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Superdiffusive magnetization transport in the XX spin chain with nonlocal dephasing
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We study a recently discussed XX spin chain with nonlocal dephasing [Y.-P. Wang et al., arXiv:2310.03069] in
a steady-state boundary-driven setting, confirming superdiffusive magnetization transport in the thermodynamic
limit. The emergence of superdiffusion is rather interesting as the Lindblad operators causing it are a coherent
sum of two terms, each of which would separately cause diffusion. One therefore has a quantum phenomenon
where a coherent sum of two diffusive terms results in superdiffusion. We also study perturbations of the
superdiffusive model, finding that breaking the exact form of dissipators, as well as adding interactions to the
XX chain, results in superdiffusion changing into diffusion.
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I. INTRODUCTION

Transport is one of the simplest nonequilibrium properties
which though is not necessarily easy to address, particularly
in one-dimensional quantum lattice models. Namely, in one-
dimensional systems, one can have an interesting interplay
between integrability on one hand, which in itself favors bal-
listic transport where disturbances spread linearly in time, and
chaos on the other hand, where one expects diffusion with
its square-root growth of disturbances [1]. Different transport
types can be distinguished by a dynamical scaling exponent z
that tells us how fast the size of a disturbance, say a width σ

of a packet, spreads in time, σ ∼ t1/z.
Specific cases with ballistic z = 1 as well as diffusive

z = 2 were known for a long time. It was also known that
in quadratic systems, i.e., systems that are noninteracting
in a single-particle basis, one can have an intermediate su-
perdiffusive transport with 1 < z < 2 if one allows for an
inhomogeneous Hamiltonian, for instance, a site-dependent
potential [2]. An example of such a superdiffusive system
is the Fibonacci model [4–6], or a random dimer model [7].
Significant progress has been made in the last decade also
for interacting models [1], with realization that one can have
superdiffusion also in a homogeneous interacting system. This
was first observed numerically in the isotropic Heisenberg
spin chain at infinite temperature [8] where z = 3/2. By now
we have a fairly thorough understanding of why and when
such an “interacting” superdiffusion occurs [9–17], see also
Ref. [18] for a review, with a microscopic framework being
provided by a generalized hydrodynamics [19,20]. It is limited
to a zero-magnetization sector in integrable models with a
continuous non-Abelian symmetry. Integrability is required
in order to have ballistically propagating quasiparticles, while
the non-Abelian symmetry ensures appropriate properties of
those quasiparticles (scaling of their velocity and magnetiza-
tion they carry with their size). Intriguing was also observation
[21,22] of not just the scaling exponent z = 3/2 but also of the
associated Kardar-Parisi-Zhang (KPZ) [23] scaling functions

in a fully coherent (noiseless) quantum system. Superdiffu-
sion in the Heisenberg spin chain has been also observed
experimentally [24–26,28].

Very recently a surprisingly simple new way of obtaining
superdiffusion in quantum lattice models has been revealed
[27], namely, rather than using symmetry one can use a
multi-site dephasing dissipation to induce superdiffusion in
an otherwise free fermionic model (equivalent to the XX spin
chain). The fact that the dephasing dissipators acts on multiple
sites is crucial; for local dephasing, one instead gets diffusion
[29]. Superdiffusion comes due to the dephasing strength
being zero at some momentum, resulting in a diverging scat-
tering length for those ballistic plane-wave quasiparticles of
the XX chain, causing the dynamical scaling exponent z =
3/2. One can also get other values of z [30] if one has a higher
order zero in the momentum-space dephasing strength, or if
the free-fermion dispersion relation has a zero in the velocity.
The mechanism of this newly discovered superdiffusion is
different than in previously mentioned interacting integrable
models as well as in free inhomogeneous systems; the model
is translationally invariant and the phenomenon is not limited
to one spatial dimension. Reference [27] presented theoretical
arguments explaining superdiffusion and verified its predic-
tion by a direct numerical simulation of time evolution of a
fully polarized domain wall. The largest size L = 256 was
not large enough to really be in the asymptotic regime of
long times, however a hydrodynamic approximation with a
Wigner function that though can be simulated in the asymp-
totic regime did agree with the exact numerics.

In the present paper, we use a boundary-driven Lindblad
setting that allows us to (i) probe much larger systems upto
L = 6000, thereby confirming asymptotic superdiffusion in an
exact lattice model, (ii) probe the role of weak interactions
and weak breaking of dephasing dissipation, both resulting in
diffusion, and (iii) verify that the superdiffusion in question
is a genuine bulk thermodynamic property and is, e.g., not
particular to a specific initial state (a fully polarized domain
wall can be a nongeneric initial state in some situations, like,
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e.g., in the XXZ spin chain, with a nongeneric transport type
being specific to that state).

