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Fascinating new phases of matter can emerge from strong electron interactions in solids. In recent years, a new
exotic class of many-body phases, described by generalized electromagnetism of symmetric rank-2 electric and
magnetic fields and immobile charge excitations dubbed fractons, has attracted wide attention. Besides having
interesting properties in their own right, the models with generalized electromagnetism are also closely related
to gapped fracton quantum orders, new phases of dipole-covering systems, as well as quantum information and
quantum gravity. However, experimental realization of the rank-2 U(1) gauge theory is still absent and even
known practical experimental routes are scarce. In this work, we propose a scheme of coupled optical phonons
and nematic degrees of freedom, as well as several concrete experimental platforms for their realizations. We
show that these systems can realize the electrostatics sector of the rank-2 U(1) gauge theory. A great advantage
of the proposed scheme is that it requires only the basic ingredients of phonon and nematic physics, and hence
may be applicable to a wide range of experimental realizations from liquid crystals to electron orbitals.
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I. INTRODUCTION

At the forefront of modern physics lies the concept
of emergence—the spontaneous appearance of qualitative
changes in the behavior of large, complex systems that can by
no means be inferred by extrapolating the properties of only
a few particles [1]. The emergent behavior is codified by the
new “laws” in an effective theory, and the emergent phases
often transcend the traditional Landau-Ginzburg paradigm of
symmetry breaking. One example of such an emergent phase
is the spin liquids—exotic states built on quantum super-
position of product states, characterized not by any order
parameter, but by the topological entanglement and topolog-
ical order. A subclass of such spin liquids can be described
by local constraints on the local degrees of freedom (DoF),
leading to the emergence of a gauge-invariant description,
and thereby to topological orders, fractionalized excitations,
and long-range entanglement [2–5]. A well-known example
is quantum spin ice on the pyrochlore lattice, which realizes
U(1) Maxwell gauge theory [6]. It hosts emergent excitations
mimicking the Maxwell electrodynamics: photons, electric
charges, and even magnetic monopoles. As such, it has been
under intense theoretical [3–15] and experimental [16–24]
investigation.

Recently, a class of more exotic forms of emergent elec-
trodynamics proposed as effective theories for spin liquid
phases [25–28] has attracted considerable attention. As a gen-
eralization of Maxwell electrodynamics, it features electric
and gauge fields in the form of rank-2 (R2) or, generally,
higher-rank symmetry tensors. The correspondingly modified
Gauss’s conservation laws result in some unexpected, exciting

*hy41@rice.edu

properties. The electric charge excitations dubbed fractons are
intrinsically constrained from moving in the system and fore-
shadow a new class of gapped fracton quantum liquid order
beyond topological order [29–40]. The rank-2 U(1) (R2-U1)
theories are also shown to be akin to gravity [25,41–43], and
related to new phases of matter featuring dipole conserving
dynamics [44–48].

However, these remarkable properties come with a cost:
the central ingredient—local constraints applied to tensors—
is in a more complex form than the traditional Gauss’s law
of Maxwell electromagnetism. To enforce these constraints,
complicated multibody interactions are required in many
prototypical fracton models [25,27,29,31–33,49,50], while
experimental proposals remain scarce [37,38,51]. Therefore,
concrete designs for experimental realizations of R2-U1
phases pose a significant challenge, and overcoming this dif-
ficulty would constitute a crucial step for future development
of the field.

Here we propose a realistic experimental scheme to
achieve nematic liquid states described by the classical limit
R2-U1 theory, which is realizing the electrostatics of such
higher-rank theories. Phases of matter with nematic DoF,
such as liquid crystals, are good potential candidates for this
purpose since they are naturally represented by symmetric
tensors—exactly those needed in the R2-U1 physics. The
challenge is to find a realistic approach toward the specific
low-energy Hamiltonian that would give rise to a nematic
liquid state obeying the R2-U1 Gauss’s law, instead of driving
the system into an ordered state.

In this work, we show that this is readily achievable. The
ingredients in our model are quite common: Einstein phonons
and the most general coupling between phonons and nematic
DoFs. We demonstrate that integrating out the phonon modes
leads precisely to the sought Gauss’s law-enforcing term on
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the remaining nematic DoFs. In addition to the idealized effec-
tive theory, we present a few concrete experimental platforms
where such a theory can be realized. Our approach has the
advantage of having a wide range of applicability. The exis-
tence of nematics at different scales—from electron orbitals
to organic molecules to soft matter—means that our proposed
design can be realized in a variety of experimental platforms.
Different types of available nematic matters also enable us
to construct different versions of R2-U1 theories. We hope
that our work opens a gateway to experimental realizations of
generalized higher-rank gauge theories.

