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The honeycomb magnet Na2Co2TeO6 has recently been argued to realize an approximate hidden SU(2)
symmetry that can be understood by means of a duality transformation. Using large-scale classical Monte Carlo
simulations, we study the finite-temperature phase diagram of the pertinent Heisenberg-Kitaev-�-�′ model near
the hidden-SU(2)-symmetric point, in the presence of a six-spin ring exchange perturbation. At low temperatures,
the model features collinear single-q zigzag and noncollinear triple-q ground states, depending on the sign of
the ring exchange coupling. We show that in the vicinity of the hidden-SU(2)-symmetric point, the magnetic
long-range orders melt in two stages. The corresponding finite-temperature transitions are continuous and fall
into two-dimensional (2D) Ising and 2D Potts universality classes, respectively. The two fluctuation-induced
phases at intermediate temperatures spontaneously break spin rotational and lattice translational symmetries,
respectively, but both leave time-reversal symmetry intact. They are characterized by finite expectation values of
a real, symmetric, traceless, second-rank tensor and are naturally understood as vestigial orders of the underlying
magnetic states. We identify these vestigial orders as Z3 spin nematic and Z4 spin current density wave phases,
respectively. For increasing ring exchange perturbations, the width of the vestigial phases decreases, eventually
giving rise to a direct first-order transition from the magnetically ordered phase to the disordered paramagnet. We
propose the Z4 spin current density wave phase, which is the vestigial phase of the primary triple-q magnetic
order, as a natural candidate for the paramagnetic 2D long-range-ordered state observed in Na2Co2TeO6 in a
small window above the antiferromagnetic ordering temperature.

DOI: 10.1103/PhysRevB.109.075104

I. INTRODUCTION

As one of the rare instances of an exactly solvable frus-
trated spin-1/2 model on a two-dimensional lattice, the Kitaev
honeycomb model [1] plays an essential role in the field
of quantum magnetism. Its bond-dependent exchange in-
teractions can be realized in spin-orbit-coupled magnetic
Mott insulators with edge-sharing geometries of the mag-
netic ions in either a low-spin d5 electron configuration [2,3]
or a high-spin d7 electron configuration [4–7]. Materials
featuring the low-spin mechanism are A2IrO3 (A = Na, Li)
and α-RuCl3 [8–27], while candidates for the high-spin
mechanism are the cobaltates Na2Co2TeO6, Na3Co2SbO6,
and BaCo2(AsO4)2 [28–51]. In any of the above examples,
however, additional exchange interactions beyond the nearest-
neighbor Kitaev interaction are present and stabilize magnetic
long-range order at low temperatures and in the absence of
an external magnetic field. While for A2IrO3 and α-RuCl3,
a consensus on the natures of the ground states has been
reached [8–12,23], the corresponding debate for the cobal-
tates is still ongoing. For Na2Co2TeO6, for instance, powder
neutron diffraction measurements have been interpreted in
terms of a collinear single-q zigzag ground state [29,30,38].
Recent inelastic neutron-scattering data on high-quality single
crystals, however, have revealed a symmetry in the magnetic
excitation spectrum that is inconsistent with a generic single-q
ground state and points to noncollinear triple-q order [47]. A
similar ambiguity between single- and multi-q states occurs
in Na3Co2SbO6 [41,42]. While BaCo2(AsO4)2 has initially

been thought to realize a noncollinear spiral order [43,50,52],
recent works suggest a collinear double-zigzag ground state
with a ++ − − pattern of zigzag chains [46,53]. At finite
temperatures and/or in magnetic fields, the cobaltates ex-
hibit a variety of phase transitions and intermediate magnetic
phases, the precise natures of which are currently under in-
tense debate [31–34,43,48–51]. One of the major difficulties
in this context is the lack of thorough understanding of the
finite-temperature physics of pertinent effective minimal spin
models, describing the cobaltates.

In this work, we aim at filling this gap. By means of
large-scale classical Monte Carlo simulations, we investi-
gate the finite-temperature phase diagram of a minimal spin
model relevant for Na2Co2TeO6. The model features all
nearest-neighbor bilinear spin exchange interactions that are
compatible with the symmetries of the material. Besides
the standard Heisenberg exchange parametrized by J , this
includes the Kitaev K and off-diagonal � and �′ interac-
tions [54–57]. The K , �, and �′ interactions arise from
spin-orbit coupling and reduce the standard SU(2) spin rota-
tional symmetry to a discrete C∗

3 symmetry involving 2π/3
rotations of pseudospins around the out-of-plane axis com-
bined with 2π/3 lattice rotations [25,58]. Within this large
parameter space, we focus on the vicinity of an isolated point
that features a hidden SU(2) symmetry, which has recently
been argued to realize a good starting point to understand the
physics of Na2Co2TeO6 [47]. The hidden-SU(2)-symmetric
point can be mapped to a standard nearest-neighbor Heisen-
berg model by means of a duality transformation [59]. Thus, at
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this point, long-range order is forbidden at any finite temper-
ature as a consequence of the Mermin-Wagner theorem [60].
Perturbations away from the hidden-SU(2)-symmetric point
will induce magnetic long-range order at low temperatures.
The nature of the induced order, however, crucially depends
on the type and sign of the perturbation. This is due to the local
nature of the duality transformation, which maps different
members of the ground-state manifold at the hidden-SU(2)-
symmetric point to different types of magnetic orders. For
instance, the Néel state with staggered magnetization along
the cubic [001] axis is mapped via the duality transforma-
tion to a collinear single-q zigzag state, while the Néel state
with staggered magnetization along the cubic [111] direction
is mapped to a noncollinear triple-q state [47]. While bi-
linear perturbations away from the hidden-SU(2)-symmetric
point have been shown to lift the SU(2) ground-state de-
generacy in favor of the collinear single-q zigzag states,
nonbilinear perturbations can, depending on their sign, also
induce noncollinear multi-q orderings. Here we focus on the
six-spin ring exchange, which arises as leading correction
to the nearest-neighbor Heisenberg exchange in the strong-
coupling expansion of the single-band Hubbard model on
the honeycomb lattice [61]. For positive ring exchange, a
collinear single-q zigzag state is realized at low tempera-
tures. Negative ring exchange, on the other hand, induce the
noncollinear triple-q ordering that is believed to be realized
in Na2Co2TeO6 [47]. We show that in the vicinity of the
hidden-SU(2)-symmetric point, both magnetic orders melt in
two stages, making room for novel long-range-ordered para-
magnetic phases at intermediate temperatures, which separate
the magnetically ordered phases at low temperatures from
the disordered paramagnet at high temperatures, see Fig. 1.
The intermediate phases are characterized by finite expecta-
tion values of a real, symmetric, traceless, second-rank tensor
and spontaneously break C∗

3 rotational symmetry and lattice
translational symmetry, respectively, but leave time-reversal
symmetry intact. They can be understood as vestigial orders
of the zigzag and triple-q states, respectively, in the sense that
they feature a preferred axis in the dual spin space, while the
two possible orientations along this axis remain still equiv-
alent, and one of it will be eventually selected only in the
low-temperature magnetically ordered phase. Our large-scale
classical Monte Carlo simulations indicate that both the high-
temperature transition between the disordered paramagnet
and the intermediate vestigial phase, as well as the low-
temperature transition between the vestigial and the magnetic
orders, are continuous. We characterize the universal critical
behaviors and identify the corresponding universality classes
as two-dimensional (2D) Potts and 2D Ising, respectively.
We argue that the Z4 spin current density wave phase that
emerges at finite temperatures as vestigial order of the triple-q
magnetically ordered state is a natural candidate for the para-
magnetic 2D long-range order observed in Na2Co2TeO6 in a
small window above the antiferromagnetic ordering tempera-
ture. On increasing the ring exchange perturbation beyond a
certain finite threshold, the spin vestigial phases vanish and
give way to a direct first-order transition between the mag-
netically ordered low-temperature phase and the disordered
high-temperature paramagnet, the strength of which increases
on increasing the perturbation. All these results fully fit into

