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We consider a Su-Schrieffer-Heeger (SSH) chain to each end of which we attach a semi-infinite undimerized
chain (lead). We study the effect of the openness of the SSH model on its properties. A representation of the
infinite system using an effective Hamiltonian allows us to examine its low-energy states in more detail. We
show that, as one would expect, the edge states of the topological phase hybridize as the coupling between
the systems is increased. As this coupling grows, these states are gradually suppressed, disappearing as the
coupling goes to infinity. In the topologically trivial phase, in which no edge states exist in the isolated system,
the opposite behavior is observed: as the coupling grows, a new type of edge state gradually emerges. These
new states, referred to as phase-inverted edge states, are localized low-energy modes very similar to the edge
states of the topological phase. Interestingly, localization occurs on a new shifted interface, moving from the first
(and last) site to the second (and second to last) site. This suggests that the topology of the system is strongly
affected by the leads, with three regimes of behavior. For very small coupling, the system is in a well-defined
topological phase; for very large coupling, it is in the opposite phase; in the intermediate region, the system is in

a transitional regime.
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I. INTRODUCTION

The Su-Schrieffer-Heeger (SSH) model is of great impor-
tance in physics due to the fact that it is one of the simplest
models out of which emerge interesting topological proper-
ties such as edge states and solitons [1-7]. The model is
an excellent starting point to present important themes of
condensed-matter physics such as Bloch’s theorem, chiral
symmetries, adiabatic equivalents, topological invariants and
the bulk-boundary correspondence [8]. It is also part of a
group of systems that are of great interest: topological insula-
tors [9—12]. These systems get their name from the insulating
nature of their bulk, while also having conducting states on the
boundaries stemming from a symmetry-protected topological
order. One characteristic that makes these systems so unique
is the existence of low-energy states localized at the chain
ends that are robust against disorder. As a consequence of
its simplicity, many variations of the SSH model have been
studied, including extensions to higher dimensions [13-16]
and generalizations including interactions, various forms of
disorder, and driving [17-20].

In this paper, we study the properties of the SSH model in
the case in which the SSH chain is part of an open system. To
do so, we attach the chain to a semi-infinite lead at each end;
these leads reproduce the effect of an environment. Similar
dissipative systems have been studied in the case in which the
effective potentials associated with the leads are taken to be
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constant (rather than being energy-dependent) [21-24]. This
paper presents a generalization of these systems by including
the energy dependence of the lead coupling on the SSH chain.

Our work brings several interesting phenomena to light.
First, we illustrate how in the topological phase edge states
gradually vanish as the coupling to the environment grows.
Similarly, in the trivial phase new low-energy states emerge.
These new states bear a striking resemblance to edge states:
their energies are near zero and they are localized on the
edges of the SSH chain. Yet, there are significant differences.
Perhaps most importantly, they appear when edge states do not
exist in an isolated SSH chain. Furthermore, they are localized
on the “wrong” sublattice (they present a strong localization
on the second and second-to-last sites instead of the first and
last sites). We refer to them as phase-inverted edge states, or
PIE states. As we will see, PIE states arise due to the boundary
couplings with the leads. In the weak-coupling limit, the leads
provide a continuum of leaky modes with small amplitudes in
the SSH chain. As this coupling grows, a continuum remains
and the first and last sites of the SSH chain are pulled away.
As these boundary sites decouple, the SSH chain is effectively
truncated and PIE states arise as resonances supported within
the SSH chain.

Second, we observe the appearance of states with energies
beyond the SSH chain bands as the coupling to the environ-
ment is increased. These high-energy states, known as Tamm
states [25,26], are localized on the two pairs of sites that
are linked by the lead coupling. We refer to these highly
dimerized pairs of sites, composed of the first/last SSH site
and the first site of the corresponding lead, as islets.

©2024 American Physical Society
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FIG. 1. Visual representation of the tripartite system.

We then study the system through the lens of an effective
description, incorporating the effect of the environment on
the SSH chain in a modification of the SSH Hamiltonian.
We argue that a topological transition occurs as the SSH-
environment coupling becomes strong. This suggests a new
way of modifying the topology of an SSH system without
changing its internal structure: for a given initial topological
phase, it is always possible to bring the system to the opposite
phase. This concept can be extended to other one-dimensional
topological insulators. We then show that, as in the case of
edge states, PIE states are robust against certain types of
disorder. Finally, we show that PIE states make significant
and unexpected contributions to the transport properties of the
system, consistent with, and in support of, the other aspects of
the paper.

The paper is organized as followed. In the next section,
key elements that will be used throughout the article are in-
troduced. A mathematical description of the tripartite system
(SSH chain plus two leads) is given, along with its eigen-
values and eigenvectors. Special attention will be given to
low-energy states and in particular to the PIE states, after
which Tamm states and the islets will be presented. In the third
section, an effective description of the SSH subspace with the
leads replaced by self-energies is analyzed. A comparison of
this system in the limit of small and large coupling to the
environment is presented. This will lead to the realization that
a topological transition occurs between these two limits. In
the fourth section, Green’s functions are used to study the
density of states, the local density of states, the influence of
disorder, and the transmission of the low-energy states when
the coupling is neither very small nor very large. This will help
us understand what happens between the two well-defined
topological phases. In the last section, we give a summary and
comparison of the results obtained.

II. THE TRIPARTITE SYSTEM
A. Description of the individual components

The tripartite system, which is represented in Fig. 1, has
already been described in [27,28]. Its Hamiltonian takes the
form

H = Hssy + Hy + Hr

+ tL(c}Lll + lfcl + c}:,rl + rch), (D
where
N-1
Hgssy = Ztm(C;,Cerl + Cjn_’_lcm)s (2)
m=1
HL = Z(l;lnﬂrl + l;H—ll’")’ (3)
m=1

and
oo
He =) (hhrme1 41y, “)
m=1

where m 1is the site index, and {cj;l, Cm}» {l;, Ln}, {r,",'l, rm} are
the creation and annihilation operators for the mth site of the
SSH chain, the left lead, and the right lead, respectively.

The model is defined by the number of sites of the SSH
chain N and by the various hopping parameters, all assumed
real and positive. We set the hopping parameter of the leads
to unity (thus defining the energy scale). The strength of the
coupling between the SSH chain and the leads is given by the
hopping parameter #;,. The SSH chain hopping parameter #,,
(linking sites m and m + 1) alternates between two values, f;
for m odd and ¢, for m even.

We remind the reader that the dispersion relation for the
SSH chain is given by [6]

E* =t} + 15 + 2111, cos 2k, 3)
while that for the leads is given by
E = 2cos(q). 6)

Here k and g are the wave numbers in the SSH chain and in
the leads, respectively. We see from (5) that for an infinite
SSH chain there are two symmetric bands bounded by E =
+(|t; — 2], t; + t»); for each energy within the bands there are
two solutions that can be taken to be spatially even and odd.
There also exist solutions outside the bands with a complex
wave number; however, these solutions diverge exponentially
at infinity, so they must be rejected for an infinite chain. The
gap between =+|f; — t,| disappears in the undimerized limit
t; = tp. For a finite, isolated SSH chain, the energy spectrum
is discrete, with spatially oscillatory solutions for energies
within the SSH bands and, possibly, spatially exponential
solutions in the gap. These states are referred to as bulk states
and edge states, respectively, reflecting their spatial profile.
As is well known, an infinite lead has a pair of solutions for
each energy in the range —2 < E < 2, while an isolated semi-
infinite lead has a single solution for each energy in the range
—2 < E < 2. When the finite SSH chain is coupled to the two
semi-infinite leads, the energy spectrum and the precise nature
of the solutions depend on the boundary conditions, which of
course depend on the coupling to the leads. In particular, the
spatially exponential solutions rejected for an infinite system
can be combined to form legitimate (normalizable) solutions
for the composite system. This is the main focus of this
section.