II. THE IDEALIZED MODEL

A. Hamiltonian of nematic-phonon coupling

The idealized model Hamiltonian to realize the R2-U1
physics via nematic-phonon coupling is composed of three
parts: optical phonons, the nematic degrees of freedom, and
their coupling:

H = Hph + Hph-nem + Hnem

= �2

2mph
+ mphω

2
0

2
u · u − λεi j�i j + M

∑
i� j

�2
i j, (1)

where mph is the atomic mass density corresponding to the
phonon mode, u(r) is the lattice distortion of the Einstein
phonons (i.e., phonons with a flat energy dispersion h̄ω0),
and � is the canonically conjugate momentum. We have sup-
pressed the phonon polarization index and assumed a single
optical branch for simplicity. The second term Hph-nem is the
leading-order coupling between the nematic DoF described by
the symmetric tensor �i j [52–56] and the strain tensor of the
lattice distortion,

εi j (r) = ∂iu j (r) + ∂ jui(r). (2)

The third term Hnem has the meaning of a mass term for
the nematic degrees of freedom and is assumed to be positive
definite (M > 0). This term can also be thought of as imposing
a physical constraint on the tensor to be of finite length, which
occurs naturally in certain types of nematic matter (see Sec. VI
for details). In this work, we explicitly assume no sponta-
neous breaking of the rotational symmetry, i.e., we always
assume nematic fluctuations without the long-range nematic
order [57].

In what follows, we suppress the dynamical terms associ-
ated with the phonon and nematic degrees of freedom (written
here in the Lagrangian form),

Ldynamics = mph

2
(∂t u)2 + m

2
(∂t�)2, (3)

since we are chiefly interested in the classical sector of the
system. Above, m is the kinetic mass of the nematic degrees of
freedom. The role of these terms in the dynamics in a quantum
system is discussed in more detail in Sec. VI.

The spectrum of the diagonalized Hamiltonian in a square
lattice is shown in Figs. 1(f) and 1(g) (see Fig. 3 for the square
lattice setup). The false color indicates the distribution on each
band of the correlator 〈�xx(−q)�yy(q)〉, whose meaning will
be clarified in a later part of this section.

FIG. 1. Realizing rank-2 U(1) electrostatics via optical phonon-
nematic coupling. (a)–(c) Examples of microscopic objects with
nematic degrees of freedom. (d) Bilayer nematic as a representative
experimental construction that realizes the ideal model [Eq. (1)].
(e) Nematic layer trapped in an artificial periodic potential as a
representative experimental construction. (f) The band structure of
Eq. (1). (g) Zoomed-in view of the phonon-nematic band structure,
in which the flat band corresponds to the vector-charge-free nematic
configurations, and the upward dispersing bands correspond to the
charged nematic configurations.

By integrating out the Gaussian phonon modes, we end up
with the effective theory for the nematic DoF only, described
by the Hamiltonian

Hnem-eff = �(∂i�i j )(∂k�k j ) + M
∑
i� j

�2
i j, (4)

where � = λ2/(2mphω
2
0 ). In the limit of sufficiently large

� � T relative to the temperature, the first term imposes a
high energy cost for �i j configurations that violate the con-
straint

∂i�i j = 0. (5)

Upon identifying the nematic DoF with the generalized rank-2
electric field �i j ←→ Ei j , its derivative becomes associated
with the generalized vector charge,

∂i�i j ←→ ρ j ≡ ∂iEi j, (6)

and Eq. (5) becomes exactly the Gauss’s law for the vector-
charged R2-U1 theory. Hence, the classical R2-U1 nematic
liquid state is realized in the low-energy sector of the theory.
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FIG. 2. Nematic correlation functions 〈�xx (−q)�yy(q)〉 for the model in Eq. (4). The four panels show the correlation functions, using
a false-color map, computed via the self-consistent Gaussian approximation (see Appendix B) on a square lattice (Fig. 3) at different
temperatures relative to the parameter �. The high-temperature regime shown in (d) is a paramagnetic phase with vanishing correlations. The
low-temperature regime shown in (a) is the rank-2 U(1) phase, manifested by the characteristic fourfold pinch point pattern in the correlation
function around q = 0, originating from the functional form 〈�xx (−q)�yy(q)〉 ∝ q2

x q2
y/q4. (b), (c) The fourfold pinch points become gradually

smeared due to thermal fluctuations at intermediate temperatures.

A more physical interpretation of the model is achieved by
noticing that

−λεi j�i j = 2λu · ρ + total derivative. (7)

This means the vector-charge excitation ρ is linearly coupled
to the lattice distortion. The energy cost of the lattice distor-
tion induces, upon integrating out the lattice DoF, the potential
energy λ2ρ2/(2ρω2

0 ) for the charge excitations.

B. Experimental signatures

To quantitatively show the emergence of R2-U1 electro-
statics, we study the model of Eq. (4) on a square lattice under
the on-site constraint

∑
i� j �i j (r)2 = 1 and examine its cor-

relation function 〈�i j (−q)�kl (q)〉 at different temperatures
using the self-consistent Gaussian approximation (SCGA, de-
scribed in Appendix B). Depending on the microscopic origin
of the nematics, there are different ways to measure the cor-
relation functions in an experiment. For example, in liquid
crystals, one can use polarized light to obtain the so-called
Schlieren texture [58,59], which can be used to reconstruct
the real-space configuration of the nematics.