FIG. 1. (a) Finite-temperature phase diagram of Heisenberg-
Kitaev-�-�′ model as function of ring-exchange perturbation J�
from classical Monte Carlo simulations. Here the bilinear couplings
have been fixed as (J, K, �, �′) = (−1/9, −2/3, 8/9, −4/9), such
that J� = 0 corresponds to the hidden-SU(2)-symmetric point. At
high temperatures, the model is in the disordered paramagnetic
phase, characterized by an isotropic distribution of the dual magneti-
zation M̃, see upper inset [measured at (J�, T ) = (0.2, 0.422)]. At
low temperatures, the model features magnetically ordered collinear
single-q zigzag and noncollinear triple-q phases for J� > 0 and
J� < 0, respectively. These are characterized by dual magnetiza-
tions M̃ along the three cubic basis vectors and four cubic diagonals,
respectively, as illustrated by the distributions shown in the two lower
insets [measured at (J�, T ) = (0.4, 0.405) and (−0.05, 0.233)].
For 0 < |J�| � 0.1 near the hidden-SU(2)-symmetric point, the
magnetic orders melt in two stages, with vestigial intermediate Z3

spin nematic and Z4 spin current density wave phases emerging at
finite temperatures. Black line for J� > 0 represents fit according
to Eq. (25). Other lines are guides to the eye. (b) Close-up view of
vicinity of hidden-SU(2)-symmetric point, showing the spin vestigial
phases.

the general picture of vestigial orders in systems with multi-
component order parameters [62].

The remainder of the paper is organized as follows: In
Sec. II, we introduce the Heisenberg-Kitaev-�-�′ model with
ring exchange perturbation and discuss the duality transfor-
mation that maps the hidden-SU(2)-symmetric point in this
model to a Heisenberg model in terms of dual spins. Algorith-
mic details of our Monte Carlo simulations and an overview
of the observables considered are given in Sec. III. Section IV
contains the discussion of the finite-temperature phase dia-
gram. The nature of the various finite-temperature transitions
is analyzed in Sec. V. In Sec. VI, we discuss our findings
in light of the experiments in Na2Co2TeO6. Our conclusions
are given in Sec. VII. In the Appendix, we present additional
data elucidating the crossover behavior in the vicinity of the
hidden-SU(2)-symmetric point.

II. MODEL

A. Heisenberg-Kitaev-�-�′ model

On the level of nearest-neighbor interactions, the most
general bilinear spin Hamiltonian, compatible with the C∗

3
symmetry of combined spin and lattice rotations [25,58], is
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FIG. 2. (a) Four-sublattice structure used to define the T1T4 duality transformation. Dashed parallelogram indicates a corresponding unit
cell, consisting of two sites per sublattice. The different colors indicate the different sublattices. The lower left inset indicates the projection
of the cubic axes ex , ey, and ez onto the honeycomb plane. The latter is spanned by the [112̄] and [1̄10] axes, as indicated in the lower right
inset. (b) Representative spin configuration of collinear single-q zigzag state, arising from the duality transformation of a Néel state with
staggered magnetization along the [001] axis. Arrows correspond to spin directions projected onto the honeycomb plane. (c) Same as (b), but
for the noncollinear triple-q state, arising from the duality transformation of a Néel state with staggered magnetization along the [111] axis.
(d) Illustration of the Z3 spin nematic order, which is the vestigial order of the single-q zigzag state shown in (b). Different colors indicate
inequivalent bonds. The Z3 spin nematic order respects time-reversal symmetry, but breaks C∗

3 rotational symmetry. The corresponding unit
cell (dashed parallelogram) coincides with the crystallographic unit cell. (e) Same as (d), but for the Z4 spin current density wave order, which
is the vestigial order of the triple-q state shown in (c). Different colors indicate inequivalent plaquettes. The Z4 spin current density wave
order respects time-reversal symmetry but breaks translational symmetry by doubling the length of both lattice vectors, corresponding to an
eight-site unit cell (dashed parallelogram).

given by the Heisenberg-Kitaev-�-�′ model,

HHK��′ =
∑

γ=x,y,z

∑
〈i j〉γ

[
JSi · S j + KSγ

i Sγ

j

+ �
(
Sα

i Sβ
j + Sβ

i Sα
j

)
+ �′(Sγ

i Sα
j + Sα

i Sγ

j + Sγ

i Sβ
j + Sβ

i Sγ

j

)]
. (1)

Here 〈i j〉γ labels nearest neighbors along a γ bond on the
honeycomb lattice and (α, β, γ ) = (x, y, z) or cyclic permu-
tations thereof. (Sx

i , Sy
i , Sz

i ) are the spin components in the
cubic coordinate system, and Si = Sx

i ex + Sy
i ey + Sz

i ez. The
coupling J parametrizes the isotropic Heisenberg exchange, K
is the Kitaev coupling, and � and �′ correspond to symmetric
off-diagonal exchanges.

B. T 1T 4 hidden-SU(2)-symmetric point

The Heisenberg-Kitaev-�-�′ model features five hidden-
SU(2)-symmetric points that can be mapped to antiferromag-
netic Heisenberg models in terms of dual spins [59]. Recently,
it has been shown that the magnetic excitation spectrum in the
low-temperature ordered phase of Na2Co2TeO6 is modeled re-
markably well using a parameter set proximate to one of these
points, namely the T1T4 point [47]. Most importantly, a model
proximate to this hidden-SU(2)-symmetric point stabilizes
the triple-q order, required to reproduce the experimentally
observed symmetry in the excitation spectrum. Moreover, the
low-energy excitations with small gap ∼1 meV at both the �

and the M points in the crystallographic Brillouin zone can

be understood as pseudo-Goldstone modes arising from the
breaking of the approximate hidden SU(2) symmetry, with
the size of the gap representing a measure of proximity to the
hidden-SU(2)-symmetric point.

The T1T4 point of hidden SU(2) symmetry can be found by
combining a four-sublattice transformation T4 [54,55] with a
global rotation T1 [59]. Here T4 leaves spins on sublattice 1 in-
variant, while inducing π rotations of the spins on sublattices
2, 3, and 4 around the [001] ‖ ez, [010] ‖ ey, and [100] ‖ ex

axes in cubic spin space, see Fig. 2(a). The subsequent T1

transformation corresponds to a global π rotation around the
[111] axis. In total, the spins on the four sublattices transform
as

T1T4 : Si �→ T14Si :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R1Si for i ∈ sublattice 1,
R1Rz

4Si for i ∈ sublattice 2,
R1Ry

4Si for i ∈ sublattice 3,
R1Rx

4Si for i ∈ sublattice 4,
(2)

with rotation matrices

Rx
4 =

⎛
⎝1

−1
−1

⎞
⎠, Ry

4 =
⎛
⎝−1

1
−1

⎞
⎠,

Rz
4 =

⎛
⎝−1

−1
1

⎞
⎠, R1 = 1

3

⎛
⎝−1 2 2

2 −1 2
2 2 −1

⎞
⎠. (3)
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Under this transformation, an antiferromagnetic Heisenberg
model H̃ in terms of dual spins S̃i = T �

14 Si,

H̃ = A
∑
〈i j〉

S̃i · S̃ j, A > 0, (4)

maps to a Heisenberg-Kitaev-�-�′ model HHK��′ with param-
eters [59]

(J, K, �, �′) = (−1/9,−2/3, 8/9,−4/9)A. (5)

This defines the T1T4 point of hidden SU(2) symmetry. Im-
portantly, the duality transformation respects the SU(2) spin
algebra, such that the physics of the Heisenberg-Kitaev-�-�′
model at the hidden-SU(2)-symmetric point and the dual
Heisenberg model can be exactly mapped onto each other not
only for the static spin configurations in the classical limit but
also on the inclusion of quantum and/or thermal fluctuations.