The cases N odd and even have some features in common
as well as some differences. The most notable difference is
already apparent for the well-studied case of an isolated SSH
chain (our model in the limit z;, = 0). If NV is even, the first
and last coupling constants are #;, whereas if N is odd the last
coupling constant is #, (see Fig. 1). This affects whether or
not edge states exist, as can easily be surmised by considering
the limiting case in which one of the SSH hopping parameters
is set to zero (see, for instance, [8]). In this limit, the chain
breaks up into a number of uncoupled dimers internally linked
by the nonzero hopping parameter and, possibly, one or two
uncoupled sites at the ends of the chain. (Specifically, in the
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even case if #; = 0 there is an uncoupled site at each end,
whereas if ©, = 0 there are none; in the odd case there is
always one uncoupled site, on the left if 7 = 0 and on the right
if £, = 0.) In this limit, the dimers have equal and opposite
nonzero energies while the uncoupled sites have energy zero.
As the coupling that had been set to zero is turned on, the
former evolve to bulk states lying within the bands; the latter
evolve to edge states. This suggests that for N even, ift| < #,
there are two edge states of equal and opposite exponentially
small energies, whereas if #; > f, no edge states exist. For
N odd, there will always be one zero-energy edge state, on
the left or right for #; <, or #; > t,, respectively. These
conclusions are valid, with one minor adjustment when N is
even: the transition from two edge states to none occurs not
when t; = t, but rather when the SSH hopping parameter ratio
r =11/t is at its critical value r, = N/(N + 2) [6,29], which
of course approaches unity as N — oo. Throughout the text,
r will be compared to unity for the sake of clarity, but r,
is the true critical value (for even N) and should always be
considered in the study of finite systems.

For the remainder of this article, we will take N even,
occasionally highlighting instances in which the behavior for
N odd is significantly different.

B. Solutions of the tripartite system

Using Bloch’s theorem [30,31] as an ansatz for the wave
functions of the tripartite system, we obtain general expres-
sions for the wave functions of each of its components:

oo
Y) =) (MG, + TG ) |n)

n=1

= YLaln), (7)
n=1

o0
[WR) = Y ("D, 47D _)|n)

n=1

00
= Yraln), ®)
n=1
N/2-1
|Wssn) = Z {(C+efi¢ei2mk + C_€i¢€7i2’7lk) 12m + 1)
m=0

:|: (C+ei¢ei2mk + C7€7i¢€7i2mk) |2m + 2)}

N
= Vst ln) . ©)

n=1

Here, ¢ is a positive phase defined by #| + t,¢** = |E|e*? for
E # 0. To avoid unnecessary clutter, we have labeled the site
kets by their site number only and not by the component of
the system (L, R, or SSH). In (9), the upper (lower) sign is for
the positive (negative) energy solution.

To find the tripartite solutions, we must combine (7)—(9) in
such a way that the boundary conditions at the interfaces are
satisfied. Before doing so, it is worth comparing the uncoupled
(ty = 0) and weakly coupled (0 < 7, < 1) cases qualitatively.

In the uncoupled case, the three subsystems can be solved
independently as described in the previous subsection, and

there is no leakage between subsystems. With a nonzero but
small coupling #;, the uncoupled solutions are a first approx-
imation, with a degree of hybridization between subsystems
that varies as a function of #;,. For example, at any energy
within the lead band not corresponding to an SSH energy,
the uncoupled system has two oscillatory solutions, one in
each lead. When weakly coupled, there will still be a pair
of solutions similar to the isolated lead solutions, but with
a small amount of exponential leakage into the SSH chain.
At an energy within the lead band corresponding to an SSH
energy, the uncoupled system has three states, one in each
lead and one in the SSH chain. When weakly coupled, there
is again a pair of solutions, this time showing considerably
stronger hybridization and leakage at energies corresponding
to SSH solutions, as these act as a channel between the leads.
There is a crucial distinction between the solutions of the SSH
subspace and those at any other energy within the lead band in
the coupled system. This distinction can be seen in the relative
amplitude in the three subsystems, or in other words in the
degree of leakage between the subsystems. This behavior will
be reflected in the density of states and transmission properties
of the model, as will be discussed in Sec. IV.

Let us now proceed with a more detailed examination
of the coupled case. For |E| < 2, all solutions in (7) and
(8) are valid, so there are six constants to be determined
(G4, Dy, Cy). With four boundary conditions and normal-
ization, we see that there are two independent solutions for
any energy in this range. For |E| > 2, from (6) we see that
g is imaginary and, choosing Im(g) > 0, the solutions e~
in (7) and (8) diverge; we must take G_ = D_ = 0. The
four boundary conditions and normalization overdetermine
the four remaining coefficients, and only at certain discrete
energies will solutions be found.

In what follows, we will consider these energy domains
separately. We begin, however, with a special case of the first
case, namely £ = 0, which lends itself to a particularly simple
analysis.

1. Casel: E =0

As has just been argued, we expect two independent zero-
energy eigenstates (whether or not there are solutions with
energy near zero in the isolated SSH chain). Since for £ = 0
the Schrodinger equation links any site n with sites n & 2, the
even and odd sublattices are decoupled from one another; thus
the independent states can be taken to be nonzero on either
the even or the odd sublattice. The general solution within the
SSH chain, written in terms of the hopping parameter ratio
r = t1/f, is given by

¥ssy) =« : +8 : . (10)

Note that the individual solutions, which we will refer to as
the o and B solutions, are parity inversions of one another, a
consequence of the reflection invariance of the Hamiltonian
(1). Given this symmetry, in the rest of this section we will
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focus on the o solution; the same conclusions, inverted spa-
tially, apply to the B solution.

Let us take a more detailed look at the « solution, and
specifically its dependence on the hopping parameter ratio r.
The factors (—r) in (10) give rise to an exponential attenuation
(if r < 1) or growth (if r > 1) from left to right, with length
scale 2| log r|. We see that if » < 1, the solution is largest on
the first site, very much like the edge states in an uncoupled
SSH chain with r < 1. It is important to note that edge states
in finite-length SSH chains have small yet nonzero energies
(for N even). As such, comparing (10) to edge states is qualita-
tively useful but remains an approximation that only becomes
exactas N — oo.