The equal time correlation function 〈�i j (−q)�kl (q)〉
in the R2-U1 phase is constrained by the Gauss’s law
qα〈�i j (−q)�kl (q)〉 = 0, where α is one of the four indices
i, j, k, l and the repeated index is summed over. As a con-
sequence, the correlation is restricted to be proportional to a
highly anisotropic projector in the form of

〈�i j (−q)�kl (q)〉

∝ 1

2
(δikδ jl + δilδ jk ) + qiq jqkql

q4

− 1

2

(
δik

q jql

q2
+ δ jk

qiql

q2
+ δil

q jqk

q2
+ δ jl

qiqk

q2

)
. (8)

In particular, 〈�xx(−q)�yy(q)〉 ∝ q2
x q2

y/q4 shows a character-
istic pattern dubbed “fourfold pinch point” [60–62].

In Fig. 2, we present the correlation function
〈�xx(−q)�yy(q)〉, computed within the SCGA approach,
at different ratios of T/�. As the result demonstrates, at high

temperature, the system is a paramagnet and the correlation
function is essentially vanishing. At low temperatures, on
the other hand, the fourfold pinch point emerges as the
system enters the R2-U1 phase. The transition between the
two phases is expected to be not a phase transition, but a
crossover.

The same fourfold pinch point is also visible in the band
structure of the diagonalized Hamiltonian, shown in Figs. 1(f)
and 1(g). There, the flat band corresponds to the nematic states
obeying Gauss’s law. Note that the energy of this flat band is
finite due to the nonzero mass M in Eq. (4), and the lack of
dispersion is due to the fact that the mass term imposes a local
constraint, i.e., all such states are momentum independent.
The fourfold pinch point is imprinted on the flat band, which is
consistent with the result from the Gaussian-integrated theory
[Eq. (4)].

C. Effects of perturbations

The idealized model of Eq. (1) is fine tuned. For example, if
there are symmetry-breaking terms, the nematic DoFs, instead
of fluctuating subject to the Gauss’s law, can become ordered
at sufficiently low temperature [this would require setting
mass M < 0 and adding quartic terms to the Hamiltonian in
Eq. (1)]. Hence, we must address the question of whether the
idealized model can be realized experimentally.

We remark that it should not be surprising that gen-
erally speaking, the Hamiltonian realizing such classical
spin/nematic liquid requires fine tuning. A well-known
canonical example is the classical spin ice [63], whose exact
macroscopic ground-state degeneracy is the consequence of
fine-tuned interactions and can be lifted by the addition of
arbitrarily small terms to the Hamiltonian. The U(1) gauge
theory being gapless, there is no protection against such terms
in general. However, as long as these terms have a magnitude
smaller than the experimentally accessible temperature, their
effect is not strong enough to drive the system into, e.g., an
ordered state, and the relevant degrees of freedom fluctuate,
subject to the constraint imposed by the Gauss’s law. This
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general principle applies equally to the spin ice and to our
model of generalized higher-rank U(1) theory.

D. Effects of discrete crystalline symmetry

The coupling between lattice and nematic DoFs will often
lower the symmetry of the nematic order parameter from U(1)
to a discrete one. If the energy scale of such symmetry break-
ing is significantly lower than the temperature of interest, it
can be effectively neglected. However, in the opposite case,
more care is needed to determine if the rank-2 U(1) Gauss’s
law description still holds. Systems with discretized nematic
DoFs can still be in a rank-2 U(1) spin liquid phase, if the
exponentially degenerate ground states still exist, and are de-
scribed by the rank-2 U(1) Gauss’s law. This is similar to spin
ice and checkerboard ice spin liquids, which are Ising spin
systems described by Maxwell’s U(1) Gauss’s law, ∂iEi = 0.
The most essential requirement is that flipping a local patch
of spins follows the pattern of the magnetic field B = ∇ × A.
In terms of the lattice spins, this is to flip spins connected
head to tail on a closed loop. The similar principle applies
to rank-2 U(1) spin liquids too. Here, let us give an example
of such spin liquid arising from discretized nematic DoFs.
We consider a square lattice, with nematic DoFs sitting on
the vertices and plaquette centers of the lattice [Fig. 3(a)].
We then assume the vertex nematics can only take a finite
range of integer values (for example, −1, 0, 1) for its �xx

and �yy components, and the plaquette nematics for its �xy

components, as a consequence of the lattice symmetry. The
phonon-intermediated interactions are ρ2

x + ρ2
y , where

ρx = ∂x�xx + ∂y�yx,

ρy = ∂y�yy + ∂x�xy, (9)

and on lattice, their discretized version becomes

ρx(R) = �xx(R + x̂/2) − �xx(R − x̂/2)

+ �yx(R + ŷ/2) − �yx(R − ŷ/2),

ρy(R) = �yy(R + ŷ/2) − �yy(R − ŷ/2)

+ �xy[(R + x̂/2)] − �xy[(R − x̂/2)]. (10)

The definition of ρ is illustrated in Figs. 3(a) and 3(b). The
ground states are nematic configurations where the condi-
tion ρx,y = 0 is satisfied at every site. Next, we examine the
ground-state degeneracy structure. That is, we search for the
minimal change of �i j that takes one ground-state configura-
tion to another. We found this operation, expressed in terms of
operators �±

i j that increase/decrease the value of �i j by one,
to be that shown in Fig. 3(e). This is exactly the magnetic field
for the rank-2 U(1) theory,