C. Ring exchange perturbations

In the vicinity of the hidden-SU(2)-symmetric point, the
influence of further nonbilinear exchange interactions may
become relevant. Nonbilinear exchange interactions are im-
portant in a number of 3d materials, including various
chromium-, manganese-, and copper-based magnets [63–66].
Here we consider the six-spin ring exchange interaction,
which arises as leading correction to the nearest-neighbor
Heisenberg exchange in the strong-coupling expansion of the
single-band Hubbard model on the honeycomb lattice [61],

H� = J�
6

∑
〈i jklmn〉

[2(Si · S j )(Sk · Sl )(Sm · Sn)

− 6(Si · Sk )(S j · Sl )(Sm · Sn)

+ 3(Si · Sl )(S j · Sk )(Sm · Sn)

+ 3(Si · Sk )(S j · Sm)(Sl · Sn)

− (Si · Sl )(S j · Sm)(Sk · Sn)

+ cyclic permutation of (i jklmn)], (6)

where the sum runs over the elementary hexagonal plaquettes
following the sites (i jklmn) in counterclockwise order. The
full Hamiltonian investigated in this work reads

H = HHK��′ + H�. (7)

We note that many other nonbilinear perturbations, which are
compatible with the symmetries of the Heisenberg-Kitaev-
�-�′ model, are in principle conceivable; however, these are
expected to lead to qualitatively similar physics, as long as
these perturbations remain small [47].

The ring exchange perturbation, just as bilinear pertur-
bations within the Heisenberg-Kitaev-�-�′ theory space,
explicitly breaks the hidden SU(2) symmetry present at the
T1T4 point given by the parameters in Eq. (5). The perturba-
tion, however, is naturally understood differently in the two
different formulations of the model: In the native formulation
in terms of the original spins Si in Eq. (1), H� reduces
SU(2) to the usual C∗

3 symmetry involving 2π/3 rotations
of pseudospins around the out-of-plane axis combined with
2π/3 lattice rotations [25,58]. In the dual framework in terms
of the dual spins S̃i in Eq. (4), H� is naturally understood as

a cubic perturbation, corresponding to the breaking of SU(2)
to the octahedral group Oh.

D. Magnetic orders

At the hidden-SU(2)-symmetric point, magnetic long-
range order is forbidden at any finite temperature as a
consequence of the Mermin-Wagner theorem [60]. At zero
temperature, there is an SU(2) degeneracy of ground states
that can be constructed from the duality transformation of the
Néel states in the dual Heisenberg formulation. As the duality
transformation acts differently on the four different sublat-
tices, Néel states with different directions of the staggered
magnetization in the dual formulation are mapped onto quite
distinct ground states of the Heisenberg-Kitaev-�-�′ model
at the hidden-SU(2)-symmetric point. On the one hand, for
instance, the Néel state with staggered magnetization along
the [001] direction, S̃i = ±Sez, maps to the collinear single-
q z-zigzag state with spin directions

Si/S =
{±(2ex + 2ey − ez )/3 for i ∈ sublattices 1, 2,

∓(2ex + 2ey − ez )/3 for i ∈ sublattices 3, 4,

(8)
where the upper (lower) signs apply to sites on the crystal-
lographic A (B) sublattice, and ex, ey, ez denote the cubic
basis vectors in spin space. The z-zigzag state is illustrated
in Fig. 2(b). On the other hand, the Néel state with staggered
magnetization along the [111] direction, S̃i= ±S(ex+ey+ez )/√

3, maps to the noncollinear triple-q state with spin direc-
tions

Si/S =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

±(ex + ey + ez )/
√

3 for i ∈ sublattice 1,

±(ex + ey − 5ez )/(3
√

3) for i ∈ sublattice 2,

±(ex − 5ey + ez )/(3
√

3) for i ∈ sublattice 3,

±(−5ex + ey + ez )/(3
√

3) for i ∈ sublattice 4,

(9)
where the upper (lower) signs again apply to sites on the crys-
tallographic A (B) sublattice. The triple-q state is illustrated
in Fig. 2(c).

While the collinear single-q zigzag and noncollinear triple-
q states are degenerate at the hidden-SU(2)-symmetric point,
perturbations away from this point will lift the degener-
acy. Previously, it has been shown that bilinear perturbations
within the space spanned by the parameters J , K , �, and �′ fa-
vor the single-q zigzag state for either sign of the perturbation.
In contrast, nonbilinear perturbations will generically favor
the single-q zigzag state for one sign and the triple-q state
for the opposite sign of the nonbilinear perturbation [47]. By
comparing the classical energies of the static spin configura-
tions in Eqs. (8) and (9), it is easy to show that, in the vicinity
of the hidden-SU(2)-symmetric point and at low temperatures,
the single-q zigzag state is stabilized for J� > 0, while the
triple-q state is stabilized for J� < 0.

We emphasize that the two different low-temperature
magnetically ordered states break different symmetries. The
collinear single-q zigzag state is characterized by a preferred
spin axis, thereby breaking the C∗

3 symmetry of combined
lattice and spin rotation symmetry. It also doubles the length
of one of the lattice vectors, i.e., the corresponding magnetic
unit cell features four sites. The noncollinear triple-q state
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does not break the C∗
3 symmetry, but doubles the length of

both lattice vectors, i.e., the corresponding magnetic unit cell
now features eight sites. It is this difference in symmetry
that allows one to identify multi-q ground states in magnetic
excitation spectra, and distinguish them from domain averages
of single-q states [47].

E. Spin vestigial orders

Below we present arguments for the emergence of vesti-
gial orders at intermediate temperatures in the vicinity of the
hidden-SU(2)-symmetric point. Spin vestigial orders can be
understood as partial meltings of primary magnetic orders be-
fore the system goes to a completely disordered paramagnetic
state [62,67]. Vestigial orders are characterized by composite
order parameters, constructed from bilinears or multilinears of
the individual order parameters of the corresponding primary
states. In our case, it is useful to define the composite order
parameter in terms of the dual spins S̃i = T �

14 Si. From these,
we can construct the three-dimensional, real, symmetric, and
traceless tensorial order parameter on sites i and j as [68]

Qαβ
i j = S̃α

i S̃β
j + S̃β

i S̃α
j − 2

3 (S̃i · S̃ j )δ
αβ, (10)

where α, β ∈ {x, y, z} indicate the different components of the
tensor. The above composite order parameter can be decom-
posed into its independent components by projection onto the
five real Gell-Mann matrices �(a) as [69]

Q(a)
i j = 1

2

∑
αβ

Qαβ
i j �

(a)
βα, a = 1, . . . , 5. (11)

In the case of cubic symmetry, it is useful to arrange the five
components into groups of two and three, respectively, as

eg:
(
Q(1)

i j , Q(2)
i j

)
=

(
1√
3

[
2S̃z

i S̃z
j − S̃x

i S̃x
j − S̃y

i S̃y
j

]
, S̃x

i S̃x
j − S̃y

i S̃y
j

)
, (12)

which transforms as a doublet under the octahedral group Oh

in the dual spin space, and

t2g:
(
Q(3)

i j , Q(4)
i j , Q(5)

i j

) = (
S̃y

i S̃z
j, S̃z

i S̃x
j , S̃x

i S̃y
j

) + (i ↔ j), (13)

which transforms as a triplet.
The spin vestigial states spontaneously break the Oh sym-

metry in the dual formulation by selecting a preferred axis
in the dual spin space, while leaving time-reversal symme-
try intact. As a consequence, in the present case with cubic
symmetry, there are two different spin vestigial orders, char-
acterized by the doublet eg [Eq. (12)] and triplet t2g [Eq. (13)],
respectively, of the composite order parameter. A finite ex-
pectation value of a doublet eg component, together with
a vanishing local magnetization, corresponds to a vestigial
paramagnetic order, in which fluctuations single out one of
the three cubic axes in the dual spin space. This breaking of
Oh in the dual formulation corresponds to a breaking of the C∗

3
rotational symmetry in the original formulation of spins. This
vestigial order is therefore a Z3 spin nematic. It is illustrated
in Fig. 2(d). The corresponding primary magnetic order is
the collinear single-q zigzag state shown in Fig. 2(b). By
contrast, a finite expectation value of a triplet t2g component,
together with a vanishing local magnetization, corresponds to

a vestigial paramagnetic order, in which fluctuations single
out one of the four cubic diagonals in the dual spin space.
This selection leaves the C∗

3 symmetry of the original spin
formulation intact, but enlarges the unit cell by doubling the
two lattice vectors. Such vestigial order has previously been
discussed in the context of doped graphene and can be under-
stood as a Z4 spin current density wave [62,70]. It is illustrated
in Fig. 2(e). The corresponding primary magnetic order is the
noncollinear triple-q state shown in Fig. 2(c).

