls

n(t ),
which applies when Nc(kz ) is large. However, this condition
cannot be satisfied when kz → kF , leading to the unphysical
divergence. To resolve this issue, we impose a UV cut-off
� defined by the following condition: Nc(�) ∼ t . This leads

to � ∼
√

k2
F − q2

‖. It is also easy to check that the condition

Nc(kz ) � N0 is obeyed as long as qz � q2
‖/(2kF ) and kz � �.

After performing the remaining integral over kz with the cutoff
�, we find∫ �

0
dkz

ωl

kF ωc
ϒ0 ≈ ωl

vF

√
q2

‖ + q2
z

(
π

2
− (eB)2

8kF q3
‖

)
, (C16)

where we retained only the leading-order correction to the
usual Landau damping. Next, we extract the oscillating contri-

bution from the vicinity of the point y = π , which we denote
as ϒπ ,

ϒπ =
∫ π

0
dyJ0

(
4
√

Nct cos
y

2

)
cosh κNcy

sinh πκNc
cos(N0y)(−1)N0

≈
√

2π

sinh(πκNc)

sin
(
4
√

Nct
)

4
√

Nct
, (C17)

where we have used N0 � t .
Finally, after integrating over kz and combining the result-

ing expression with the contribution from ϒ0, Eq. (C16), we
obtain

�(ωm, q‖, qz ) = − πg2ν|ωm|
2vF

√
q2

‖ + q2
z

(
1 − (eB)2

4πkF q3
‖

)

+ g2ν|ωm|
vF q‖

√
π

2

sin
(
2Rcq‖

)
sinh(πωm/ωc)

. (C18)
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