If r > 1, the largest amplitude is not on the last site but
rather on the second to last site. We thus observe that the
solution behaves similarly to an edge state, with one important
exception: it is strongly localized on the “wrong” sublattice
compared to an edge state. For this reason, as mentioned
above, we refer to this type of solution as a phase-inverted
edge state, or PIE state. Because the lead bands form a contin-
uum, PIE state solutions always exist in the tripartite system
for > 1 when the coupling #; is nonzero and finite. The term
“PIE state” will be used to denote this type of general solution
situated on the “wrong” sublattice, but it is important to distin-
guish the existence of a solution in the tripartite system from
the presence of a well-defined state within the SSH chain;
as will be discussed in Secs. III and IV, PIE state solutions
for #; < 1 can be understood as stemming from lead leakage
into the SSH chain, while for #; > 1 some PIE states become
solutions with direct support within the SSH subspace. The
latter form for #;, > 1 is the most interesting, as these PIE
states are analogs to conventional topological edge states.

Two points are worth noting for » > 1. First, the behavior is
completely unlike the uncoupled SSH chain, for which there
are no states at all of energy near zero. Second, the PIE states
bear a striking resemblance to the edge states of an isolated
SSH chain of length N — 2 beginning and ending with #,, or
in other words, of the SSH chain with its first and last sites
removed.

How do these states extend beyond the SSH chain into the
leads? The solutions in the leads are given by (7) and (8)
with ¢ = 7 /2; these must be combined with (10) such that
the boundary conditions are satisfied. The eigenfunctions in
the leads for the « solution turn out to be

nmw
YL, = 1L COS (7)

151 N2 . (AT
Yo == (=) sin (7) (11)

Note that v, is zero for n odd while yg , is zero for n
even, maintaining the support on one sublattice throughout the
system, as expected given the form of the Hamiltonian.
Equations (11) provide a straightforward way to compare
the amplitude of the wave functions within the SSH chain
versus that in the leads for a given set of parameters {, 1, . }.
Since the solutions are exponential in the SSH chain and
oscillatory in the leads, it is simply a matter of comparing the
first (last) nonzero amplitude of the SSH chain given in (10)

with the amplitudes given in (11). In particular, we find
Yol = telyssual,
51
YRl = t_|wSSH,N71|- (12)
L

On the left boundary, if #; > 1, the amplitude of the first
lead site with nonzero amplitude is larger than the first site
of the SSH chain, and if 7, < 1, the opposite is true. On the
right boundary, if #; > t,, the amplitude of the first site of the
lead with nonzero amplitude (the second site) is larger than
the first site of the SSH chain, and if #; < #;, the opposite is
true. Interestingly, this conclusion does not depend on whether
r > 1 or r < 1; the zero-energy «-state amplitude going from
the left edge of the SSH chain to the lead is multiplied by
1., whereas on the right side it is multiplied by ¢, /7;. These
multiplicative factors will reappear in Sec. III B, where an
effective description of the system is discussed.

We illustrate these zero-energy « states, and in particular
the amplitude factors (12), for different values of ¢, #,, and 7,
in Fig. 2.

We conclude this section with a brief summary of the prop-
erties of zero-energy states if NV is odd. Since the first and last
coupling constants are #; and f,, respectively, spatial inversion
is still a symmetry when combined with the change #; < 1.
As mentioned earlier, an isolated odd-N SSH chain has one
zero-energy edge state, on the left if » < 1 and on the right
if r > 1. When the leads are attached, the edge state remains
an edge state; in addition, there is a second solution that is a
PIE state localized on the other end of the chain. The solution
within the SSH chain is given by (10) with N — N — 1 and
an added component at the end. [Thus, the final component
of the « solution is (—r)¥~1/2 while that of the B solution
vanishes.] Whereas for NV even spatial inversion exchanges the
a and B solutions, for N odd spatial inversion combined with
t| <> t, maps the o solution with r > 1 to that with » < 1 and
vice versa, and similarly for the 8 solution. For the N-odd «
solution, (11) becomes

ni
YL, =1L COs (7)
Nol niw
YR = 12(~1)'7 cos (7) (13)
and (12) becomes

VL2l = tr|¥ssh,1ls
VR 2l = tr|Wssu,N|- (14)

The equivalent equations for the N-odd 8 solution are

" ll( )N—} . (l’l?‘[)
Ln=——(=r) 7 sin(—),
" 153 2

" th . (nrr) as)
.= ——sin( —
R 153 2
and
151
YLl = —|¥ssh.2l,
L
15)
[Yr1l = t—|1ﬂSSH,N—1|~ (16)
L
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{t1.t5.t;}={0.9,1.1,0.5}

{t1.t.t1={1.1,0.9,2}

FIG. 2. Wave functions of the zero-energy « state of an SSH
chain of length N = 16. (The g state is identical up to spatial reflec-
tion.) The SSH chain (shaded area) and the first six sites of both leads
(outside the shaded area) are displayed for four sets of parameters. In
(a) and (b), r < 1, so the state is a left edge state; in (c) and (d),
r > 1, so the state is a right PIE state. In all cases, the amplitude of
the oscillating wave function in the leads compared with that in the
SSH chain behaves in accordance with (12).

Notice that the multiplicative factors in (14) and (16) are the
expected generalization of those in (12).

2. Case2:0 < |E| <2

As argued earlier, when |E| < 2 the wave number ¢ is
real and there are two solutions for any energy. The solutions

within the SSH chain are given, up to normalization, by

a([Etfe™™ — 13]s,—1 — titaSut1)
+ 8 (tlthei"sN,n,l — IQ[E — l‘zeiq]SN,n+1)
(n odd),
a(ntfe s, o —1 [E —t}e7i]s,)
+B ([Et}e'” — 13 ]sn—n — titasn—n42)
(n even),

YssH,n =

a7

where s, = sin(nk), and o and § are arbitrary parameters.
Note that, as with (10), the solutions are parity inversions of
one another, under the combined operation n - N —n + 1,
q — —q. For energies in the range |t — 1| < |E| < |t + 12,
the wave vector k is real and the wave functions in the SSH
chain are oscillatory, whereas for energies outside these bands
k is complex and the wave functions are exponential.

3. Case 3: |[E| > 2

From (6), we note that any state with energy |E| > 2 has
a complex wave number ¢ in the leads, which from (7) and
(8) implies that the wave functions in the leads are given
by a linear combination of states whose amplitudes increase
and decrease exponentially with distance from the SSH chain.
Since the leads are infinite, the exponentially increasing states
are unphysical, so G_ and D_ must be set to zero [with the
choice Im(q) > 0]. Having four boundary conditions (two per
boundary), one normalization condition, and five unknowns
(Cy, G4, D4, and E), making use of the dispersion relations
(5) and (6) for g and k, there are a discrete set of energies,
given by the solutions of the following transcendental equa-
tion:

ti(tse sy + 1] esy0) +n(tze™ —2EL] +11e')sy
=0. (18)
Note that this equation has two interesting limits. The first is
if #z — 0. Unsurprisingly, (18) reduces to the transcendental

equation for the energies of the uncoupled SSH chain, namely
[6,29]

t

Lsnt2 + sy = 0. (19)
5}
More surprisingly, in the limit 7, — oo, (18) reduces to
t
Zsw +sxo2 =0, (20)

1

the transcendental equation for the energies of an uncoupled
SSH chain with two fewer sites and starting and ending with
t,. This is a clean indication that for large coupling, the two
sites linked by 7, effectively decouple from the rest of the
system forming islets, as will be discussed in more detail
below.