III. MONTE CARLO SIMULATIONS

A. Algorithmic details

The model in Eq. (7) is simulated on a two-dimensional
honeycomb lattice spanned by the lattice vectors a1 =
(3/2,

√
3/2) and a2 = (3/2,−√

3/2) with N = 2L2 sites and
periodic boundary conditions at finite temperatures T > 0.
The spins are treated as classical three-dimensional vectors
Si = (Sx

i , Sy
i , Sz

i ) of fixed length, and we choose units in
which S2

i = 1 and kB = 1. As a consequence, temperature
T and ring exchange coupling J� are measured in units
of AS2/kB and A/S4, respectively. We employ large-scale
classical Monte-Carlo simulations based on the Metropolis
algorithm combined with an overrelaxation step with a ratio of
1:5. The typical order of magnitude of the accumulated statis-
tics is O(105) configurations per point in parameter space,
with each of these configurations taken after 10 complete
Metropolis and overrelaxation updates on the full lattice. Note
that the ring exchange perturbation includes 26 independent
terms per plaquette, each one of it involving products of
six spins. This significantly slows down the simulations in
comparison with previous works on related bilinear mod-
els [17,58,71–74]. Nevertheless, with our efficient code and
high-performance computing resources available [75], we are
able to simulate systems with up to N = 2×1282 spins.

B. Observables

In this subsection, we describe the observables measured
in the simulations.

a. Energy density. The energy density is given by the ex-
pectation value of the Hamiltonian

ε := 〈H〉/N, (14)

where N corresponds to the total number of sites on the lattice.
b. Dual magnetization. Furthermore, we measure the stag-

gered dual magnetization M̃ = 〈|M̃|〉 with

M̃ := 1

N

∑
i

(−1)iS̃i, (15)

where S̃i = T �
14 Si is the dual spin at site i, with the transfor-

mation matrix T14 as defined in Eq. (2). The factor (−1)i is
one (minus one) for i ∈ A (i ∈ B), where A and B correspond
to the two crystallographic sublattices.

c. Composite order parameters. In order to distinguish
single-q zigzag and triple-q orders in the simulations, and to
identify the spin vestigial orders, we measure the eg composite
order parameter Qeg = 〈|Qeg |〉 with

Qeg := 1
2

(
2M̃2

z − M̃2
x − M̃2

y ,
√

3
[
M̃2

x − M̃2
y

])
, (16)
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as well as the t2g composite order parameter Qt2g = 〈|Qt2g |〉
with

Qt2g :=
√

3(M̃yM̃z, M̃zM̃y, M̃xM̃y). (17)

Here the composite order parameters are normalized such that
(Qeg , Qt2g ) = (1, 0) for the single-q zigzag magnetic order
in the low-temperature limit and (Qeg , Qt2g ) = (0, 1) for the
triple-q magnetic order in the low-temperature limit.

d. Susceptibilities. We also measure the susceptibilities of
the different order parameters,

χμ = N

T
(〈μ2〉 − 〈μ〉2) with μ = M̃, Qeg , Qt2g . (18)

e. Binder cumulants. From the primary and compos-
ite order parameters, we can construct corresponding
renormalization-group-invariant Binder cumulants,

Uμ = 〈μ4〉
〈μ2〉2

with μ = M̃, Qeg , Qt2g , (19)

which are useful to extract the location of the transition points
from the finite-size simulations and to analyze the natures of
the transitions.

f. Correlation length. Another useful renormalization-
group-invariant quantity is given by the dimensionless
correlation-length ratio Rξ = ξ/L, where ξ corresponds to the
second-moment correlation length defined as

ξ = 1

2 sin kmin/2

√
〈G̃(0)〉

〈G̃(kmin)〉 − 1. (20)

Here kmin = (2π/(3L), 2
√

3π/(3L)) denotes the minimal
momentum on the finite-size lattice and G̃(p) corresponds to
the static dual spin structure factor,

G̃(p) = 1

N

∑
i, j

(−1)i+ j S̃i · S̃ je
−ip·(ri−r j ), (21)

where ri and r j are the position vectors at sites i and j,
respectively.

g. Histograms. We furthermore study histograms of the
Markov chain of the energy density ε and the dual mag-
netization M̃. Their behaviors at a phase transition indicate
the nature of the transition: While a continuous transition is
reflected in a single maximum of the histograms of all observ-
ables, a first-order transition leads to a double-peak structure
in (at least one of) the histograms.

C. Finite-size scaling analysis

a. Continuous transition. In the vicinity of a critical point,
renormalization-group-invariant quantities are expected to
scale as

R = fR((T − Tc)L1/ν ) + O(L−ω ), (22)

where R is a generic renormalization-group-invariant observ-
able, such as the correlation-length ratio Rξ and the Binder
cumulants Uμ, fR is an (up to a rescaling of its argument)
universal scaling function, Tc is the critical temperature, ν is
the correlation-length exponent, and O(L−ω ) corresponds to
corrections to scaling.

If the latter can be neglected, then the curves for R as
function of temperature T for different fixed lattices sizes will
cross at Tc. We observe slight drifts in the crossing points
as function of lattice size, which can be attributed to the
presence of moderate scaling corrections. In order to esti-
mate the critical temperature in the thermodynamic limit, we
plot the crossings of consecutive-size couples in the differ-
ent renormalization-group-invariant observables as function
of 1/L and extrapolate towards 1/L → 0.

Moreover, the graphs of R, plotted as function of (T −
Tc)L1/ν for different fixed lattice sizes L, should collapse onto
a single curve given by fR if scaling corrections are small.
In our analysis, we attempt such scaling of sets of increasing
system sizes, neglecting the terms O(L−ω ) in Eq. (22). This
allows us to determine the effective correlation-length expo-
nent ν, which we again plot as function of 1/L and extrapolate
towards the thermodynamic limit.

b. First-order transition. We emphasize that a first-order
transition may also show scaling behavior if the transition is
governed by a discontinuity fixed point [76–78]. The discon-
tinuity fixed point features an infrared relevant direction with
associated eigenvalue θ = d of the renormalization group
stability matrix, where d corresponds to the spatial dimen-
sion, leading to a finite-size scaling of the dimensionless
correlation-length ratio

Rξ = fξ ((T − Tc)Lθ ) + O(L−ω ), (23)

which is formally equivalent to Eq. (22) for R = Rξ on iden-
tifying θ = d with 1/ν. A first-order phase transition arising
from the presence of a discontinuity fixed point can therefore
be understood as the limiting case of a continuous transition,
in which the thermodynamic exponents approach the limits
α → 1, β → 0, γ → 1, δ → ∞, ν → 1/d , and η → 2 − d .
We note that the values for α, β, and δ are precisely those that
should be expected in the presence of a finite latent heat at
the first-order transition, and a jump in the magnetization as
function of temperature and magnetization, respectively [77].