II. NONEQUILIBRIUM STEADY-STATE SETTING

We will use spin language rather than fermions [27] and
study a chain of spin 1/2 particles with the bulk described
by the XX spin chain, written in terms of Pauli operators
(σ x

j , σ
y
j , σ

z
j and σ±

j = (σ x
j ± iσ y

j )/2) as

H =
L−1∑
j=1

σ x
j σ

x
j+1 + σ

y
j σ

y
j+1. (1)

In fermionic language, it describes a system of L spinless non-
interacting fermions. On top of the Hamiltonian part, we also
have a bulk dissipation, such that the evolution equation of the
density operator ρ(t ) is the Lindblad master equation [32,33],

dρ

dt
= i[ρ, H] + γ

L−1∑
j=2

L(deph)
j (ρ) + L(bath)(ρ). (2)

There are two dissipative parts. The one with L(deph)
j of

strength γ (set to γ = 1) describes bulk nonlocal dephasing
and is the term responsible for interesting superdiffusive trans-
port. The bath part L(bath) will act only on the boundary and is
there solely to efficiently probe transport properties.

The dephasing superoperator L(deph)
j will act on few sites

surrounding the site j, in our case on three neighboring sites
j − 1, j and j + 1, and is described by a single Lindblad
operator Lj of form Lj = l†

j l j ,

L(deph)
j (ρ) = 2LjρL†

j − ρL†
j L j − L†

j L jρ, Lj = l†
j l j . (3)

We will use different forms of l j , resulting in either superdif-
fusion or diffusion. Just as an example, taking

l j = 1√
2

(
σ−

j−1 + Z [2]
j−1σ

−
j+1

)
, (4)

where Z [r]
j is a product of σ z

k on r consecutive sites, starting
with the jth,

Z [r]
j =

j+r−1∏
k= j

σ z
k , (5)

will result in superdiffusion. Such dissipation is called a
nonlocal dephasing in analogy with the standard (local) de-
phasing, where one takes Lj = σ+

j σ−
j = (1 + σ z

j )/2, as it can
be thought of as a dephasing acting on quasiparticles delo-
calized over few sites [27]. It is instructive to write out the
Lindblad operator Lj = l†

j l j ; for the above choice (4), we get

Lj = 2 + σ z
j−1 + σ z

j+1

4
+ σ+

j−1Z [2]
j−1σ

−
j+1 − σ−

j−1Z [2]
j−1σ

+
j+1

2
.

(6)
We can see that for real spins, living on sites j, the
Lindblad operator is a coherent sum of dephasing and of next-
nearest-neighbor hopping. Each of these terms individually is
expected to lead to diffusion, for dephasing see Ref. [29], for
hopping Ref. [34], but both together, as we shall see, cause
superdiffusion. Interestingly, at first sight a benign looking

FIG. 1. NESS magnetization profile for nonlocal dephasing
described by Eq. (4), and γ = � = 1, μ = 0.1. x is a scaled coor-
dinate along the chain. In the thermodynamic limit magnetization
smoothly varies from +μ at the left edge to −μ at the right edge.

phase term Z [2]
j−1 = σ z

j−1σ
z
j is absolutely crucial—leaving it

out in l j (4) will lead to diffusion. Also worth noting is that the
Lindblad operator (6) is quadratic and Hermitian in terms of
fermionic operators using Jordan-Wigner transformation (this
will be important for efficient numerics).

To study transport we couple the first and the last spin
to magnetization baths described phenomenologically by the
following four Lindblad operators,

L(bath)(ρ) =
4∑

k=1

2L′
kρL′†

k − ρL′†
k L′

k − L′†
k L′

kρ,

L′
1 =

√
�(1 + μ) σ+

1 , L′
2 =

√
�(1 − μ) σ−

1 ,

L′
3 =

√
�(1 − μ) σ+

L , L′
4 =

√
�(1 + μ) σ−

L . (7)

This standard setup [35] can be thought of as an infinite-
temperature magnetization driving. The coupling strength �

is set to � = 1, while the driving parameter μ determines
magnetization that the bath is trying to impose on the two
boundary spins (μ on σ z

1 and −μ on σ z
L ). We use small

μ = 0.1 throughout the paper, meaning that we are in a linear
response regime where all observables relevant for magneti-
zation transport are proportional to μ.

Lindblad equation (2) has a single steady-state solution
ρ∞. For μ = 0, i.e., no magnetization bias, the steady-state
is a trivial infinite-temperature state ρ∞ ∼ 1, for nonzero μ

though it is a true nonequilibrium steady state (NESS) with
nontrivial magnetization profile and a site-independent NESS
magnetization current J . An example of a NESS magnetiza-
tion profile tr(ρ∞σ z

j ) for dissipation Eq. (4) is shown in Fig. 1.
We can see that the profile is not linear, as one would expect
for an ordinary diffusion, suggesting superdiffusion.