B = εabεcd∂
a∂cAbd , (11)

where Abd is the conjugate of Ei j . To see this more clearly, we
notice that the two terms in B are

εcd∂
cAxd = ∂xAxy − ∂yAxx, (12)

εcd∂
cAyd = ∂xAyy − ∂yAyx. (13)

The first one corresponds to Fig. 3(c) and the second one
corresponds to Fig. 3(d). Hence, B = εabεcd∂

a∂cAbd is curl as

FIG. 3. The square lattice model with nematic degrees of free-
dom. (a), (b) Nematic degrees of freedom �xx and �yy defined on the
vertices of the lattice, with off-diagonal components �xy situated in
the centers of the plaquettes. The lattice representation of the vector
charge ρ in Eq. (6) has two components, ρ = (ρx, ρy ), which live
on the x and y links of the lattice, respectively, based on the four
�i j surrounding it. This model is used for computing the correlation
functions in Eq. (8) and throughout the paper. (c), (d) Spin flipping
terms correspond to Eqs. (12), (13) for discretized �i j . These terms
are the products of four φ±

i j operators each. (e) Spin flipping term that
acts as the gauge-invariant magnetic field in the generalized rank-2
electrodynamics [Eq. (11)]. This term is a product of 12 φ±

i j operators
shown. When acting on a Gauss’s law-obeying charge-free electric
field configuration, the state is mapped onto another charge-free
configuration.

four of such operations tiled together shown in Fig. 3(e). We
can then conclude that this model of discretized nematic DoFs
is also in a rank-2 U(1) nematic liquid phase. More generally,
whether the rank-2 U(1) nematic liquid phase survives after
the continuous nematic DoFs breaks down to discrete ones
depends on the specific details of the symmetry breaking.
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Following the above example, one can design rank-2 U(1)
nematic liquid phases for discrete nematic DoFs too.

III. ADVANTAGES AND CHALLENGES
OF THE IDEALIZED MODEL

Several comments are in order before we continue with the
discussion of the more concrete experimental platforms to re-
alize the idealized Hamiltonian in Eq. (1). First, this model has
the advantage of being built upon rather common elements:
the Einstein phonon is the zero-dispersion limit of an optical
phonon, which is often a good approximation. More generally,
optical phonons with small dispersions also work, since a
mild dispersion will only contribute to the higher-order terms.
Equally, the nematics DoFs are common microscopic objects,
ranging in their origin from molecular anisotropy in classical
liquid crystals to orbital electron DoFs in transition-metal
compounds [cf. Figs. 1(a)–1(c) and Sec. VI]. The tendency
towards the nematic distortion can also be emergent, for in-
stance due to the Pomeranchuk instability of a Fermi surface
[64], discussed in more detail in Sec. VI. The phonon-nematic
coupling in the second term of Eq. (1) is the lowest-order
coupling that respects the rotational symmetry of the system
and is also generally expected, as seen in many other studies
[52–56]. Hence, we expect it to be the dominant term in
relevant experiments.

We note that in previous theoretical studies, the phonon-
nematic coupling Hph-nem was written for acoustic, rather
than optical, phonons, as discussed in detail in Refs. [54–56].
There, although the coupling also yields a fourfold anisotropic
susceptibility similar to those shown in Fig. 2, the resulting
effective theory is not of the form of the sought-after rank-2
U (1) electromagnetism. The reason for demanding a finite (al-
beit possibly small) energy ω0 of optical phonons is to ensure
that integrating out these higher-energy DoFs is legitimate,
leading to a finite � ≡ λ2/(2mphω

2
0 ) in Eq. (4).

Generally, in a system with nematic and lattice degrees of
freedom, one naturally expects the coupling to the acoustic
phonons to be present. Such coupling would lead to con-
sequences described in the previous paragraph, undesirable
for the purpose of rank-2 U(1) nematic liquid. It is then
necessary to design the system to avoid the target nematic
degrees of freedom’s coupling with the acoustic phonons.
In the following section, we discuss concrete experimental
setups that resolve this issue and engineer the desired coupling
between the nematics and optical phonons. Briefly speaking,
our construction introduces additional layers/sublattice sites
with the protection of global mirror/inversion symmetry, so
one symmetry sector had the gapped phonons coupled to the
nematics as desired.

IV. EXPERIMENTAL PROPOSALS

To address the practical problems mentioned in the pre-
vious section, here we discuss more concrete experimental
proposals in a bottom-up fashion: we start with systems de-
scribed by the conventional Hamiltonian instead of the ideal
one, and show how the ideal Hamiltonian can emerge by
modifying these systems properly. In particular, the acoustic

FIG. 4. A bilayer construction of two lattices with nematic de-
grees of freedom. The atomic lattices are not shown for clarity, but
are essential in hosting intralayer acoustic phonons. The interlayer
coupling results in the phonon splitting into two sectors: the acous-
tic in-phase mode (u+) and the optical out-of-phase mode (u−) in
Eq. (16). These two phonon modes couple to the corresponding
nematic DoFs (+ and −) in the appropriate sectors. It is the
coupling in the out-of-phase optical sector in Eq. (17) that leads to
the rank-2 U(1) theory.

phonon decouples from the part described by the ideal Hamil-
tonian.