Equation (18) can be solved numerically for a given set
of parameters {t, t,,?,, N}. For fixed #;, #,, and N, the en-
ergy spectrum of the tripartite system is a function of 7;. In
particular, if |y — ;| > 2, all bulk states of the SSH chain
have |E| > 2, as shown in Fig. 3. The corresponding wave
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3 4t

FIG. 3. Graph representing the energy solutions of (18) as a
function of #;, with {#;, 1, N} = {3, 0.9, 10} for positive energy values
outside of the lead band. The shaded area is the positive-energy band
of the SSH chain. We observe, in particular, that two states leave this
band: these are known as Tamm states. #; and 7, were chosen so that
the SSH bands do not overlap the lead band. Thus, there is a maximal
number of states with energy |E| > 2. Note also that the behavior for
r < 1is qualitatively similar to the displayed graph, for which r > 1.

functions are given, up to normalization, by

titrSpr1 + (t22 - Etfe"q)sn,l
t (E — tfe"’)sn — tltfe“’sn,g

(n odd),

(n even). @D

YssHn = {

Note that g, given by (6), is complex here. More precisely,
q = iarccosh(E/2) for E > 2 and g = 7 + iarccosh(|E|/2)
for E < —2.

From Fig. 3, we observe that as #; is increased, two states
leave the upper energy band of the SSH chain. These surface
states have energies outside the SSH bands, |E| > #; + 1, and
they are known as Tamm states in the tight-binding formalism
[25]. Note that there are no equivalent states for the closed
SSH system: these states are a result of the coupling be-
tween the SSH chain and the environment. For such states,
we see from (5) that the wave number k in the SSH chain
is complex, meaning that the corresponding wave functions
have exponential-like behaviors. While these states may ap-
pear similar to edge states due to their localization at the
boundaries, they are high-energy excitations that show no
sublattice confinement. In Fig. 4, we display these states for
a given set of {t,#, N}, and for two different values of 7;.
This allows us to see how the Tamm states are affected by
the coupling parameter 7;: the larger this parameter is, the
more the states are confined to the boundaries. In the limit of
t; — oo, the wave function of the tripartite system will have
a nonzero amplitude only on the two pairs of sites associated
with the two islets that will be introduced shortly. In parallel,
going back to Fig. 3, we observe that the remaining states
asymptotically approach fixed energies within the SSH bands.
Thus, depending on f;, we observe either zero, two, or four
Tamm states.

From (1), we can see how these Tamm states emerge. When
t; is much larger than the other couplings, the two states
within an islet couple to each other much more strongly than
to the adjacent sites, effectively decoupling them from the rest

i .- 4 -0 n
1 2 3 4 5 6 7 8 9 10
FIG. 4. High-energy Tamm states beyond the SSH band for

{t, 5, N} = {3,0.9, 10}. We present the wave functions associated
with the SSH chain (in the shaded area) and the wave functions
associated with the first three sites of both leads (outside the shaded
area). These states are strongly localized on the boundaries and have
exponentially decreasing profiles as they enter the bulk of both the
SSH chain and the leads. Note that this behavior is accentuated as #;
is increased. (a) Antisymmetric Tamm state, with 7, = 3 (E = 4.39)
for the blue (solid) curve and #;, = 5 (E = 5.92) for the red (dashed)
curve. (b) Symmetric Tamm state, with 7, = 3 (E = 4.40) for the
blue (solid) curve and ¢t;, = 5 (E = 5.92) for the red (dashed) curve.
In both cases, we clearly see that the Tamm states associated with
the larger coupling constant #;, are more strongly located on the
boundaries of the SSH chain. In the limit , — oo, only sites 0, 1,
10, and 11 will have nonzero amplitudes.

of the system; they are then described by the Hamiltonian

0
Hyger = 1101 = (tL 5>, (22)

with eigenvalues E = =£#;, which give the energies of the
Tamm states in the limit of strong coupling #;, > #;, 1, 1. See
Appendix A for a more complete discussion of the strong-
coupling case.

This leads us to a different perspective of the tripartite
system when #; is large. In this limit, two islets, described by
the Hamiltonian (22), emerge between the three components
of the system. Figure 5 illustrates the system in this limit. In
the limit ;, — oo, the five components (two leads, two islets,
and the SSH chain) are disconnected from one another. In
particular, we observe that the “final” uncoupled SSH chain is
of length N — 2: it has lost the two sites that were connected
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FIG. 5. Tripartite system in the limit of strong coupling. The SSH
chain loses its first and last site to the islets. Thus, its first and last
hopping parameters are both #, in this limit.

to the leads, giving rise to a topological transition that will be
discussed in Sec. III.

Studying the tripartite system leads to many insights, yet
it leaves several questions unanswered. In particular, it does
not explain how the low-energy states are affected by the
environment. In the next section, this will be clarified using
effective potentials, a formalism that incorporates the effect
of the leads in a modification of the SSH Hamiltonian.

III. EFFECTIVE REPRESENTATION
OF THE TRIPARTITE SYSTEM

The tripartite system can be written in the form of an
N x N effective Hamiltonian for the subspace of the SSH
chain, where leads have been replaced by self-energies. It has
been shown in [6,27,28] that the effective representation of
this system is given by

HEY = Hssu + Zoo(E)(cler + cjpen), (23)
where
To(E) =t}e™™ (24)

is the self-energy of a lead, taking the form of a complex
energy-dependent potential as shown in Fig. 6. To avoid phase
discontinuity issues in the self-energy, a dissipative causal
condition, ImX,, < 0, is imposed on the self-energy by way
of a branch cut orientation change. The conventional branch
cuts of X, along the real-E axis from [—2, 2] are rotated
about ReE = £2 to extend towards ImE < 0O, which reduces
24) to

s i [E —iv4—E2 for |ReE| < 2, 25)
* 7 2 |E —sgn(ReE)WVE? —4 for [ReE| > 2,

where for E ¢ R the square root is taken to have a positive
real part. This form for X, is equivalent to the conventional
self-energy of semi-infinite leads [32] along the real-E axis,
and thus yields identical physical quantities. Rotating the
branch cuts this way is useful, as it reveals the dissipative
poles associated with the complex solutions of (23).

In contrast to the full Hamiltonian (1), (23) is non-
Hermitian. Because of this, the energies of the effective
system will in general be complex, leading to nonconservation
of probability. Although strange at first sight, this simply

t, t; _t, t
@ooo e O O Ome(E)
B A B A B A B

FIG. 6. Graphic representation of the effective system. The ef-
fective potentials X, on the first and last sites represent the effect of
the leads on the SSH chain.

reflects the fact that the effective representation includes only
a finite spatial segment of the total tripartite system. Real parts
of the energy, ReE, then correspond to the physical energies
of states supported within the SSH chain subspace, while
the imaginary parts, ImE, are related to the decay of states
out of that subspace. Equivalently, the imaginary components
describe hybridization and the coupling of the subspace to its
environment, leading to a broadening of the energy spectrum.