The type of transport is most easily inferred from the
scaling of the NESS current J with system size L, keeping
driving μ constant [1]. Namely, the current will in general
have a power law dependence,

J ∼ 1

Lz−1
, (8)

with a dynamical scaling exponent z characterizing transport
type. For ballistic transport one has z = 1, an example is the
XX chain without dephasing [36], diffusion is characterize by
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z = 2, an example being the XX chain with local dephasing
[29], while 1 < z < 2 indicates superdiffusion.

III. CURRENT SCALING

Let us study the scaling of J with L more in detail. First,
because we have a nontrivial dephasing in the bulk, the local
current operator is not simply equal to the standard jk =
2(σ x

k σ
y
k+1 − σ

y
k σ x

k+1). Writing the continuity equation for the
expectation value z j = tr(ρ∞σ z

j ),

dzk

dt
= Jk−1 − Jk, (9)

defines the local current operator Jk , which has in the bulk
an additional term due to nonzero 〈σ z

k ,
∑

j L
(deph)
j (ρ)〉. For

instance, for the l j in Eq. (4), we get

Jk = jk + γ

2

(
σ z

k−1 + σ z
k − σ z

k+1 − σ z
k+2

)
. (10)

Due to a three-site action of L(deph)
j the additional term in-

volves four sites surrounding the bond (k) − (k + 1) across
which the current Jk flows. Note that in all cases studied the
total magnetization is conserved,

∑
j L

(deph)
j (

∑
k σ z

k ) = 0.
Crucial for the correct assessment of transport is being able

to obtain results for sufficiently large system sizes L. If that is
not the case one is in danger of making incorrect conclusions
[37]. We will use two different numerical methods to obtain
NESS ρ∞, and in turn the NESS current J = tr(Jkρ∞). One
is time-evolved-block decimation (TEBD) method [38,39],
where the expansion coefficients of ρ in the Pauli basis are
written in terms of a product of matrices—a so-called matrix
product operator ansatz. Time evolution by Lindblad equa-
tion is then split into small Trotter-Suzuki time steps so that
the elementary operation involves two nearest-neighbor spins.
Because the dephasing in our case acts on three consecutive
sites we write the chain of L spins as a ladder of L/2 rungs, so
that all operations are indeed nearest-neighbor ones but acting
on rungs instead of spins. The price one has to pay is that the
local operator space dimension is 42 instead of 4. Details of
our TEBD implementation for the Lindblad equation can be
found in Ref. [40]. The method works for any Hamiltonian,
not just for the noninteracting XX chain, with the efficiency
boiling down to the size of matrices required for a given
numerical precision.

The second method works when the equations for all two-
point observables (two-point in the fermionic language) form
a closed set. That is, instead of having to solve a system of
size 4L, one has to deal with a system of L2 linear equations.
The method can be applied to Lindblad operators that are Her-
mitian and quadratic in fermionic operators, and only for the
XX chain Hamiltonian. Namely, for such a class of systems,
one has a set of hierarchical equations, first observed for the
XX chain with dephasing [29] and then generalized [34,41],
see also Refs. [42–44]. k-point observables form a closed
set of linear equations with an inhomogeneous term coming
from lower orders. Equations can therefore be solved order by
order, starting with two-point expectation values. In our spin
language those two-point observables are energy-density like

FIG. 2. Scaling of the NESS current J with system’s length L
for hierarchy-preserving dephasing in Eq. (4), blue circles, showing
superdiffusion with z = 3/2. Red squares are for dissipation Eq. (15)
showing diffusion with z = 2. The inset shows convergence of z −
1 with system size, with the full curve suggesting a slow ∼1/

√
L

convergence.

(r � 2),

A(r)
j = σ x

j Z [r−2]
j+1 σ x

j+r−1 + σ
y
j Z [r−2]

j+1 σ
y
j+r−1, (11)

while A(1)
j = −σ z

j , and current-like (r � 2),

B(r)
j = σ x

j Z [r−2]
j+1 σ

y
j+r−1 − σ

y
j Z [r−2]

j+1 σ x
j+r−1. (12)

There are in total L2 such observables. If we put their NESS
expectation value in a vector y, we have to solve a system of
linear equations

My = μm, (13)

where a sparse matrix M depends on the dephasing strength
γ and the bath coupling strength �, while a constant source
vector m comes solely due to bath driving. Both our superdif-
fusive examples, Eqs. (6) and (16), do posses such hierarchical
structure of NESS correlations and so Eq. (13) can be used
to study large systems. Because of dealing with a finite sys-
tem, where one has to correctly write equations also at the
boundary, the form of M is a bit messy and we give details in
Appendix A.