A. Bilayer construction

For two-dimensional systems, one solution we propose is
to construct systems with multiple sublattice sites. Here we
consider an example of coupling two layers together, with
each hosting the common acoustic phonon-nematic coupling
[Fig. 1(d)].

Each single layer, in the most symmetric case, is described
by the Hamiltonian

Hac-ph-nem = 2ρv2
(
∂iu

X
j

)(
∂iu

X
j

) − λεX
i j�

X
i j + M

∑
i� j

(
�X

i j

)2
.

(14)

Here, X = T, B corresponds to the top and bottom layer, and
the acoustic phonon modes have isotropic linear dispersion
ωac = vq (again, here the dynamical terms are omitted).

We then consider the two layers coupled by the following
interaction:

Hint = gρ(uT − uB)2. (15)

Such interaction appears naturally from an interlayers’ atomic
potential for the lattice sites penalizing their deviation from
the equilibrium positions.

Diagonalizing Hac-ph-nem + Hint, we find that the DoF can
be decomposed into the in-phase and out-of-phase sectors
labeled by +,− (cf. Fig. 4),

u± = 1√
2

(uT ± uB),

�± = 1√
2

(�T ± �B). (16)
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FIG. 5. Proposed experimental setups to realize the ideal model
of Eq. (1). (a) The multiple sublattice site construction. Shown as an
example is a hexagon lattice of nematic degrees of freedom residing
on two sublattice sites (blue and red rods). (b) The artificial potential
well construction. The nematic layer (red rods) is sandwiched be-
tween two substrates of heavy molecules (gray balls). The substrates
serve as sources of the artificial potential term [Eq. (18)] for the
lattice distortion u in the nematic layer.

The two sectors decouple from each other. The “+” sec-
tor is described again by the usual acoustic phonon-nematic
coupling as in Eq. (14), and hence is not of our interest.
The out-of-phase “−” sector describes the interlayer optical
phonon, coupled to the corresponding interlayer nematic DoF,

H− = 2ρv2
∑

i

(∇u−
i )2 + 2gρu− · u−

− λε−
i j�

−
i j + M

∑
i� j

�−
i j

2. (17)

Here, the phonons associated with u− become gapped because
of the interlayer coupling [Eq. (15)]. The last three terms in
Eq. (17) are exactly what we are after. The first term induces
the dispersion to the interlayer optical phonon. Integrating
out the photons, this term yields an additional, q-dependent
contribution of the order of O[ λ2v2q4

ρg2 (�)2]. This is to be com-
pared to the principal term in the Gauss’s law, of the order of
O[ λ2q2

ρg (�)2]. Hence, if the dispersion scale is small compared

to the gap, i.e., vq2
0 
 g (with q0 ∼ 1/a denoting the edge of

the Brillouin zone), then the phonon bands will be sufficiently
flat and we obtain the idealized model of Eq. (1) to a good
approximation, with � = λ2

ρg .

B. Multiple sublattice sites

The essence of the proposal in the previous section is that
when there are multiple sublattice sites in the system, the total
number of phonons increases accordingly, yet only one set
of them is acoustic and the remaining phonon branches will
become gapped, as desired to obtain the idealized model in
Eq. (1). Similar approaches can be designed following this
principle. For example, a single-layer nematic lattice with two
sublattice sites per unit cell can also work [Fig. 5(a)].

C. Artificial potential well

Another scheme we propose is to introduce an artificial
potential for the nematic-site lattice displacements, in order
to break translational invariance and gap the phonons directly.
That is, we add a potential term

Hpot = mphω
2
0

2
u · u (18)

to the lattice distortion, thus approximating the idealized
model in Eq. (1) when the phonon dispersion is mild.

The first realization of this idea is schematically illustrated
in Fig. 1(e), wherein the nematic atoms/molecules are placed
in a periodic optical (laser) potential. Such periodic potential
is a sophisticated experimental technique that is already in use
[65–72].

Another possible realization is to sandwich the nematic
layer between the substrate layers of heavy molecules. The
latter would then introduce a potential term to the nematics
layer, as illustrated in Fig. 5(b).

V. BEYOND THE CLASSICAL MODEL

In this work, we focused on how to achieve the electro-
statics sector of the rank-2 U(1) theory. This is a crucial step
toward the generalized quantum electrodynamics, just as how
the classical spin ice [63] provides the underpinnings for the
development of a quantum spin ice [6,12]. Now let us briefly
explain the effect of including phonon and nematic dynamics
in the system.

A. Phonon dynamics

Let us first examine the effect of phonon dynamics. Follow-
ing the procedure similar to that outlined above Eq. (4), one
can integrate the phonon kinetic term mph

2 (∂t u)2. This leads
to the appearance in the Lagrangian of the dynamics for the
nematic degrees of freedom of the form

Lcharge-dyn = m

2
(�̇)2 + �̃(∂i�̇i j )(∂k�̇k j )

≡ m

2
(�̇)2 + �̃(∂tρ)2, (19)

where �̃ = λ2/(2mph) arises from integrating out the optical
phonons [in fact, �̃ = ω2

0 � is proportional to the coupling �

introduced in Eq. (4)].
Note that the first term originates from the kinetic energy of

the nematic degrees of freedom in Eq. (3). More importantly,
the second term is responsible for the dynamics of the charge
of the rank-2 U(1) field theory. Below, we shall consider the
effect such terms have on the generalized higher-rank U(1)
electrodynamics.