A. N-site effective system

Solving the Schrddinger equation for the Hamiltonian
given in (23), one can use either the right or left boundary
conditions of the system to find an expression for the wave
functions. Using the left boundary condition, the unnormal-
ized wave functions are found to be

2ieC,

Wn =T l‘zEEZik — Eoo(tl + l‘2€2[k)
% (EEOO — l‘zz)Sn_l — N1Sp+1 if n is odd, (26)
H2X0oSn2 — h(E — Xy)s, if niseven,

where, as mentioned earlier, ¢ is defined by #; + hetk =
|E|e*?, and where we keep the multiplicative factor for a later
calculation. Using the right boundary condition, the unnor-

malized wave functions are given by

2i€7i¢c+ei(N72)k

Vi = Ee i s T e )
HY0oSN-n—-1 —(E — Xoo)Sn—n+1 if nis odd,
(EZo0 — 13)SN—n — HE2SN—n12 if n is even.
27

See Appendix B for a more complete derivation of (26) and
(27). Note that (26) and (27) are proportional to the & and B
terms of (17), respectively. However, the effective system is
more constrained than the tripartite system, and rather than
two independent solutions with a continuum of energies for
|E| < 2, we expect a single solution forming a discrete set of
energies. Thus, (26) and (27) must in fact agree, leading to the
following transcendental equation for the energy:

h (IZZSN+2 + EgOSN_z) + t2(t22 —2EY + ECZ,O)SN =0.
(28)

For |ReE| > 2, (18) and (28) agree, as they must.

The domain of real values of E determines what type of so-
lutions arise in the effective system. Solutions with |ReE| > 2
existing outside of the lead bands are immune to hybridization
and must be real-energy solutions, as confirmed by Im¥,, =
0 along the real axis. These states, therefore, exhibit no broad-
ening. On the other hand, if |ReE| < 2, then X, is complex,
resulting in complex-energy solutions to (23) and (28). This is
to be expected, since states in the SSH subspace with energies
IReE| < 2 are coupled to the lead bands; they hybridize and
feature a broadened spectrum within this subspace.

Broadening is observed in Fig. 7(a) (conventional edge
states) and Fig. 7(b) (PIE states), which plots the density of
states (see Sec. IV), whose maxima are inversely proportional
to the imaginary part of the solutions of (28) within the lead
bands. States at energies within the lead bands all undergo
some broadening for finite nonzero f;; they are, therefore,
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FIG. 7. Graph of the log of the density of states (see Sec. IV)
for real values of E in the lead band, as a function of #;, with
(@ {t,t,N}=1{0.9,1.1,10}, and (b) {t,,%,N} ={1.1,0.9, 10}.
The points {E, 7.} associated with large numerical values (see the
color code) represent states for which the imaginary component of
the energy is small [the projection of these states on the real axis is
closer to being a singularity of (28)]. We also observe that the energy
spectrum is broadened: this testifies to the fact that the energies
are complex in this region (|E| < 2). The positions of the maxima
correspond to the real part of the solution in (28), while the imaginary
part of the solution is inversely proportional to the density of states
along the maxima (bright colors).

leaky resonance modes and are not bound states in the con-
tinuum [33]. For conventional edge states at small 77, the
spectrum shows minimal broadening: one clearly observes
ten solutions corresponding to the eigenstates of an isolated
SSH chain of length N = 10. As t;, approaches unity, the
broadening increases, and the spectrum reaches a point where
it is maximally broadened and continuous. Beyond #; ~ 1,
two pairs of Tamm states leave the energy band of the leads,
consistent with the vanishing edge states and the SSH chain
losing two sites to the islets for increasing coupling strength
tr. Note that for t; = 1, the coupling constant is equal to the
hopping parameter in the leads, meaning that the leads gain
two sites and the SSH chain has as a first hopping parameter
t, instead of ¢, and a lead coupling #; instead of #;. In real
space, this implies that for any value of ¢, > 1, #; one can
consider the SSH chain as having N — 2 sites, with some
modified lead coupling at the boundaries. This also maximizes

hybridization between the SSH states and the leads’ states,
which favors the decay of the SSH states into the leads and
explains the maximal broadening observed close to 7, = 1.
In the limit #;, — oo, the spectrum sharpens and becomes
discretized, corresponding to the spectrum of an isolated SSH
chain of length N — 2 beginning and ending with #,. In this
limit, the topological edge states present for small #;, have
disappeared.

The case shown in Fig. 7(b) shares many features with
the conventional SSH chain system in Fig. 7(a). Namely, the
influence of broadening on the DOS is exerted identically, and
Tamm states also arise for #; > 1. An important difference is
the low-energy mode behavior. For small 77, the SSH chain has
r > 1 and therefore hosts no edge states. Still, a continuum of
in-gap PIE state type solutions resulting in a nonzero DOS
is present due to leakage from the leads. For #; values larger
than 1, the SSH chain can now be understood as having an
effective length tending towards N — 2, and hence it finds
itself closer to a nontrivial topological configuration following
truncation. A state is considered to have support within the
SSH subspace if it is an eigenvalue of (23) with a well-defined
energy; the broadening of PIE states is smaller than the level
spacing. It is then only for #;, > 1 that the low-energy modes,
the so-called PIE states, are seen to emerge as solutions of the
SSH subspace.

B. (N — 2)-site effective system

To understand the emergence of PIE states, consider an
(N — 2)-site effective system, given by

HET . = Hysy + 00o(E)(cler + ¢l jonon),  (29)

where Hggy is the Hamiltonian of an SSH chain of length
N — 2 whose first and last hopping parameters are #,; further-
more, 0oo(E) = t2/[E — Zoo(E)]. In this case, the effective
potential o, describes the effect of the leads and the first and
last sites of the SSH chain on the remainder of the SSH chain.
Note that as 7, goes to infinity, o, goes to zero and HE,
reduces to Hggy. We see explicitly that the islets and leads
decouple from the reduced SSH chain, as mentioned earlier.

Thus, for large coupling, a new effective SSH system
emerges, with first and last coupling parameters #, rather than
t1, which is significant. If initially » < 1, then the new SSH
system has r > 1, and vice versa. In other words, a system
that initially had two edge states will have no edge states for
large coupling, and a system that initially had no edge states
will have two PIE states for large coupling. This is a clear sign
that a topological transition stemming from the leads occurs
between these two limits: for all values of #; and #,, a state
with a given topological phase at #;, = 0 will be found in the
opposite phase for 17, — oo.

If N is odd, the same argument cannot be made. In this
case, the system hosts both edge and PIE states for any r # 1
and finite nonzero #; and therefore always shows low-energy
topological signatures. Only in the limit#;, — 0 (f, — 00) can
edge states (PIE states) become the unique low-energy solu-
tions within the effective system. The crossover in the vicinity
of 1, = 1is accompanied by a delocalization-localization tran-
sition of low-energy modes; states initially on the left (right)
SSH chain edge are displaced to the right (left) edge as #,
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transitions through 1. Unlike the isolated odd-N SSH chain,
the odd-length chain here hosts low-energy topological modes
with support near both boundaries.