A. Superdiffusion with z = 3/2

Let us start with the dissipator already mentioned in
Eq. (6), namely, Lj = l†

j l j with

l j = 1√
2

(
σ−

j−1 + σ z
j−1σ

z
j σ

−
j+1

)
. (14)

For such l j one has a closed set of L2 linear equations for two-
point observables (11,12), and we study current in the NESS
in systems with upto L = 6000 spins. Results are shown in
Fig. 2, where we can see that the dynamical scaling exponent
is indeed z = 3/2. This confirms theoretical prediction for
our dissipator in Eq. (6) based on Ref. [27] with numerically
exact lattice simulation. We can also see (the inset) that the
convergence of z with L is rather slow, [ 3

2 − z(L)] ∼ 1/
√

L.
This is in line with a slow convergence with time observed in
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Ref. [27] of a hydrodynamic Wigner function approximation
for a unitary evolution of a domain wall initial state.

1. Breaking superdiffusion

Considering we are working in spin language it is natural
to ask, what would happen if we would use a simpler-looking
l j without the product of two σ z

k (that are due to the Jordan-
Wigner transformation). To that end we take

l j = 1√
2

(σ−
j−1 + σ−

j+1). (15)

Current for such l j stays the same (10). At first sight the
difference between Eq. (4) and Eq. (15) is minuscule—
sometimes such phase factors are simply neglected when
doing Jordan-Wigner transformations as they are believed not
to be important. In our case they are crucial. This new Lj

obtained from the operator in Eq. (15) is a sum of terms that
are quadratic in fermions as well as terms that are quartic
(remember, previous Lindblad operator (6) had only quadratic
terms). The closed hierarchy is broken because one can
get two-point observables from four-point ones, for instance
L(deph)

2 (σ x
1 σ x

2 σ z
3 ) (σ x

1 σ x
2 σ z

3 is quartic) will contain also σ x
2 σ x

3
(quadratic).

This means that we can not anymore use the efficiently
solvable Eq. (13). Rather, in order to get the exact NESS we
have to use full TEBD (full red squares in Fig. 2). Despite
the broken hierarchy we have in addition to the TEBD tried
another approximate method. As mentioned, for such l j (15)
the two-point observables do not form a closed set anymore;
one instead has equations of form My + Nw = μm, where w
are expectation values of higher point observables. In other
words, in order to calculate two-point functions one needs
also higher-point observables (three-point, four-point,...). The
approximation we make is simply dropping all higher point
expectations from the above equation, i.e., w = 0, and solv-
ing resulting equations for two-point expectation values, see
Appendix A 3. Those results are shown with empty red
squares in Fig. 2. We can see that the approximation with
only two-point observables works surprisingly well. For ex-
ample, at L = 1000, the difference is about 10%, but more
importantly, the scaling looks to be the same ∼1/L [45].
Therefore, both TEBD and the two-point approximation show
clear diffusion. The conclusion therefore is that as soon as we
break a closed hierarchy of correlations for Eq. (6) one gets
diffusion.

B. Superdiffusion with z = 5/3

It was predicted in Ref. [27] that the exponent is not
always z = 3/2. It depends on the order of a zero at k0 in the
momentum-space dephasing strength, as well as on special
points k0 where the velocity of free quasiparticles might be
zero. An example of such higher order zero is dephasing
dissipators Lj = l†

j l j with

l j = 1√
6

(
σ−

j−1 − 2Z [1]
j−1σ

−
j + Z [2]

j−1σ
−
j+1

)
, (16)

FIG. 3. Scaling of the NESS current J with L. Blue circles are
for dissipator in Eq. (16) that respects hierarchical structure of corre-
lations, showing superdiffusion with z = 5/3, while the red squares
are for Eq. (19) without the phase factors and which shows diffusion
with z = 2. The inset shows convergence of z − 1 with system size,
with the full curve suggesting ∼1/

√
L asymptotics.

which is a particular case of a more general

l j = 1√
2 + a2

(
σ−

j−1 − aZ [1]
j−1σ

−
j + Z [2]

j−1σ
−
j+1

)
, (17)

studied in Ref. [27]. For −2 < a < 2 one expects z = 3
2 while

the chosen a = 2 is marginal with a second-order zero and
prediction [27] that the dynamical scaling exponent is z =
5/3. We again calculate the NESS and the scaling of current,
which in this case (16) is

Jk = jk + γ

18

(
σ z

k−1 + 9σ z
k − 9σ z

k+1 − σ z
k+2

)

+γ

9

(
A(2)

k−1 − A(2)
k+1

) + γ

9

(
A(3)

k−1 − A(3)
k

)
. (18)

The dissipator (16) preserves the two-point expectations and
we can study large systems (Appendix A 2). In Fig. 3, we
show results, demonstrating clear convergence to theoretical
prediction. Let us also note that the additional terms in the
current expression in Eq. (18) as well as in Eq. (10) are all
differences of operators on neighboring sites. Because the
steady state expectations are continuous in the spatial index
k (see Fig. 1) they all scale as ∼1/L, and therefore in the
thermodynamic limit for superdiffusion one has Jk ≈ jk .