B. Nematic dynamics

We now discuss the effect of the dynamical term in the
full-fledged rank-2 electrodynamics. We start with a concrete
example and then discuss the general principles applicable to
all the implementations proposed above.

For concreteness, let us consider � living on the square
lattice. For better visualization, we place the �xx, �yy com-
ponents on the vertices and shift �xy = �yx to the centers

075102-6



PHONON INDUCED RANK-2 U(1) NEMATIC LIQUID … PHYSICAL REVIEW B 109, 075102 (2024)

of the plaquettes. This is illustrated in Figs. 3(a) and 3(b).
The generalized vector charges ρ = (ρx, ρy) are then defined
on the links of the lattice. Specifically, ρx is defined on the
x-oriented links as ρx = �x�xx + �y�yx, where �i is the
lattice derivative. Similarly, ρy is defined on y links as ρy =
�y�yy + �x�xy. The classical sector of the Hamiltonian is

Hsq-cl = Uρ2 + M
∑
i� j

�2
i j . (20)

Note that we have dropped the first kinetic term ∝ (�̇)2 in
Eq. (19) because, in the language of the generalized electrody-
namics, �̇ plays the role of the vector potential A, canonically
conjugate to the electric field E ≡ �. The nematic kinetic
term in Eq. (19) therefore translated into the A2 term whose
action on the ground-state manifold is trivial, and hence we
ignore it in what follows.

To introduce quantum dynamics, we instead argue by the
way of analogy that each component of the tensor � could be
thought of as corresponding to the Sz component of a quantum
spin, and there is a generalized “transverse field” applied to
the nematic DoFs,

Hsq-dy = h
∑
i� j

(�+
i j + �−

i j ), (21)

where �±
i j are the raising and lowering operators of �i j .

Crudely speaking, �±
i j plays the role of the gauge field op-

erator A associated with the charge creation terms since they
are canonically conjugate to the electric field components E,
and creates charges when applied to an eigenstate of �i j .

A single operation of �±
xx or �±

yy will create charges in the
system. Within the restricted sub-Hilbert space of the Gauss’s
law-obeying states, operators �±

i j can only act on the Hilbert
space at a higher perturbative order, such as to cancel all
the charges that are created. An example, which we denote
as �+

comp, is shown in Fig. 3(e). There, a specific product
of 12 �±

i j operators connects one charge-free electric field
configuration to another. The fact that no charge is created
anywhere in the system is equivalent to the statement that this
composite product of 12 operators is gauge invariant—that is,
�+

comp (and also its Hermitian conjugate �−
comp) plays the role

of the generalized magnetic field of the R2-U1 theory.
Putting everything together, the generalized rank-2 electro-

dynamics is realized by the Hamiltonian

Hsq-full = �̃(∂tρ)2 + Uρ2 + M
∑
i� j

�2
i j + μ(�−

comp+�+
comp)

∼ �̃(∂tρ)2 + Uρ2 + E2 + B2. (22)

Now let us comment on the general properties of the
quantum dynamics of the nematic R2-U1 theory. Like in a
quantum spin ice, the emergent magnetic field usually in-
volves multiple operators, and is perturbatively generated
via the product of transverse field operators which preserve
the Gauss’s law. Other types of dynamics, for example, the
exchange-type terms, can also fulfill this purpose. In the con-
ventional Maxwell U(1) theory, these composite operators are
simply loops of the dynamical operators, forming a lattice
realization of the magnetic flux

∮
A dl = ∫∫

B dσ . In R2-U1

theory, the composite operators become more complicated, as
shown in the square lattice example above.

Although the long-wavelength theory will remain the
same, the available quantum dynamical terms will depend
on the details of the lattice geometry and the microscopic
implementation of the nematic DoF. It is also possible that
the quantum dynamics leads the system into other ordered
phases instead of R2-U1 electrodynamics (this is true of the
quantum spin ice as well). The exact consequences will have
to be discussed on a case-by-case basis.

VI. DISCUSSION: MICROSCOPIC
ORIGIN OF THE NEMATICS

In our construction, we tacitly assumed that the nematic
DoFs are described by a symmetric tensor with all its in-
dependent components, of which there are three in the
two-dimensional systems and five in the three-dimensional
ones. Depending on the microscopic origin of the nematics,
the number of DoFs in the symmetric tensor representation
may be fewer than those numbers. Below, we provide several
concrete examples of the various microscopic realizations of
the nematic DoFs.

Liquid crystals. The first canonical example of the nematic
degrees of freedom is that of a classical liquid crystal. In two
dimensions (2D), such as schematically shown in Fig. 1(b),
the nematicity is described by a director of a fixed length,
encoded in a 2 × 2 symmetric matrix,

� =
(

cos 2θ sin 2θ

sin 2θ − cos 2θ

)
. (23)

Note that the matrix is traceless and unimodular (reflecting the
fact that the director is of unit length) and, as a result, nematic
DoFs are described not by three, but by a single independent
parameter, i.e., the azimuthal angle θ . The idealized theory
presented in the beginning still holds; however, the lack of the
necessary rank-2 DoFs means the proper R2-U1 electrostatics
cannot be realized.