IV. PHASE DIAGRAM

A. Long-range-ordered phases

For J� = 0, the model features a hidden SU(2) symmetry,
which forbids long-range order at any finite temperature as a
consequence of the Mermin-Wagner theorem [60]. The nature
of the induced finite-temperature orders for J� �= 0 crucially
depends on the sign of the ring exchange perturbation. This is
illustrated in Fig. 3, which shows the dual magnetization M̃
and the spin composite order parameters Qeg and Qt2g as func-
tion of temperature T for a fixed lattice size and representative
values of J� > 0 (top panels) and J� < 0 (bottom panels),
respectively. In both cases, the finite dual magnetization indi-
cates long-range magnetic order at low temperatures.

For J� > 0, the fact that Qeg monotonically increases on
lowering the temperature, while Qt2g decreases after a broad
hump, indicates that the favored direction of the dual magne-
tization is along the cubic axes [100], [010], and [001]. This
is also consistent with the Monte Carlo distributions of the
dual magnetization shown in the lower right inset of Fig. 1.
It demonstrates that the low-temperature state at J� > 0 fea-
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FIG. 3. (a) Dual magnetization M̃ as function of temperature T for J� = 0.01 > 0 and fixed lattice size L = 32. (b) Same as (a) but for
eg composite order parameter Qeg indicating single-q zigzag order at low temperature, corresponding to a dual magnetization along the cubic
axes directions. (c) Same as (a) but for t2g composite order parameter Qt2g , indicating the absence of triple-q order at low temperature. [(d)–(f)]
Same as (a)–(c) but for J� = −0.01 < 0, indicating triple-q order at low temperature, corresponding to a dual magnetization along the space
diagonals in the cubic basis, and the absence of single-q zigzag order.

tures collinear single-q zigzag order with spin directions given
as in Eq. (8) or symmetry related.

For J� < 0, by contrast, Qt2g monotonically increases on
lowering the temperature, while Qeg decreases after a broad
hump. This shows that the favored direction of the dual mag-
netization in this case is along the cubic diagonals [111],
[1̄11], [11̄1], and [111̄], in agreement with the distribution
shown in the lower left inset of Fig. 1. Consequently, the
low-temperature state at J� < 0 features noncollinear triple-
q order with spin directions given as in Eq. (9).

The critical temperatures for J� > 0 (J� < 0) separating
the different phases are extracted from the crossings of the
Binder cumulants UM̃ and U

eg

Q (U
t2g

Q ) for the dual magnetiza-
tion and the eg (t2g) composite order parameter, respectively,
from consecutive system sizes. An example for J� = 0.01

is shown in Figs. 4(a) and 4(b). The resulting critical tem-
peratures extracted from UM̃ and U

eg

Q , corresponding to the
breaking of time-reversal and C∗

3 symmetries, respectively, are
shown as function of inverse system size 1/L in Fig. 4(c).
Importantly, the critical temperatures Tc1 and Tc2 significantly
deviate from each other, indicating the presence of an in-
termediate phase sandwiched between the low-temperature
magnetically ordered zigzag phase and the high-temperature
disordered paramagnetic phase. The intermediate phase at
Tc1 < T < Tc2 is characterized by a finite expectation value
of the eg composite order parameter and a vanishing dual
magnetization in the thermodynamic limit. It realizes Z3 spin
nematic long-range order, as discussed in Sec. II E. An analo-
gous behavior is found for J� < 0 (not shown): There are two
different critical temperatures Tc1 < Tc2 extracted from the

FIG. 4. (a) Binder cumulant UM̃ of dual magnetization as function of temperature T for fixed J� = 0.01 and different lattice sizes. Inset
shows vicinity of crossings. Vertical dashed line indicates the critical temperature in the thermodynamic limit. (b) Same as (a) but for Binder
cumulant U

eg
Q of eg composite order parameter. (c) Critical temperatures Tc as a function of inverse system size 1/L, obtained from the crossings

of the Binder cumulant, indicating two different transitions in thermodynamic limit and the presence of an intermediate phase.
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crossings of UM̃ and U
t2g

Q , respectively. The intermediate phase
at Tc1 < T < Tc2 realizes Z4 spin current density wave order,
characterized by a finite expectation value of the t2g composite
order parameter and a vanishing dual magnetization in the
thermodynamic limit.

For increasing |J�|, the two critical temperatures ap-
proach each other and eventually merge at triple points located
at (J�, T ) ≈ (−0.1, 0.28) and (J�, T ) ≈ (0.1, 0.33), re-
spectively. For |J�| > 0.1, there is a direct transition between
the low-temperature magnetically ordered phase and the high-
temperature disordered paramagnetic phase. The resulting
phase diagram is shown in Fig. 1.

The finding of spin vestigial phases stabilized by thermal
fluctuations in our numerical simulations of the Heisenberg-
Kitaev-�-�′ model in the vicinity of the hidden-SU(2)-
symmetric can be understood along the lines of previous
renormalization group results obtained for 2D Heisenberg
models with cubic anisotropy, which suggest a similar two-
transition scenario [79,80]. Corresponding results have also
been obtained numerically in a 2D Heisenberg model with
cubic anisotropy [72]. This resonates with the fact that H�
can be understood as a cubic perturbation in the dual formula-
tion, corresponding to the breaking of the hidden SU(2) to the
hidden octahedral symmetry group Oh.

B. Hidden Mermin-Wagner physics

The presence of the hidden-SU(2)-symmetric point has a
great influence on the shape of the phase diagram. From the
absence of long-range-order at J� = 0, we expect both Tc1

and Tc2 to vanish for decreasing J�. However, the correlation
length becomes exponentially large in the low-temperature
limit [81–83],

ξ ∝ e−1/T , (24)

for J� = 0. As a consequence, we expect the critical
temperatures to vanish logarithmically slow near the hidden-
SU(2)-symmetric point. In fact, the crossover scaling theory,
reviewed in the Appendix, suggests the scaling [84]

1/Tc(J�) = a + b log |1/J�|, (25)

for small |J�|, with nonuniversal coefficients a and b. Fitting
the above expectation to the data points for Tc1 in the range
of 0 < J� < 1 yields a remarkably good agreement for the
fit parameters a = 1.941(3) and b = 0.463(4), see Fig. 1. We
note that similar logarithmic behaviors of the critical temper-
atures are expected for J� < 0. However, in this case, we
refrain from fitting the data, as the phase boundary exhibits
a local maximum at already a comparatively small value of
|J�|. This maximum in the critical temperature may be due to
an instability of the triple-q state that arises at J� ≈ −0.52:
Below this value of J�, the ground state features a differ-
ent magnetic long-range order, as can be verified by simple
energy minimization of the classical Hamiltonian at T = 0
(not shown). Elucidating the finite-temperature behavior in
this regime is beyond the scope of the current work.

V. CRITICAL BEHAVIORS

In this section, we discuss the natures of the differ-
ent finite-temperature transitions, lending further support on
our result that the spin vestigial phases emerge in a fi-
nite intermediate-temperature window in the vicinity of the
hidden-SU(2)-symmetric point. We first focus on positive
J� > 0, which features a sizable regime in parameter space
without any instability of the magnetic order at low tem-
perature. The behavior for J� < 0, which turns out to be
numerically more involved, will be discussed in light of the
results for J� > 0 below.