1. Breaking superdiffusion

Next, we check what happens if we remove the phase
factors in the above l j , that is, if we take

l j = 1√
6

(σ−
j−1 − 2σ−

j + σ−
j+1). (19)

The corresponding current operator is

Jk = jk + γ

18

(
σ z

k−1 + 9σ z
k − 9σ z

k+1 − σ z
k+2

)

+γ

9

(
A(3)

k−1 − A(3)
k

)
. (20)

The results are shown in Fig. 3, with full red squares for
TEBD simulations, and empty red squares using a two-point
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FIG. 4. Interactions cause superdiffusion to go into diffusion.
(a) shows dephasing in Eq. (4), and (b) dephasing in Eq. (16). Blue
circles are the noninteracting case, i.e., the same data as in Figs. 2
and 3, while red triangles are for the XXZ chain (21) with interaction
strength � = 0.2.

correlation function approximation (Appendix A 4), similarly
as in the previous subsection for z = 3/2. Again, we can see
that already this subtle change leads to diffusion.

C. Interactions

We have seen that while one does get superdiffusion for a
whole class of dissipators parameterized by a (17), superdif-
fusion goes away if we remove product of σ z

j in the definition
of l j . In this section, we test what happens in we keep the form
of l j but add interactions to the Hamiltonian. To this end, we
study the XXZ chain,

H =
L−1∑
j=1

σ x
j σ

x
j+1 + σ

y
j σ

y
j+1 + �σ z

j σ
z
j+1, (21)

where � represents interaction. We use TEBD to get the
NESS with which we can go upto L = 1024 with rather mod-
est matrix sizes. As we can see in Fig. 4, we obtain diffusion
for both z = 3/2 dephasing in Eq. (4), and for z = 5/3 de-
phasing in Eq. (16) already for relatively small interaction
� = 0.2.

While one might jump to a conclusion that this is expected
and that superdiffusion is only a property of the XX chain
and the specific form of a nonlocal dephasing, upon reflection
things are not that clear. Namely, one can heuristically
understand the emergent superdiffusion in the XX chain in
the following way [27]: looking at l j (17) in momentum
space, one finds that such nonlocal l j results in a momentum
dephasing strength that depends on the momentum k. This
dephasing strength can in particular have a zero at some k0,
resulting in a diverging scattering length of free
(quasi)particles at that k0. Superdiffusion therefore emerges
from a measure zero of nondephasing ballistic quasiparticles.
Following this explanation one could argue that because the
XXZ chain is integrable, and as such also harbors ballistic
quasiparticles, the same phenomenon should be possible.
The important difference compared to the XX chain is that
the transformation to quasiparticles is not a simple Fourier
transformation and one would have to construct a dephasing
that would be zero for those nonplane wave quasiparticles.
On the other hand, for the XXZ model one does not have
a closed hierarchy of correlations [46], which seem to be
important to get superdiffusion—breaking that, as we have

seen, immediately leads to diffusion, even in the XX model.
Therefore more studies are needed to clarify the generality
or speciality of the proposed superdiffusion scenario due to
nonlocal dephasing.

IV. CONCLUSION

We have demonstrated superdiffusive magnetization trans-
port in the XX spin chain in the presence of nonlocal
dephasing dissipation in the bulk. The effect is simple and
interesting: one can view it as the emergence of superdif-
fusion out of a coherent sum of two diffusive contributions
in Lindblad operators. It is different than other known cases
of superdiffusion, for instance the one in integrable models
with a non-Abelian symmetry, or in inhomogeneous nonin-
teracting systems. We have not touched upon superdiffusive
classical systems, however, what we can say is that it seems to
be qualitatively different than the superdiffusion observed in
the stochastic momentum exchange model [47,48] where the
effect changes with dimension.

While a number of questions has been answered, many
remain, and some new arose. For instance, during TEBD
simulations we have observed that the required size of ma-
trices can be very small. In other words, the operator Schmidt
spectrum of the NESS seems to decay quickly. That seems
to be the case for both superdiffusive, and to a lesser extent
also for diffusive cases studied. One question is can any of the
superdiffusive NESSs be written in a matrix product operator
form with a low-rank matrices? The fact that the numerical
rank is small is perhaps related to two known similar cases of
low-rank NESS: for the XX chain and our boundary driving
but without dephasing the ballistic NESS requires matrices
of size 4 (independent of L) [36], while in the presence of
the local dephasing the same holds in the leading order in
the thermodynamic limit [49]. Related to that, can any of the
nonlocal dephasing cases be exactly solved, for instance along
the lines of formal integrability as, e.g., in Ref. [50].