Pomeranchuk instability in metals. Another example of the
nematicity is the spontaneous distortion of the Fermi surface
[see, e.g., Fig. 1(c)], known as the Pomeranchuk instability
[64], which, in the simplest case of an isotropic (circular in
2D) Fermi surface, is described by the quadrupole density
operator [73],

�FS (q) = 1

k2
F

ψ†(q)

(
q2

x − q2
y qxqy

qxqy q2
y − q2

x

)
ψ (q), (24)

where ψ†(q) and ψ (q) are the electron creation/annihilation
operators at momentum q. The above matrix is also traceless,
yielding the traceless R2-U1 theory upon integration of the
phonon modes coupled to �FS as in Eq. (1). The elliptic
Fermi surface distortion thus has two independent DoFs: �xx

and �xy, which can also be cast in the form of a complex
order parameter Qei2θ = �xx + i�xy, with the amplitude Q
proportional to the eccentricity of the ellipse and angle ±θ

its azimuthal direction.
We note that in the above example, the presence of the

underlying crystalline lattice can pin the Fermi surface distor-
tion along particular direction(s), such as shown in Fig. 1(c).
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For instance, pinning to ±x or ±y directions on the square
lattice introduces a potential Ulat (θ ) = −U0 cos(2θ ) for the
azimuthal angle. The resulting rank-2 theory would then be-
come discrete, described by a four-state Potts model on a
square lattice [rather than the continuous U(1) parameter].
Nevertheless, for temperatures and energy scales above U0,
the classical theory could be approximately described as hav-
ing a continuous U(1) symmetry.

A remark is due: In this and in other examples of metallic
systems with nematic degrees of freedom, coupling of the
latter to the conduction electrons must be considered carefully,
especially in two spatial dimensions. In particular, at the ne-
matic quantum critical point, when the parameter M → 0 in
the Hamiltonian (1), this coupling renormalizes the Green’s
function of the conduction electrons, resulting in a non-Fermi-
liquid behavior and in turn affecting the universality class
of the nematic phase transition [74] (see, also, Ref. [75] for
review, as well as recent numerical studies [76,77] and refer-
ences therein). These considerations lie outside of the scope
of the present work, and we will always assume a large and
positive quadratic coefficient M where these complications do
not arise.

Orbital order in Mott insulators. Another example is that of
d-electron orbital ordering in Mott insulators such as K2CuF4

[78] and LaMnO3 [79] [Fig. 1(a)]. Ignoring, for the moment,
the crystal electric field (CEF) effects, which generically lift
the orbital SO(3) symmetry, the five d orbitals corresponding
to the |l = 2; m = −2,−1, . . . , 2〉 spherical harmonics form
a degenerate manifold, out of which an orbital-nematic order
can appear if the symmetry is spontaneously broken. These
orbital degrees of freedom form a symmetric, traceless ten-
sor representation of the group SO(3) describing rotations
in the orbital Hilbert space (the l = 0, 1 representations are
the trace and antisymmetric components of this matrix). In
the disordered, symmetry-preserving phase, these orbital de-
grees of freedom can be used to construct classical rank-2
electrostatics, as outlined in this work. Moreover, by virtue
of being intrinsically quantum objects, such models are also
good candidates for constructing quantum electrodynamics
of R2-U1 theory. This line of argument can be expanded to
higher multipole ordering, such as octupolar (rank-3) order
observed in CexLa1−xB6 [80] and hexadecupolar (rank-4) [81]
and even higher rank-5 order parameters [82] proposed to
explain the so-called hidden order in URu2Si2 [83].

When the CEF effects are considered, the initial degener-
acy of the d-orbital multiplet is lifted; however, as long as the
symmetry is not too low and the crystalline point group allows
for higher-dimensional irreducible representations (irreps),
the description in terms of the higher-rank tensor survives, as
we shall now discuss.

Multidimensional irreps of the crystalline symmetry. This is
a generic example of (discrete) nematic order that is realized
on crystalline lattices with n-fold irreducible representations
(n = 2, 3) of the point group. For instance, hexagonal systems
(with point groups C6 and D6 in 2D) allow two-dimensional
irreducible representations and hence the nematic order pa-
rameter can be parametrized by � = �0[cos(2θ ), sin(2θ )],
which can be cast in the form of a traceless rank-2 tensor as
in Eq. (23). This well-known fact has been exploited recently
in the discussion of nematicity in twisted bilayer graphene,

where coupling to acoustic phonons (different from the optical
phonons in our case) was also considered [56]. Generically,
the lattice pinning will result in a discrete Potts model de-
scription of the nematic DoF, analogous to the previous case,
and upon integrating out the (optical) phonons, the resulting
rank-2 theory will be a discrete one.