A. Zigzag-to-paramagnet transition: First order

We start by demonstrating that the direct transition at
large J� > 0.1 between the single-q zigzag order at low
temperature and the paramagnetic phase at high tempera-
ture is of first-order nature, and governed by a discontinuity
fixed point [76–78]. Figure 5(a) shows the histogram of
the dual magnetization M̃2 for a representative large value
of J� = 1.4 close to the corresponding transition temper-
ature. The double-peak distribution clearly observed in the
histogram demonstrates phase coexistence, implying a first-
order transition. A similar, although slightly less pronounced,
double-peak distribution can be witnessed in the histogram of
the energy density ε (not shown). Moreover, as depicted in
Fig. 5(b), the correlation-length ratio Rξ exhibits a finite-size
scaling consistent with Eq. (23). The corresponding exponent
θ , determined from the scaling collapse of consecutive system
sizes, is shown as function of 1/L in Fig. 5(c). Within numer-
ical errors, the extracted value agrees with θ = d = 2, which
is the value expected for a first-order transition governed by a
discontinuity fixed point [76–78].

For smaller value of J�, but still above the triple point at
J� ≈ 0.1, the first-order nature of the transition weakens sig-
nificantly. Already for J� = 0.8, the double-peak distribution
in the histogram of the dual magnetization at the corre-
sponding transition temperature is much less pronounced, see
Fig. 5(d). In the energy histogram, a double-peak distribution
is no longer visible for the current system sizes (not shown).
Furthermore, the exponent θ extracted from the finite-size
collapse, shown in Fig. 5(e), reveals significantly larger finite-
size effects, see Fig. 5(f). Nevertheless, the value linearly
extrapolated to the thermodynamic limit remains consistent
with θ = d = 2, reflecting the discontinuous nature of the
transition.

The fact that the strength of the first-order transition sig-
nificantly weakens on decreasing J� indicates that the triple
point at J� ≈ 0.1 may in fact be a bicritical point below
which the, then two, finite-temperature transitions at Tc1 and
Tc2 become continuous. We now show that this is indeed the
case.

B. Zigzag-to-nematic transition: 2D Ising universality

We start with the lower transition at Tc1, below which
Z2 time-reversal symmetry is spontaneously broken. As a
consequence, we expect critical behavior in the 2D Ising
universality class. Figures 6(a) and 6(b) show the scaling
collapse for the correlation-length ratio Rξ and the Binder
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FIG. 5. (a) Histogram of dual magnetization M̃2 near the critical temperature Tc = 0.5576(4) for J� = 1.4, indicating first-order behavior.
(b) Finite-size scaling of correlation-length ratio Rξ = ξ/L as function of (T − Tc1)Lθ [Eq. (23)], using θ = 1.99. (c) Exponent θ from finite-
size scaling as function of system size 1/L, indicating θ = 1.99(3), consistent with a first-order transition. [(d)–(f)] Same as (a)–(c) but near
the critical temperature Tc = 0.490(1) for J� = 0.8, showing that the first-order behavior weakens for decreasing J�. Nevertheless, the
extrapolation to the thermodynamic limit shown in (f) yields θ = 1.89(4) [this is also the value used in (e)], still consistent with first-order
behavior.

cumulant UM̃ , respectively, for a representative value of
J� = 0.05. The quality of the scaling for small system sizes
is mediocre, but improves for larger system sizes L � 48.
This indicates considerable corrections to scaling, in par-
ticular for UM̃ . These are likely due to the small value of
J� � 1, corresponding to approximate hidden SU(2) sym-
metry, as well as the presence of the second finite-temperature
transition at Tc2 near Tc1. The corrections to scaling are
also visible in the drift of the corresponding critical expo-
nent 1/ν extracted from the scaling collapse of Rξ from
consecutive system sizes, see Fig. 6(c). Nevertheless, us-
ing a quadratic fitting ansatz to extrapolate to 1/L → 0,

we obtain 1/ν = 1.02(5) in the thermodynamic limit. This
agrees within errors with the expectation from 2D Ising
universality, 1/ν = 1.

C. Nematic-to-paramagnet transition: 2D Potts universality

The transition at Tc2 for J� > 0 between the Z3 spin
nematic and the disordered paramagnet corresponds to a
C∗

3 -symmetry-breaking transition. If continuous, then we
therefore expect critical behavior in the three-state Potts
universality class. To confirm this expectation, we plot the
Binder cumulant U

eg

Q corresponding to the eg composite order

FIG. 6. (a) Critical finite-size scaling of correlation-length ratio Rξ = ξ/L as function of (T − Tc1)L1/ν for fixed J� = 0.05 and different
lattice sizes L, using 1/ν = 1.02 and Tc1 = 0.302, indicating a continuous finite-temperature transition. (b) Same as (a), but for the Binder
cumulant UM̃ of dual magnetization. (c) Finite-size scaling of correlation-length exponent 1/ν as function of system size 1/L, indicating
1/ν = 1.02(5) in the thermodynamic limit, consistent with classical 2D Ising criticality.
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FIG. 7. Critical finite-size scaling of Binder cumulant U
eg
Q as

function of (T − Tc2 )L1/ν for fixed J� = 0.05 and different lat-
tice sizes L, using 1/ν = 6/5 and Tc2 = 0.310, consistent with a
continuous finite-temperature transition in the 2D three-state Potts
universality class.

parameter as function of (T − Tc2)L1/ν for fixed representa-
tive value of J� = 0.05 and different lattice sizes in Fig. 7.
The presence of large scaling corrections impedes an unbiased
extraction of the correlation-length exponent in the present
case, in contrast to the zigzag-to-nematic transition. As a
workaround, we assume the 2D three-state Potts exponent
1/ν = 6/5 from the outset and look for signs of conver-
gence in the scaling collapse. For the largest available system
sizes L = 64 and L = 128, we indeed observe a moderate
collapse of the curves at different system sizes. We have
verified that the scaling is worse if one assumes a first-order
transition according to Eq. (23) with θ = d . This shows that
the nematic-to-paramagnetic transition is continuous and hints
that it falls into the three-state Potts universality class, as ex-
pected from universality arguments. This result resonates with
the real-space renormalization group analysis of the square-
lattice Heisenberg model with face cubic anisotropy, which
similarly suggests a continuous transition in the three-state
Potts universality class at a temperature Tc2, followed by an
Ising transition at a lower temperature Tc1 < Tc2 [79].

D. Transitions for negative ring exchange

As shown numerically above, the positive ring exchange
term has, in terms of dual spins, the same effect on the
Heisenberg-Kitaev-�-�′ model at the hidden SU(2) point as
the face cubic anisotropy on the 2D Heisenberg model [79].
A similar analogy is therefore expected also for negative ring
exchange J� < 0. The negative ring exchange corresponds,
in terms of dual spins, to a corner cubic anisotropy, for which
the general renormalization group analysis [79,80] suggests a
four-state Potts transition at a temperature Tc2, followed by an
Ising transition at a lower temperature Tc1 < Tc2. While this
expectation is in principle consistent with our results for the
phase diagram for J� < 0, see Fig. 1, a clear identification of
the critical behavior at small negative J� ∈ (−0.1, 0) turns
out to be difficult. In particular, we do not observe any good

finite-size-scaling collapse for any reasonable value of the
exponent 1/ν. At the same time, there is no clear sign of a
first-order transition, although very weak first-order behavior,
visible only at lattice sizes beyond those currently reachable,
is numerically impossible to exclude, as always. The difficulty
in the analysis may be attributed to three reasons: First, the
expected four-state Potts universality class is known to exhibit
multiplicative logarithmic corrections [85,86], and the system
sizes currently available for the model with ring exchange
(L � 128) are likely insufficient to resolve these [87]. Second,
the proximity to the hidden SU(2) point leads to crossover
effects, as shown in the Appendix. Third, for the bilinear cou-
plings J , K , �, and �′ at the hidden-SU(2)-symmetric point,
Eq. (5), the triple-q state becomes unstable for J� � −0.52.
This prevents the observation of a clear first-order transition
between the triple-q state and the high-field paramagnet at
large negative values of J�.