As discussed, a possibility of superdiffusion under nonlo-
cal dephasing in other nonfree interacting systems remains
unclear. Exciting is also an option of having superdiffusion
in more than one dimension.
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APPENDIX A: CLOSED EQUATIONS FOR 2-POINT
FUNCTIONS

When one has a hierarchical structure of equations for our
specific bath driving one can write the NESS as

ρ∞ = 1

2L
[1 + μ(A + B)] + O(μ2) (A1)

where observables that are linear in μ are in fermionic lan-
guage a two-fermion observables, which in spin language read

A =
L∑

r=1

L+1−r∑
j=1

a(r)
j A(r)

j ,

A(r+1)
j = σ x

j Z [r−1]
j+1 σ x

j+r + σ
y
j Z [r−1]

j+1 σ
y
j+r, for r > 0, (A2)

075105-5
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while for r = 0, we have A(1)
j = −σ z

j . The B term is on the
other hand

B =
L∑

r=2

L+1−r∑
j=1

b(r)
j B(r)

j ,

B(r+1)
j = σ x

j Z [r−1]
j+1 σ

y
j+r − σ

y
j Z [r−1]

j+1 σ x
j+r .

Note that the form in Eq. (A1) is exact, and not just an
expansion in μ [29,34,41,51]. Namely, higher order terms in
μ are all orthogonal to A′s and B′s. All unknown expansion
coefficients a j b j can be put compactly into a hermitian cor-
relation matrix

Cj,k = a(k− j+1)
j + i b(k− j+1)

j , k > j, (A3)

diagonal is Cj, j = a(1)
j , while Cj,k = C∗

k, j for j > k.
Therefore, finding expectation value of any two-point

observable in NESS involves solving a set of linear equa-
tions for unknown C. Following Ref. [51], the steady state
equations can be written in a matrix form as

2i(JC − CJ ) + 2(DC + CD) + γ C̃ − 2μP = 0, (A4)

with the only nonzero matrix elements of L × L matrices
J, D, P being Jk,k+1 = Jk+1,k = −1, P1,1 = −2�, PL,L = 2�,
and D1,1 = DL,L = �. The first term in Eq. (A4) is due to
Hamiltonian, the second and fourth due to boundary driving,
and the third term due to dephasing. First three terms are linear
in the correlation matrix, while the fourth term is a constant
driving term and so the Eq. (A4) represents a set of n2 linear
equations for unknown C.

Matrix C̃ accounts for dephasing, depends linearly on C,
and is more complicated due to a three-site action of L(deph)

j ,
as well as boundary effects. Its form can be obtained by
evaluating action of L(deph)

j on the ansatz (A1). In the follow-
ing sections, we will just list the result for each of the four
dissipators used.

1. Dephasing with z = 3/2

Take dephasing in Eq. (4) that results in z = 3/2 superdif-
fusion, i.e., for

l j = 1√
2

(
σ−

j−1 + Z [2]
j−1σ

−
j+1

)
. (A5)

Off diagonal elements C̃i,i+r with |r| � 3 can be expressed as

C̃ = LC + CL, L = 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1

1 . . .

1 2
. . .

. . .

2 1
1

1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(A6)

Matrices of this form (almost Toeplitz matrices with boundary
effect) will appear in all cases, so we will use a shorter way

of defining them by simply listing only nonzero elements.
For instance, the above matrix (A6) is specified by Lk,k+2 =
Lk+2,k = 1

2 , Lk,k = ( 1
2 , 1

2 , 1, . . . , 1, 1
2 , 1

2 ).
Elements on r-diagonals C̃i,i+r with r = 0, 1, 2 must on

the other hand be written separately (dephasing acting on k
neighboring sites changes the form of C̃j, j+r for |r| < k). To
shorten notation, let us put all the elements on the r-diagonal,
i.e., C̃i,i+r , into a vector c̃r , and likewise for cr = {Cj, j+r}.
For instance, c2 = (C1,3,C2,4, . . . ,CL−2,L ), with an additional
convention that when a square matrix of size larger than L − r
acts on cr we add a sufficient number of zeros at the end of
vector cr .

Then the main diagonal, i.e., r = 0, of C̃ is given
by c̃0 = R(0)c0, where the L-dimensional matrix R(0)

has nonzero elements R(0)
j, j+2 = R(0)

j+2, j = − 1
2 and R(0)

j, j =
( 1

2 , 1
2 , 1, . . . , 1, 1

2 , 1
2 ).

The 1-diagonal is given by c̃1 = R(13)c3 + R(11)c1 +
R(11c)c∗

1, where the (L − 1)-dimensional matrix R(13) has
nonzero elements R(13)

j, j = R(13)
k+2,k = 1

2 , while nonzero ele-

ments of R(11) are R(11)
j, j = (1, 3

2 , 2, . . . , 2, 3
2 , 1), and R(11c)

j, j+1 =
R(11c)

j+1, j = 1
2 .