When designing possible experimental realizations of the
nematic-phonon coupling, one should thus be aware of the
consequence of such discretization and the decreased number
of DoFs (as exemplified by the traceless condition in the sec-
ond and third examples above), since too few DoFs may result
in ordered phases or states with subsystem symmetries only.
This, however, could also be a blessing in disguise since it
means we have a wider range of R2–U1 theories accessible in
an experiment. A particularly interesting type of such theories,
for instance, is built in 3D from tensors with all diagonal com-
ponents vanishing. Such “hollow” rank-2 theories turn out to
be the gateways toward gapped fracton order upon “Higgsing”
the rank-2 U(1) degrees of freedom [34,35]. The resulting
gapped fracton orders hold great potential for applications in
quantum memory storage.

In summary, we presented a theoretical model with sim-
ple ingredients that can realize the emergent rank-2 U(1)
electrostatics via optical phonon-nematic coupling. Given the
intimate connection between this rank-2 generalized electro-
dynamics and the exotic fracton phases of matter [26,28]
which have recently garnered much attention, the present
work thus paves the way towards natural implementations of
the fracton matter in the experiment. Given the simplicity of
the ingredients (optical phonons and nematic DoF), we hope
this proposal may be realized in various settings, from liquid
crystals to bilayer systems to polar molecules in a periodic
optical potential, and we have outlined several such possible
constructions. The present proposal yields a classical rank-2
theory, which is a necessary first step on the path towards truly
quantum rank-2 electrodynamics and fracton physics. We
have outlined a possible route towards such quantum theory
by incorporating the dynamics of the generalized magnetic
fields into our nematic model.
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APPENDIX A: BRIEF REVIEW OF RANK-2 U(1)
GAUGE THEORY

We start by briefly reviewing a version of rank-2 U(1)
gauge theory, which is to be realized in the models we propose
in this paper.

As its name suggests, the R2-U1 gauge theory uses rank-2
tensors Ei j and Ai j as its electric and gauge field instead of
vectors. More specifically, the tensor field is symmetric,

Ei j = Eji Ai j = Aji. (A1)

The charge is a vector defined as

ρi = ∂kEki . (A2)

075102-8



PHONON INDUCED RANK-2 U(1) NEMATIC LIQUID … PHYSICAL REVIEW B 109, 075102 (2024)

The low-energy sector of the theory has to be charge free,

∂kEki = 0, (A3)

which dictates the form of the gauge-invariance condition,

Ai j → Ai j + ∂iλ j + ∂iλ j . (A4)

The magnetic field is the simplest object that is gauge invari-
ant,

Bi j = εiabε jcd∂
a∂cAbd . (A5)

One can now write down the Hamiltonian for the R2-U1
gauge theory as

HR2-U1 = U∂kEki∂
lEli + Ei jEi j + Bi jBi j

= Uρ2 + E2 + B2. (A6)

Here we assumed the Einstein’s summation rule, while not
caring about the super- and subscripts.

Our aim in this paper is to find out a general, and exper-
imentally realistic, route to realize the classical part of this
Hamiltonian

HR2-U1-cl = Uρ2 + E2. (A7)

The quantum dynamics, i.e., the B2 term, is also possible to
realize, but is highly dependent on the specific setup of the
physical system. It will not be a focus of this paper.

APPENDIX B: SELF-CONSISTENT
GAUSSIAN APPROXIMATION

The self-consistent Gaussian approximation (SCGA) is
an analytical method that treats the nematics in the large-N
limit, which is known to produce rather accurate results in
the spin/nematic liquid phases. Our calculation closely fol-
lows the exposition in Ref. [84]. We first treat �i j as an
independent, freely fluctuating DoF. The Hamiltonian in the
momentum space is written as

ELarge-N = 1
2 �̃HLarge-N�̃

T
, (B1)

in terms of the triad of nematic components (for the
two-dimensional model) �̃ = (�xx,�yy,�xy). The matrix
HLarge−N is the Fourier transformed interaction matrix from
Eq. (4),

HLarge-N = 2�

⎛
⎜⎝

C2
x 0 CxCy

0 C2
y CxCy

CxCy CxCy C2
x + C2

y

⎞
⎟⎠, (B2)

where Cx and Cy are the momentum-dependent functions.
For the square lattice model (Fig. 3), Cx = 2 sin(qx/2), Cy =
2 sin(qy/2), with the lattice constant set to 1.

We then introduce a Lagrange multiplier with coefficient
μ(β ) to the partition function to obtain

Z = exp

{
−1

2

∫
BZ

dq
∫

d�̃�̃[βHLarge-N + μ(β )I]�̃
T
}
,

(B3)

where β denotes the inverse temperature. The purpose of
the term μ(β )�̃I�̃

T
(I stands for the identity matrix) is to

impose, on average, an additional unimodular constraint on
the nematic DoF, such that〈

�2
xx + �2

yy + �2
xy

〉 = 1. (B4)

For a given temperature T = 1/β, the value of μ(β ) is numer-
ically obtained by searching for its value that must satisfy the
constraint∫

BZ
dq

3∑
i=1

1

λi(q) + μ(β )
= 〈

�2
xx + �2

yy + �2
xy

〉 = 1, (B5)

where λi(q), i = 1, 2, 3 are the three eigenvalues of
βHLarge-N (q).

With μ fixed, the partition function is completely deter-
mined for a free theory of �̃, and all correlation functions
in Fig. 2 can be computed by extracting the corresponding
components in [βHLarge-N + μ(β )I]−1.
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