We conclude this section with a brief remark making a
connection between the multiplicative factors appearing in
(12), (14), and (16) and the self-energies appearing in the
effective Hamiltonians (23) and (29). The factors in (12),
(14), and (16) multiply the last nonzero amplitude in the SSH
chain to give the amplitude of the oscillating wave function
in the lead (for the specific case of zero-energy solutions).
It was seen that in the case of an edge state, for which the
last nonzero amplitude in the SSH chain is on the first or
last site, the multiplication factor is #; [first equation in (12),
both equations in (14)], whereas in the case of a PIE state,
for which the last nonzero amplitude is on the second or
second to last site, the multiplication factor is ¢ /#; [second
equation in (12), both equations in (16)]. These factors, when
squared, correspond exactly to the self-energies (evaluated
at £ = 0) of the effective Hamiltonian if the leads, or the
leads plus the first and last SSH sites, are integrated out; that
is, they correspond to | X (E = 0)| = tf and |05 (E = 0)| =
(t1/11)%, respectively. Thus, the self-energies appearing in the
effective Hamiltonians not only give the effect of the part of
the system that is integrated out on the system that remains,
they also give the amplitude of the wave function in the part of
the system that is integrated out in terms of the wave function
in the system that remains.

IV. GREEN’S FUNCTION OF THE EFFECTIVE SYSTEM

In this section, the aim is to further understand the behavior
of low-energy states between the weak- and strong-coupling
limits, #;, — 0 and t; — oo, respectively. As we have already
seen, the low-energy modes within the SSH subspace for r <
1 are edge states, whereas for r > 1 the low-energy modes are
PIE states. While the effective system admits a continuum of
energies due to hybridization with the leads, the edge states
and PIE states have nonzero energies in finite systems, and
they are referred to as low-energy modes.

A. Density of states

The DOS and the local density of states (LDOS) will prove
to be key quantities in understanding the N-site effective sys-
tem’s response to changes of #;,. The DOS for an energy E can
be readily found by taking the trace of the imaginary part of
the effective system’s Green’s function:

D(E) = —%Im{Tr Gsgu(E)}. (30)
It is a straightforward calculation to obtain such a Green’s
function, G&&, = (E — HEE)~!, which depends on the parity
of N and n. For effective systems where N is even, the diago-
nal elements of the Green’s function (Gg’gH )un Were previously
derived and documented in [28]. The DOS obeys a sum rule
stating that an integrated peak profile for a single state must
sum to 1 [32]. This obviously holds for the delta function of a
discrete eigenvalue, but it must also hold for states undergoing
broadening; suppression of the DOS amplitude directly corre-
sponds to an increased broadening, such that the integrated
peak always sums to 1.
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FIG. 8. (a) Integrated DOS over the SSH chain band gap in the
effective system as a function of 7,, showing the response of low-
energy states to the environmental coupling. The r = 2/3 case (red)
corresponds to a topological SSH chain with (¢,1,) = (0.8, 1.2),
and it shows the suppression of edge states. The r = 3/2 case
(blue) corresponds to a topologically trivial SSH chain with (71, ;) =
(1.2, 0.8) and shows the emergence of PIE states. (b) Topological
edge state LDOS suppression corresponding to the r = 2/3 case.
Note that for #;, = 1 (on the order of SSH chain parameters), LDOS
suppression spans nearly four orders of magnitude. (c) PIE state
LDOS growth in a trivial SSH chain, clearly showing that the first
and last sites lose support for large #; due to the formation of islets.

The LDOS of a state of given energy is related to the imag-
inary part of the diagonal elements of the Green’s function
associated with the Hamiltonian evaluated at the same energy
[32,34]:

[ (E))* o« —Im{ (G4 (E)), |- 31

Making use of the DOS sum rule, integration over a chosen
energy range allows one to count states of the effective system
within that range. The integrated DOS over the SSH chain’s
band gap, £A = %|t; — 1|, referred to as the gap DOS, is a
constant if the number of in-gap states remains unchanged,
so long as the broadening is smaller than the gap width. For
broadening exceeding A, as seen near 7, = 1 in Fig. 7, the gap
effectively closes as a significant portion of the state leaks into
the bands, leading to a decreasing gap DOS. A complete decay
of the gap DOS in either the weak- or strong-coupling limit
(where, as has been argued above, the SSH chain decouples
from the rest of the system, losing two sites in the strong-
coupling limit) reflects the disappearance of states within the
gap. The gap DOS is shown for both phases of the SSH chain
in Fig. 8(a).
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Edge states in the topologically nontrivial SSH chain (r <
1; red curve) remain intact for small values of 7, as seen by
the constant gap DOS of 2; a strong suppression of the gap
DOS is observed around ¢, = 1. For #;, > 1, the gap DOS
tends to zero as 1/t?, indicating the loss of topological edge
states. The topological edge state LDOS of the r < 1 case is
shown in Fig. 8(b). One observes a large LDOS for small #;,
which rapidly decreases for large 7;. This is consistent with
the previous interpretations of the system in the limits of
small and large coupling (f; < 1 and#; > 1, respectively). In
the first limit, the system is essentially isolated such that the
singularities of the effective Green’s function Gsegﬁ lie near
the real axis, demonstrating the large edge-state LDOS. In the
second limit, the remaining SSH chain is of length N — 2, and
edge states have vanishing support on the restricted segment
spanning sites 2 through N — 1. This is reflected in the low-
energy poles in Gs"‘ng which acquire large imaginary parts,
yielding an edge state LDOS near 0. The suppression of both
edge-state DOS and LDOS is well approximated as having a
1/ th scaling, with minor deviations when z;, < 1.

For the topologically trivial SSH chain [r > 1; Fig. 8(a),
blue curve], no low-energy modes can be supported in an
isolated chain, and for small #; the gap DOS is effectively
zero. A continuum of leaky lead states exists in the gap for
t; < 1, as seen in Fig. 7(b) showing a nonzero DOS, but these
PIE type states are not resonances of the SSH subspace. As
11 is increased, the gap DOS approximately scales as th while
t; < 1 and plateaus for couplings exceeding #;, = 1 with a gap
DOS of 2 once again, revealing the emergence of a pair of
PIE states as resonances of the SSH chain for #;, > 1. The
emergence of PIE states as eigenfunctions to the SSH sub-
space is also reflected in the LDOS of the r > 1 configuration,
shown in Fig. 8(c). The LDOS and DOS of PIE states both
approximately scale as #7, with small deviations when 7, > 1.
Unsurprisingly, for small #;, PIE state solutions have a small
LDOS and stem from leaky lead hybridization. In the limit of
strong coupling, these low-energy states can be understood
as edge states of a truncated SSH chain of length N — 2;
the Green’s functions here has low-energy poles near the real
axis, yielding a large LDOS. The formation of islets is further
evidenced by the highly suppressed amplitudes on sites 1 and
N at strong coupling.

The DOS and LDOS behaviors for N odd are markedly dif-
ferent due to the coexistence of edge and PIE states for either
topological phase of the SSH chain. While for N even edge
states are suppressed (r < 1) or PIE states emerge (r > 1)
with increasing #;, the process is simultaneous in chains with
N odd for any r and involves a delocalization-localization
transition from the left (right) boundary to the right (left).
Interestingly, this implies that an odd chain can appear to have
a localized mode near both boundaries for intermediate values
of 7, in sharp contrast with an isolated chain.