VI. APPLICATION TO Na2Co2TeO6

The honeycomb magnet Na2Co2TeO6 has recently been
argued to be well described by an effective spin Hamiltonian
of the form of Eq. (7), with bilinear exchange parameters
proximate to the hidden-SU(2)-symmetric point [Eq. (5)], and
small negative ring exchange perturbation J� < 0 [47]. In
particular, it has been shown that the symmetry observed
in the inelastic neutron-scattering spectrum is inconsistent
with a single-q zigzag magnetic ground state and can only
be explained with a C∗

3 -symmetric triple-q magnetic order-
ing characterized by eight spins in the hexagonal magnetic
unit cell, as shown in Fig. 2(c). Careful magnetization and
specific heat measurements exhibit a variety of anomalies
as function of temperature within the long-range-ordered
regime [29,31,33,88,89]. Of particular interest in light of our
results is the fact that the single-crystal specific heat features
a peak at a temperature Tc2 = 30.97 K above the 3D antifer-
romagnetic ordering temperature at Tc1 = 26.7 K [32]. The
intermediate phase between Tc1 and Tc2 is characterized by a
Bragg peak at the crystallographic M point in the 2D Brillouin
zone and a rodlike shape of the neutron and x-ray diffraction
pattern along the direction perpendicular to the 2D Brillouin
zone [32]. The Bragg peak structure reveals a 2D long-range
order characterized by lattice translational symmetry break-
ing with an enlarged unit cell, wherein one or both of the
2D lattice vectors have doubled in magnitude. Remarkably,
the magnetic susceptibility curve as function of temperature
does not exhibit any anomaly at Tc2 [29]. Furthermore, the
spin-lattice and spin-spin relaxation rates measured in nu-
clear magnetic resonance (NMR) experiments show distinct
peaks at Tc1 but no pronounced anomalies at Tc2 [32,33].
This might be indicative of a vestigial paramagnetic 2D long-
range-ordered state between 26.7 K and 30.97 K.

A natural candidate to describe this finite-temperature
intermediate phase in Na2Co2TeO6 is the Z4 spin current
density wave order discovered in this work in the vicin-
ity of the hidden-SU(2)-symmetric point for small negative
J� < 0. It is characterized by lattice translational symmetry
breaking with an enlarged unit cell, wherein both of the 2D
lattice vectors have doubled in magnitude, see Fig. 2(e). This
is consistent with the Bragg peak pattern observed in the

075104-10



SPIN VESTIGIAL ORDERS IN EXTENDED … PHYSICAL REVIEW B 109, 075104 (2024)

diffraction experiments. Moreover, as a paramagnetic state, it
leaves time reversal intact, which would explain the absence
of any pronounced anomaly in the susceptibility and NMR
measurements.

To test this scenario, it would be desirable to eluci-
date the response of the Z4 spin current density wave
state to other perturbations that drive the system away from
the hidden-SU(2)-symmetric point. This includes nearest-
neighbor interactions within the parameter space spanned by
J , K , �, and �′, or further-neighbor interactions within the
same honeycomb layer. Of particular interest are interlayer
interactions, which have previously been shown to be of
significant relevance in other Kitaev magnets [21,23]. These
might be expected to lead to a 2D-3D crossover in the crit-
ical behavior very close to the continuous finite-temperature
transitions in and out of the spin vestigial phases. A com-
prehensive theoretical characterization of this physics could
help to understand the critical behavior seen in the x-ray
diffraction of Na2Co2TeO6 for temperatures near and below
Tc2 = 30.97 K.

VII. CONCLUSIONS

In this work, we have studied the finite-temperature phase
diagram of the honeycomb-lattice Heisenberg-Kitaev-�-�′
model near a hidden-SU(2)-symmetric point, including a six-
spin ring exchange perturbation. For positive (negative) ring
exchange coupling J� > 0 [J� < 0], we find that the low-
temperature ground state features collinear single-q zigzag
(noncollinear triple-q) magnetic long-range order. These
break time-reversal and C∗

3 rotational (lattice translational)
symmetries. On increasing temperature, in the vicinity of
the hidden-SU(2)-symmetric point, the magnetically ordered
phases melt in two stages. In the intermediate vestigial phase,
time-reversal symmetry is restored, but the C∗

3 rotational (lat-
tice translational) symmetry breaking of the corresponding
primary single-q zigzag (triple-q) phase remains. We have
explicitly confirmed, using an unbiased finite-size scaling
analysis, that the continuous finite-temperature transition at
Tc1 between the magnetic order and its vestigial order is in
the 2D Ising universality class. The continuous transition be-
tween the Z3 spin nematic vestigial order and the disordered
paramagnet at the higher critical temperature Tc2 > Tc1 falls
into the three-state Potts universality class. Similarly, for the
transition between the Z4 spin current density wave vestigial
order and the disordered paramagnet, we expect a transition
in the four-state Potts universality class. For increasing ring
exchange perturbation of either sign, the width of the inter-
mediate phase, characterized by spin vestigial order, in the
phase diagram shrinks, and eventually vanishes. For large
ring exchange, the transition becomes first order, signalled by
a double-peak structure in the histograms of energy density
and dual magnetization. The dimensionless correlation ratio
exhibits finite-size scaling behavior with an exponent charac-
teristic for a discontinuity fixed point [76–78].

A schematic renormalization group flow diagram that
emerges from our numerical results is depicted in Fig. 8.
Besides the usual high-temperature and low-temperature fixed
points H and L, respectively, it features a third fully stable
fixed point V, which describes the vestigial Z3 spin nematic

FIG. 8. Schematic renormalization group flow diagram emerging
from our numerical results. H and L denote the fully stable high-
temperature and low-temperature fixed points, respectively. The third
fully stable fixed point V describes the corresponding spin vestigial
phase, namely the Z3 spin nematic (Z4 spin current density wave)
for positive (negative) ring exchange perturbation. The Ising and
three-state (four-state) Potts fixed points govern the continuous tran-
sitions in and out of the spin vestigial phase, respectively. The direct
first-order transition for sizable positive (negative) ring exchange per-
turbation between the magnetically ordered single-q zigzag (triple-q)
phase and the disordered paramagnet is governed by the discontinu-
ity fixed point D, which features an infrared relevant direction with
associated eigenvalue of the stability matrix θ = d = 2.

and Z4 spin current density wave phases for positive and
negative ring exchange, respectively. The continuous finite-
temperature transitions at Tc1 and Tc2 are governed by the
critical Ising and Potts fixed points, respectively. The first-
order transition between the magnetically ordered phase and
the disordered paramagnet is governed by the discontinuity
fixed point D. The discontinuity fixed point also features a
single infrared relevant direction, however, with an associated
eigenvalue of the stability matrix θ = d = 2, consistent with
a jump in the order parameter and a finite latent heat. For
the future, it might be interesting to map out this intricate
flow diagram explicitly, e.g., by employing a Monte Carlo
renormalization group approach [90,91].

It is instructive to compare our results for the Heisenberg-
Kitaev-�-�′ model near the hidden-SU(2)-symmetric point
in the presence of a ring exchange perturbation with an ear-
lier numerical study of the pure Heisenberg-Kitaev model
with � = �′ = J� = 0 [71,72]. An intermediate phase at
finite temperatures above the magnetic ordering tempera-
ture has been found in that case as well; however, the
intermediate phase has been argued to feature algebraic or-
der, while our spin vestigial phases are characterized by
paramagnetic long-range order. The transition between the
algebraically ordered and the disordered paramagnet in the
pure Heisenberg-Kitaev model is characterized by an essen-
tial singularity in the correlation length, characteristic of a
Berezinskii-Kosterlitz-Thouless (BKT) transition [92,93]. As
the hidden-SU(2)-symmetric point in the Heisenberg-Kitaev-
�-�′ model is related to another hidden-SU(2)-symmetric
point in the pure Heisenberg-Kitaev model [59], one might
expect an analogous algebraically ordered phase also in the
Heisenberg-Kitaev-�-�′ model, once bilinear perturbations
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that break the hidden SU(2) symmetry are taken into account.
This suggests an intricate interplay between the spin vestigial
long-range orders and algebraically ordered states in a model
with both bilinear and nonbilinear exchange perturbations.