The 2-diagonal, r = 2, is given by c̃2 = R(24)c4 + c2 +
R(22c)c∗

2, with (L − 2)-dimensional R(24)
j, j = R(24)

k+2,k = 1
2 , and

R(22c)
j, j = (− 1

2 ,− 1
2 , 0, . . . , 0,− 1

2 ,− 1
2 ).

Matrix elements of C̃ below the diagonal are determined
from those above by hermiticity, C̃† = C̃.

2. Dephasing with z = 5/3

Here l j is given by Eq. (16), that is

l j = 1√
6

(
σ−

j−1 − 2σ z
j−1σ

−
j + Z [2]

j−1σ
−
j+1

)
. (A7)

Matrix elements of C̃ on all r-diagonals with |r| � 3 can
be again expressed as C̃ = LC + CL, with nonzero elements
of L being Lk,k = 1

6 (1, 5, 6, . . . , 6, 5, 1), Lk,k+1 = Lk+1,k =
− 1

3 (1, 2, . . . , 2, 1), Lk,k+2 = Lk+2,k = 1
6 .

The main diagonal is instead equal to c̃0 = R(00)c0 +
R(01)(c1 + c∗

1 )/2 + R(02)(c2 + c∗
2 )/2, with nonzero elements

of R(00) being R(00)
j, j = − 1

18 (5, 13, 18, . . . , 18, 13, 5),

R(00)
j+1, j = R(00)

j, j+1 = 2
9 (1, 2, . . . , 2, 1), and R(00)

j+2, j = R(00)
j, j+2 =

1
18 . Nonzero elements of L-dimensional R(01) are
R(01)

j, j = 2
9 (2, 1, . . . , 1,−1, 1), R(01)

j, j+1 = − 2
9 , R(01)

j+1, j =
2
9 (−1, 1, . . . , 1, 2), and R(01)

j+2, j = − 2
9 . Nonzero elements

of L-dimensional R(02) are R(02)
j, j = − 2

9 , R(02)
j+1, j = 4

9 , and

R(02)
j+2, j = − 2

9 .
The 1-diagonal is c̃1 = R(10)c0 + R(11r)c1 + R(11c)c∗

1 +
R(12r)c2 + R(12c)c∗

2 + R(13)c3, with nonzero R(13)
j, j =

R(13)
k+2,k = 1

6 of a (L − 1)-dimensional R(13). Nonzero

elements of (L − 1)-dimensional R(12r) are R(12r)
j, j =

− 1
9 (5, . . . , 5, 2, 5) and R(12r)

j+1, j = − 1
9 (2, 5, . . . , 5), while

nonzero elements of R(12c) are R(12c)
j, j = R(12c)

j+1, j = 1
9 .

Nonzero elements of (L − 1)-dimensional R(11r) are
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R(11r)
j, j = 1

18 (14, 25, 28, . . . , 28, 25, 14), R(11r)
j, j+1 = R(11r)

j+1, j = 2
9 ,

while of R(11c) are R(11c)
j, j = − 2

9 (1, 2, . . . , 2, 1) and

R(11c)
j, j+1 = R(11c)

j+1, j = − 1
18 . Finally, nonzero elements of

L-dimensional R(10) are R(10)
j, j = − 1

9 (2, 1, . . . , 1), R(10)
j, j =

− 1
9 (2, 1, . . . , 1,−1, 1), R(10)

j, j+1 = − 1
9 (−1, 1, . . . , 1, 2)

and R(10)
j, j+2 = R(10)

j+1, j = 1
9 (in R(10)c0 only the first (L − 1)

components go into c̃1).
The 2-diagonal is c̃2 = R(20)c0 + R(21r)c1 + R(21c)c∗

1 +
R(22r)c2 − 1

18 c∗
2 + R(23)c3 + R(24)c4. Nonzero elements of

(L − 2)-dimensional R(22r) are R(22r)
j, j = 2

9 (5, 8, . . . , 8, 5).

Nonzero elements of (L − 1)-dimensional R(21r) are R(21r)
j, j =

− 1
9 (5, 5, . . . , 5, 2, 5) and R(21r)

j, j+1 = − 1
9 (2, 5, . . . , 5), while

R(21c)
j, j = R(21c)

k,k+1 = 1
9 (only the first (L − 2) components of

R(21r)c1 + R(21c)c∗
1 matter). Nonzero elements of (L − 2)-

dimensional R(24) are R(24)
j, j = R(24)

k+2,k = 1
6 , while of the same-

sized R(23) are R(23)
j, j = − 1

3 (2, 2, . . . , 2, 1, 2) and R(23)
j+1, j =

− 1
3 (1, 2, . . . , 2). Finally, nonzero elements of L-dimensional

R(20) are R(20)
j, j = − 2

9 and R(20)
j, j+1 = R(20)

j+1, j = 1
9 (middle (L −

2) components of R(20)c0 is what goes into c̃2).