B. Disorder

An analysis of the influence of disorder on the edge and
PIE states is carried out in the N-site effective representa-
tion HE,. Unlike bulk states that are susceptible to disorder,
topological modes are robust to certain symmetry-preserving
forms of disorder [8,18,21]. The DOS is rendered as a function
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FIG. 9. DOS for several disorder strengths (a) y =0, (b) y =
0.2, (¢) y = 0.8, and (d) y = 1.2, with an SSH chain of length N =
20. The conventional topologically nontrivial system (r = 2/3 and
t; = 0.25) is shown in shaded colors. Solid black lines denote the PIE
states for r = 3/2 and t, = 4. Dashed black lines denote the trivial
configuration for r = 3/2 and #;, = 0.25. A total of 10 000 disorder
configurations were considered and log-averaged.

of the disorder strength parameter, y, in Fig. 9 for conven-
tional edge states (r < 1 and ¢, < 1; shaded color), PIE states
(r > 1 and 7, > 1; solid black), and the trivial configuration
for small coupling (r > 1 and #; < 1; dashed black). Chiral
disorder on individual ¢, elements (acting only on hopping
parameters) is injected into the system in the form ¢, —
tn(1 4+ 8), where t,, is either #; or f,, and where § is sampled
from a uniform random distribution [ —y, y].

Disordered densities of states for both edge and PIE states
are similar, with the distinction that the total number of states
aty =0is N for r < 1 and #, < 1 (edge state), and N — 2
when r > 1 and #;, > 1 (PIE state), as expected due to islet
formation. All states show broadening at y = 0 due to the
nonzero (noninfinite) #; value chosen. The value of #; for both
systems was chosen such that the low-energy mode broaden-
ing is comparable. Injecting disorder introduces noise into the
bulk bands, which, after configuration averaging, leads to flat
and featureless bands for large enough disorder. Note that the
bulk bands close the gap at y = 1.

Interestingly, both types of broadened low-energy states
within the SSH chain subspace are robust to disorder and
remain supported until y = 1. For y > 1, low-energy modes
remain but change from a broadened peak to a very high-
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FIG. 10. Transmission through an SSH chain of length N = 20
with #;, = 0.8 and 1, = 1.2 (r = 2/3) as a function of 7;. The inset
highlights the behavior of the edge states near £ = 0. As the DOS
becomes discrete for small and large couplings, the transmission
channel width goes to zero in these limits. Due to computational
resolution, these channels do not extend to the margins of the plot.

DOS state arising at E = 0, hinting that even in this gapless
configuration some form of topological protection remains
at the midgap. As expected, the trivial r > 1 configuration
shows no peak about E = 0, although a small increase in the
DOS is visible for stronger disorder (y > 1). Unsurprisingly,
the conventional (r < 1) SSH chain edge states are robust to
disorder. This simple exercise has nonetheless confirmed the
topologically robust nature of PIE states, which qualitatively
behave identically to conventional edge states.

C. Transmission

Further evidence of the topological transition as a function
of the coupling #; arises when considering transmission. In
the effective description, transmission can easily be written
in terms of (Gseng(E ))n1, the corner element of the effective
Green’s function in the SSH chain subspace:

T = 4Im(Zx)*|(Gsty) (32)

2
wil -

Transmission can be computed over the entire energy
spectrum using the energy-dependent self-energy X (E).
Naturally, states supported within the SSH subspace lead to
unitary transmission, as they provide valid channels for trans-
port. A typical transmission spectrum is shown in Fig. 10.
Bulk band transmission is sustained for all values of #; . Shifts
in the transmission channels correspond to the SSH bulk band
levels evolving from those of an isolated SSH chain of length
N to those of a chain of length N — 2.

The behavior of edge-state transmission is strikingly dif-
ferent. The edge states show a unitary transmission plateau
that merges at £ =0 for #; nax = \/E(tl/tz)N/“, found by
evaluating dT(E = 0)/dt, = 0. For t;, > 1 max, transmission

T
1.001 g Phimas
0.751
=
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0.00 : : :

107 10 10° 10! 102
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FIG. 11. Transmission of edge states (red) and PIE states (blue)
as a function of #;. For an SSH chain of N =20, =0.8,1, = 1.2
(r = 2/3), the transmission at the edge-state energy is given by the
solid red line, while the dashed line shows the transmission at E = 0.
In the opposite phase, #, = 1.2 and t, = 0.8 (r = 3/2), transmis-
sion at the PIE state energy is given by the solid blue line, while
the dashed line denotes E = 0. The vertical lines label the unitary
maxima for the £ = 0 cases in the two phases r <1 and r > 1,
respectively.

is quickly suppressed. Studying the transmission at E = 0,
as was done in [21], reveals a nonmonotonous dependence
of transmission on f;. If instead transmission is studied at
the edge-state energies, one can see unitary transmission near
t; =0, as would be expected of edge states in a weakly
coupled system. A comparison of the two cases is shown in
Fig. 11. This figure also shows the transmission associated
with PIE states arising in the opposite topological phase.
This reveals that unitary transmission of edge states in these
systems is highly dependent on both the exact topological
edge-state energy and the coupling strength to the leads. This
strong suppression of the transmission in the gap suggests that
edge states can no longer be considered good channels within
the SSH chain subspace. This result is qualitatively in good
agreement with the LDOS of a topological SSH chain in this
composite system, which shows that topological edge states
are strongly suppressed as a function of 7;.

One can further show that for an SSH chain originally
in a topologically trivial configuration (r > 1), a PIE state
unitary transmission plateau appears for £, > 1. Additionally,
SSH chains of odd length show the same soft reversal of the
topological phase as a function of #;,. There, rather than simply
being suppressed, edge states delocalize from their original
boundary to localize at the opposite boundary, as expected of
a change of topology for odd-N chains.

V. CONCLUSION

In this paper, we have analyzed a tripartite system com-
posed of an SSH chain and two leads from different angles. In
the first place, the system in its entirety was studied. It was
shown that the wave functions associated with zero-energy
states are given either by a linear combination of edge states
or a linear combination of so-called PIE states. High-energy
states were then studied, for which a transcendental equa-
tion was found for E; this allowed the computation of an
energy spectrum for E > 2. Using this spectrum, states with
no analog in the closed SSH system were found: Tamm states.
These two findings, in the limit of strong coupling, led to the
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notion of islet formation and SSH chain truncation, and first
hinted at a topological transition.

An effective system, derived from the full tripartite system,
was then studied. This effective approach encodes the full
system in an effective Hamiltonian of a system of N or N — 2
sites, which are particularly useful for 7, < 1 and 1, > 1,
respectively.

Using the N-site Hamiltonian, it was found that solutions
outside of the lead band exactly match solutions of the tripar-
tite system. Differences arise for |E| < 2, where the effective
system has a discrete spectrum of complex solutions while the
full system has a continuous spectrum of real solutions. These
differences simply reflect the subspace restriction within the
effective system; a projection of the discrete spectrum onto
the real axis restores the expected continuous spectrum. It
was then demonstrated that the wave functions of the effective
system are equivalent to those of the tripartite system within
the SSH chain.

An (N — 2)-site effective Hamiltonian was employed to
examine low-energy states in the limit of strong coupling #;.
In this limit, the segment of the SSH chain going from site
2 to site N — 1 is essentially isolated from the environment.
A topologically trivial SSH chain undergoing this truncation
then supports PIE states, confirming that a topological transi-
tion occurs between #;, = 0 and ;7 — 0.