In this work, we have limited ourselves to the classical
Heisenberg-Kitaev-�-�′ model with ring exchange perturba-
tion. In the quantum case, nonbilinear exchange perturbations
can stabilize long-range ordered paramagnetic state, such as
quantum spin nematics, even at zero temperature [94–96].
This indicates that the width of the spin vestigial phases in
the finite-temperature phase diagram may increase on the
inclusion of quantum fluctuations. Studying the interplay
of thermal and quantum fluctuations in the present model,
within, for instance, a semiclassical expansion, clearly de-
serves future investigation.

Our numerical results may be of relevance for the Kitaev
magnet Na2Co2TeO6, which has recently been argued to real-
ize a noncollinear triple-q ground state at low temperatures.
The Z4 spin current density wave phase discovered in this
work is a natural candidate to explain the 2D long-range-
ordered state observed in Na2Co2TeO6 in a small temperature
window above the 3D antiferromagnetic ordering temperature
Tc1 = 26.7 K. However, in order to be able to confirm this
scenario, more experimental and theoretical work is needed.
On the theoretical side, in particular the effects of interlayer
couplings should be included, which might give rise to a
dimensional crossover in the critical behavior [97,98]. A re-
alistic model of Na2Co2TeO6 should also explain the weak
ferrimagnetism oberserved in high-quality single crystals,
possibly arising from the two crystallographically inequiva-
lent sublattices [29]. These represent interesting directions for
the future.

Note added. During the completion of this manuscript, we
became aware of a parallel experimental work [99], which
reports the discovery of a Z3 nematic phase as vestigial
order of the zigzag antiferromagnet in few layers of the
honeycomb magnet NiPS3. Our theoretical results for this
phase are consistent with the experimental observations in this
material.
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APPENDIX: CROSSOVER BEHAVIOR NEAR
HIDDEN-SU(2)-SYMMETRIC POINT

In the Appendix, we review the crossover theory for critical
points in the presence of small anisotropies. We will start
with the standard scenario for critical points with power-law

divergences and then generalize to cases with exponen-
tial divergences, relevant for the hidden-SU(2)-symmetric
point.

1. Crossover scaling theory for standard critical points
in presence of small anisotropies

For a critical point with standard power-law critical behav-
ior, the correlation length ξ and the susceptibility χ scale with
the reduced temperature t = (T − Tc)/Tc as

ξ ∝ t−ν0 , χ ∝ t−γ0 , (A1)

where ν0 and γ0 are the corresponding universal critical ex-
ponents characterizing the isotropic fixed point. Now, turning
on an anisotropy term with coupling J�, standard crossover
theory [100] suggests that the divergence changes as

χ ∝ t−γ0�(J�t−φ ), (A2)

where � is a universal crossover scaling function and φ is
a universal crossover exponent, with φ/ν0 given by the scal-
ing dimension of the anisotropy term at the isotropic fixed
point. Here the reduced temperature t is defined with re-
spect to the critical temperature in the isotropic case, i.e., t =
[T − Tc(J� = 0)]/Tc(J� = 0). The crossover scaling func-
tion �(z) is normalized to �(0) = 1 and diverges at a finite
z = zc, which corresponds to the transition in the presence of
the anisotropy.

2. Crossover scaling theory for cases with exponentially
divergent length scales

Let us now generalize the crossover theory for cases with
exponentially divergent length scales, as in the Heisenberg-
Kitaev-�-�′ model at the hidden-SU(2)-symmetric point, see
Eq. (24). For this, it is useful to rewrite Eqs. (1) and (2) as

χ ∝ ξγ0/ν0�(J�ξφ/ν0 ), (A3)

which is expected to hold also in cases with exponentially
divergent length scales [84]. We note that while both ν0 and
γ0 are formally expected to diverge in the 2D Heisenberg
case [82,83], their ratio can be finite, as is the case, in the
BKT transition [101]. As the scaling dimension of the cubic
anisotropy, which corresponds to the dual version of the ring
exchange term in Eq. (6), is expected to be finite [102], the
crossover exponent φ will formally diverge at the hidden-
SU(2) point as well, in a way that φ/ν0 remains finite. From
this, we obtain that the critical temperature Tc(J�) vanishes
logarithmically with J�, see Eq. (25), which is also consistent
with our numerical findings, see the black curve in Fig. 1.

TABLE I. Estimates of ratio γ0/ν0 from simulations at J� = 0,
obtained from finite-size scaling of susceptibilities of dual magneti-
zation M̃ and composite order parameters Qeg and Qt2g .

χM̃ χ
eg
Q χ

t2g
Q

γ0/ν0 1.82(1) ∼1.64 ∼1.55
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FIG. 9. (a) Finite-size crossover scaling of maxima of magnetic susceptibility χM̃L−γ0/ν0 of dual magnetization as function of |J�|Lφ/ν0 ,
using γ0/ν0 = 1.82, φ/ν0 = 2/3, and J� > 0. (b) Same as (a), but for J� < 0. (c) Same as (a), but for the susceptibility of the eg composite
order parameter, using γ0/ν0 = 1.64. (d) Same as (b), but for the susceptibility of the t2g composite order parameter, using γ0/ν0 = 1.55.

3. Finite-size crossover scaling theory

On finite lattices of linear size L, the correlation length is
expected to scale at criticality as ξ ∝ L. From this, we obtain
the finite-size crossover scaling law [103],

χ ∝ Lγ0/ν0�(J�Lφ/ν0 ). (A4)

Here the scaling variable J�Lφ/ν0 can be understood to
measure the strength of the crossover effects. For small
J�Lφ/ν0 � 1, the critical behavior will be strongly affected
by crossover effects arising from the vicinity of the hidden-
SU(2)-symmetric point, while for J�Lφ/ν0 � 1 the critical
behavior emerging from the anisotropic ring exchange term
should be correctly represented on the finite-size lattices.

In our simulations at J� = 0, we find that the susceptibili-
ties of the composite order parameters χ

eg

Q and χ
t2g

Q increase
monotonically with decreasing T , as expected. The low-
temperature divergence for increasing system sizes allows us
to obtain a rough estimate of the ratio γ0/ν0 in Eq. (4), on
setting J� = 0 therein. By contrast, for χM̃ , we observe a
finite-temperature maximum arising from the pseudocritical
behavior of the 2D Heisenberg model [104,105]. For the
finite-size scaling analysis at J� = 0, we therefore take this

maximum as reference for the divergence of χM̃ . This pro-
cedure gives a rough estimate for the ratio γ0/ν0, but does
not allow a precise evaluation of the exponent. Neverthe-
less, it is reassuring that the values, which we have obtained
from Bayesian-inference-based [106] scaling collapses of the
three different observables, turn out in the same ballpark, see
Table I. If one assumes that the hidden-SU(2)-symmetric point
is described at low temperature by the zero-temperature fixed
point of the O(3) nonlinear sigma model, then the theoretical
expectation is γ0/ν0 = 2 [81], which is roughly consistent
with our results.

Taking the maxima of the susceptibility curves for fixed
J� �= 0 and fixed lattice size L as function of temperature T ,
we test the finite-size crossover scaling hypothesis in Eq. (4)
for several values of the ratio φ/ν0, using the values for γ0/ν0

as obtained from the analysis at J� = 0. A decent scaling on
multiple observables is obtained for φ/ν0 ≈ 2/3, see Fig. 9.
Note that the range of |J�|Lφ/ν0 , for which the scaling is rea-
sonable, depends on the observable. Overall, the results agree
with the expectation from the crossover scaling hypothesis, in-
dicating the strong influence of the hidden-SU(2)-symmetric
point on the behavior of the system at small |J�|.
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