3. Perturbed z = 3/2 dephasing

The operators l j are (15)

l j = 1√
2

(σ−
j−1 + σ−

j+1). (A8)

Remember that in this case one does not have a closed
set of equations for two-point observables. Nevertheless, as
explained, dropping higher order expectation values in equa-
tions for 2-point functions gives a good approximation (red
squares in Fig. 2). Elements of C̃ j, j+r with |r| � 3 are equal
to corresponding matrix elements of LC + CL with diagonal
Lk,k = 1

2 (1, 2, 3, . . . , 3, 2, 1).
The main diagonal is instead c̃0 = R(0)c0, with nonzero

R(0)
j, j = − 1

2 (1, 1, 2, . . . , 2, 1, 1), R(0)
j, j+2 = R(0)

j+2, j = 1
2 . The 1-

diagonal is c̃1 = R(1)c1 with R(1)
j, j = 1

2 (2, 3, 4, . . . , 4, 3, 2).

The 2-diagonal is given by c̃2 = R(2)c2 − 1
2 c∗

2, with R(2)
j, j =

1
2 (3, 4, . . . , 4, 3).

4. Perturbed z = 5/3 dephasing

In this case, the operators l j are (19)

l j = 1√
6

(σ−
j−1 − 2σ−

j + σ−
j+1). (A9)

Neglecting higher order correlations, elements of C̃j, j+r

with |r| � 3 are equal to the matrix elements of LC + CL,
with Lk,k = 1

18 (3, 16, 19, . . . , 19, 16, 3), Lk,k+1 = Lk+1,k =
1

18 (5, 10, . . . , 10, 5), Lk,k+2 = Lk+2,k = 1
9 .

Elements C̃j, j+r with r = 0, 1, 2 must instead be given
separately. The main diagonal is c̃0 = R(0)c0 + R(02)c′

2, where
c′

2 = (a(1)
1 , (c2 + c∗

2 )/2, a(1)
L−1), and nonzero elements R(0)

j, j =
− 1

18 (5, 13, 18, . . . , 18, 13, 5), R(0)
j, j+1 = R(0)

j+1, j = 2
9 (1, 2,

. . . , 2, 1), R(0)
j, j+2 = R(0)

j+2, j = 1
18 , as well as R(02)

j, j =
1
9 (−3, 4, . . . , 4,−3), R(02)

j, j+1 = − 1
9 (2, . . . , 2,−3) and

R(02)
j+1, j = − 1

9 (−3, 2, . . . , 2).
The 1-diagonal is c̃1 = R(12)c2 + R(13)c3 + R(11r)c1 +

R(11c)c∗
1. Nonzero elements of (L − 1)-dimensional

R(13) are R(13)
j, j = R(13)

k+2,k = 1
9 . Nonzero elements of

(L − 1)-dimensional R(12) are R(12)
j, j = 1

9 (4, . . . , 4, 3
2 , 4)

and R(12)
j+1, j = 1

9 ( 3
2 , 4, . . . , 4). Nonzero elements of

(L − 1)-dimensional R(11r) are R(11r)
j, j+1 = R(11r)

j+1, j = − 2
9 and

R(11r)
j, j = 1

18 (14, 25, 28, . . . , 28, 25, 14), while for R(11c) we

have R(11c)
j, j = − 2

9 (1, 2, . . . , 2, 1) and R(11c)
j, j+1 = R(11c)

j+1, j = 1
9 .

The 2-diagonal is c̃2 = R(20)c0 + R(21)c1 + R(22r)c2 −
1

18 c∗
2 + R(23)c3 + R(24)c4. Nonzero elements of (L − 2)-

dimensional R(24) are R(24)
j, j = R(24)

j+2, j = 1
9 . Nonzero elements

of (L − 2)-dimensional R(23) are R(23)
j, j = 5

9 (1, . . . , 1, 1
2 , 1)

and R(23)
j+1, j = 5

9 ( 1
2 , 1, . . . , 1). Nonzero elements of

(L − 2)-dimensional R(22r) are R(22r)
j, j = ( 7

6 , 17
9 , . . . , 17

9 , 7
6 ).

Nonzero elements of R(21) are R(21)
j, j = 4

9 (1, . . . , 1, 3
8 , 1) and

R(21)
j, j+1 = 4

9 ( 3
8 , 1, . . . , 1). Finally, nonzero elements of R(20)

are R(20)
j, j = − 2

9 and R(20)
j, j+1 = R(20)

j+1, j = 1
9 .
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[36] M. Žnidarič, A matrix product solution for a nonequilib-
rium steady state of an XX chain, J. Phys. A 43, 415004
(2010).
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[40] M. Žnidarič, Dephasing-induced diffusive transport in the
anisotropic Heisenberg model, New J. Phys. 12, 043001
(2010).
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