The behavior of edge states and PIE states was then studied
for intermediate values of #; using the Green’s function associ-
ated with the N-site effective Hamiltonian. Both the DOS and
LDOS were studied in this regime, showing that low-energy
modes are conventional edge states for » < 1 while they are
PIE states for r > 1. The suppression (emergence) of edge
states (PIE states) was characterized as a function of the cou-
pling 7. A subsequent analysis of disorder and transmission
further affirms the topological nature of PIE states.

Combining these results, the following picture emerges.
The tripartite system has two types of low-energy states—
edge states and PIE states—with support depending on the
topological phase of the system and the coupling strength to
the environment #; . For #; near zero, the system has either zero
or two low-energy topological edge states. In the former case,
an increase of 7, leads to PIE states emerging and tending
towards being eigenstates of the N — 2 SSH chain subspace.
For the latter, the conventional edge states are suppressed and
show decreased support within the subspace as 7;, is increased
(their DOS tends to zero as f;, — o0). Furthermore, in the
limit of strong coupling, Tamm states associated with the
formation of independent islets emerge and the SSH chain
undergoes truncation from N sites to N — 2 sites.

Due to the boundary-localized nature of the coupling #;,
studied in this work, no topological invariant as a function
of #; could be found via standard bulk-invariant methods. To
obtain invariants that include environmental influence, one
needs to turn to open quantum (non-Hermitian) systems. To
date, many non-Hermitian variants of the SSH Hamiltonian
have been studied, including the addition of chiral gain and
loss along hopping parameters [35], and alternating on-site
gain and loss [24,36]. Obtaining invariants is possible in such
systems as the non-Hermitian terms are bulk properties of the
models. Systems similar to the tripartite system studied here
featuring boundary couplings have been studied [21,23,24]

but have so far evaded rigorous characterization via invari-
ants due to the open and non-Bloch nature of these models.
New ideas being developed may lead to an understanding of
topological classifications for non-Bloch and non-Hermitian
systems in the near future [37-41].

This work highlights the importance of accounting for the
influence of the environment in the development of topolog-
ical devices. Careful considerations in design are necessary
to ensure a device will exhibit the desired topological phase;
something as simple as dissipative boundary couplings can in-
duce a transition and cause edge states to vanish, or conversely
cause PIE states to emerge. Other one-dimensional models
hosting spatial symmetry-protected topological phases in par-
ticular are expected to be susceptible to unwanted transitions
induced from a local breaking of symmetry caused by bound-
ary couplings, as was documented here for the case of an SSH
chain coupled to leads.
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APPENDIX A: ENERGY SPECTRUM AT
STRONG COUPLING

The energies displayed for the full system in Fig. 3 and for
the effective system in Fig. 7 are easily understood for small
t; simply by taking the limit #;, — 0. In this limit, the system
splits up into three uncoupled, easily solved subsystems: the
two semi-infinite leads and the SSH chain.

Strong coupling is not quite so obvious, but perturbation
theory can be used to shed light on the energy spectrum. We
define a rescaled version of the Hamiltonian (1) by

ﬁE%HzHOJFéHI, (A1)
where
H, = C}Lll + I}Lcl + c;,rl + rTcN (A2)
and
Hy = Hy, + Hssu + Hr (A3)

are independent of ;. We now perform perturbation theory on
H, treating 1/1; as the small parameter.
In matrix form, Hy and H; are block-diagonal:

HO = dlag(@oo, oy, (O)NfZ» oy, (O)Oo)v (A4)

H\, = diag(Hy, Hssu, Hg), (A5)

where Q; is a zero matrix of dimension j, oy is the first Pauli
matrix, and the elements of (A5) are the matrix equivalents of
the corresponding elements of (A3). Note that the blocks in
(A4) and (A5) do not align: the blocks in (A4) correspond to
the elements in Fig. 5, while those in (AS5) correspond to the
elements in Fig. 1.
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The unperturbed problem, with Hamiltonian Hy, has eigen-
values 0, +1, each of which is degenerate. To perform
degenerate perturbation theory, we first form a matrix whose
columns are the eigenvectors of each degenerate subspace. For
unperturbed energy Ey = *£1, these matrices (corresponding
to the Tamm states) are

0 0
1 0
1 +1 0
U, =—|0v2 Oy, (A6)
NZ) B R
0 1
0o 0o

where 0; is a zero vector of dimension j, and the horizontal
lines delineate the blocks of the unperturbed Hamiltonian
[see (A4)]. For unperturbed energy Ey = 0, the matrix (cor-
responding to all other states) is

Wy , (A7)

© Q|60 ©|O

I
olo olelo olg
==
oo oz o oo

=
3

where 1; is a j-dimensional unit matrix, and O is a zero
matrix whose dimension is determined by the other entries.
The first-order corrections to level j are the eigenvalues of the
matrix

1
i
E\IJ ; H\¥;. (A8)
For Ey = +1 the corrections turn out to be zero, while for
Ey = 0 the corrections are the eigenvalues of the matrix
1 1 .
— W H, Wy = —diag(HL, Hssyy . Hg), (A9)
L L
where Hggy is the Hamiltonian of an SSH chain of length
N — 2 starting and ending with #,. (We saw this Hamiltonian
earlier; see Sec. III B.)
Combining the above results, the eigenvalues of H to
first order in 1/¢; are £1 and ¢, ! times the energies of the

shortened SSH chain and two semi-infinite uncoupled leads.
Multiplying by 7, we obtain the eigenvalues of the Hamilto-
nian H for large #; . The spectrum consists of a pair of states at
each of energies E = +1#; (the Tamm states) and the energies
of the isolated, shortened SSH chain and the leads, all with
corrections of order #; ! These are clearly seen at the right
edge of Figs. 3 and 7.

APPENDIX B: DERIVATION OF THE WAVE FUNCTIONS
OF THE N-SITE EFFECTIVE SYSTEM

Using Eq. (9) as the ansatz for the wave functions within
the SSH chain, there are two boundary conditions that have to
be solved in the Schrodinger equation for (23):

(E — Zoo)¥1 — 12 =0,
(E — Xoo)¥n —t1y¥n—1 = 0. B

Inserting the ansatz into the first of the above equations leads
to the following relation between C_ and C.:

) :I:tze*Zik -3 872i¢
— _ 2 x©
C-=-e < +te2k — ¥ e%id Co (B2)
whereas the second equation leads to
o 12k = ¥ Q20
C = —elibpiN-2k( DT 2 ) g
t2€_2lk T zooe—thﬁ

Then, applying these values of C_ back into the ansatz leads
to the two following solutions for v,,:

2i€i¢C+

Un =7 HEerk — % (1 + tre?k)
< (EZOO — tzz)s,,_l — 11Sp+1 if n is odd,
H2Z0oSn— —h(E — Xg)s, ifniseven,
(B4)
2ie=14C, N2k
Vo = l‘zEe‘*z"k — Yot + l‘zeiﬂk)
1 LooSN-n_1 — h(E — Eoo)SN—n-H if n is odd,
X 2 . .
(E Yoo — b )SN,n — W0 SN—_n12 if n is even.
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