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Minimal Kitaev-transmon qubit based on double quantum dots
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Minimal Kitaev chains composed of two semiconducting quantum dots coupled via a superconductor have
emerged as a promising platform to realize and study Majorana bound states (MBSs), which appear for fine-tuned
configurations. We propose a hybrid qubit based on a Josephson junction between two such double quantum dots
(DQDs) embedded in a superconducting qubit geometry. The qubit makes use of the 4π -Josephson effect in the
Kitaev junction to create a subspace based on the even/odd fermionic parities of the two DQD arrays hosting
MBSs. Deep in the transmon regime, we demonstrate that by performing circuit QED spectroscopy on such
a hybrid Kitaev-transmon “Kitmon” qubit, one could observe distinct MBS features in perfect agreement with
precise analytical predictions in terms of DQD parameters only. This agreement allows us to extract the Majorana
polarization in the junction from the microwave response.
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I. INTRODUCTION

Majorana bound states (MBSs) appearing at the ends of
one-dimensional topological superconductors [1–8] feature
non-Abelian statistics that can be exploited for robust quan-
tum information processing [9]. Although early experiments
showed signatures consistent with their presence, other states
mainly originating from disorder can mimic their behavior,
making it hard to distinguish between trivial and topological
states [10].

Artificial Kitaev chains circumvent the inherent disorder
issues that commonly appear in other platforms. In their min-
imal version, two quantum dots (QDs) couple via a narrow
superconductor that allows for crossed Andreev reflection
(CAR) and single-electron elastic cotunneling (ECT) [11–17].
Minimal Kitaev chains can host localized MBSs when a
so-called sweet spot is reached with equal CAR and ECT am-
plitudes. Although the states are not topologically protected,
they share properties with their topological counterparts, in-
cluding non-Abelian statistics [18,19]. Recent experiments
have shown measurements consistent with predictions at the
sweet spot regime [20], breaking a new ground for the in-
vestigation of MBSs and paving the way toward scaling a
topologically protected long chain and Majorana qubits [6]
with QDs.

Expanding on this idea, we propose here a qubit based
on a minimal Kitaev Josephson junction with four QDs and
embedded in a superconducting qubit geometry, Fig. 1. The
Josephson potential of the QD array modifies the supercon-
ducting qubit Hamiltonian and splits the microwave (MW)
transitions due to the (nearly) degenerate fermionic parities
of the Kitaev chains. Deep in the transmon limit, the qubit
frequency can be analytically written in terms of the energy
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difference between both parities, which can be written in turn
in terms of QD parameters, Eq. (12), in perfect agreement with
full numerics (Fig. 4). This agreement allows us to extract
the Majorana polarization (MP) of the QD chain, Eq. (10),
a measure of the Majorana character of the ground-state wave
function [14,21–23], from the MW response.

II. MODEL

The minimal realization of a DQD-based Kitaev chain can
be written as

HDQD = −
∑

i

μic
†
i ci − tc†

1c2 + �c1c2 + H.c., (1)

where c†
i (ci) denote creation (annihilation) operators on the

i ∈ 1, 2 quantum dot with a chemical potential μi, while t and
� are the coupling strengths mediated by CAR and ECT pro-
cesses across a middle superconducting segment, respectively
[24]. In the many-body basis of occupation states |n1n2〉, the
eigenstates of the problem are bonding/antibonding combina-
tions in each fermionic parity sector (odd |o±〉 ∼ |10〉 ± |01〉
and even |e±〉 ∼ |00〉 ± |11〉) with eigenvalues ε±

o = −μ ±√
t2 + δ2 and ε±

e = −μ ±
√

�2 + μ2, where we have defined
the average chemical potential μ = (μ1 + μ2)/2 and the de-
tuning δ = (μ1 − μ2)/2. Using this language, single-particle
excitations can be defined as transitions between the even and
odd sectors. Importantly, MBSs correspond to zero-energy
excitations between two ground states of different parity at
the sweet spot t = � and μ = δ = 0 [11].

Using this idea, a minimal Kitaev Josephson junction can
be written as H JJ

DQD = HL
DQD + HR

DQD + HJ , where HL
DQD and

HR
DQD are two left/right Kitaev chains based on Eq. (1), and

the Josephson coupling reads

HJ = −tJeiφ/2c†
L,2cR,1 + H.c., (2)
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FIG. 1. Schematic illustration of the Kitaev-transmon device. A
semiconductor (pink) can be gated (yellow) to create two minimal
Kitaev chains (labeled as α = L, R) comprising two quantum dots
(labeled as β = 1, 2), connected via a middle superconductor (blue)
and with chemical potentials μE and μI , external and internal, re-
spectively. Each quantum dot contains two Majorana states γ A

α,β and
γ B

α,β . The two Kitaev chains are connected through a weak link
(hopping tJ , purple region) forming a minimal Majorana Joseph-
son junction. This minimal Kitaev junction is incorporated into a
superconducting circuit, where the superconductors mediating the
coupling between the QDs can act as transmon islands with a small
charging energy EC (tunable by extra junctions that can be opened
to effectively ground either of the two islands, gray lines). The
superconducting phase difference φ across the Kitaev junction is
fixed by an external magnetic flux 
ext applied through a SQUID
loop formed with a reference junction with Josephson energy EJ .

with φ = φR − φL being the superconducting phase difference
and tJ the tunneling coupling between chains (see Fig. 1). The
above model can be written in Bogoliubov–de Gennes (BdG)
form as H JJ

BdG = 1
2�†H JJ

DQD�, in terms of an eight-Majorana
Nambu spinor

� = (
γ A

L,1 γ B
L,1 γ A

L,2 γ B
L,2 γ A

R,1 γ B
R,1 γ A

R,2 γ B
R,2

)T
.

(3)

As we discuss below, the BdG model contains a standard
Josephson coupling ∼ cos φ involving the “bulk” fermions
together with a Majorana-mediated 4π Josephson effect of
order ∼ cos φ

2 . The latter involves coherent single-electron
tunneling with a characteristic energy scale EM . From the
perspective of circuit QED, previous papers have discussed
how a Majorana junction in a transmon circuit splits spec-
tral lines corresponding to different fermionic parities due to
EM �= 0 [25–32]. In what follows, we discuss this physics in
the context of the DQD minimal Kitaev Josephson junction
to analyze the novel aspects that arise when this promising
new platform is integrated into a superconducting circuit.
Specifically, deviations from the sweet spot will be analyzed
in terms of QD chemical potentials in the mirror–symmetric
configurations, μL,1 = μR,2 = μE and μL,2 = μR,1 = μI (ex-
ternal versus internal), such that μ ≡ (μE + μI )/2 and δ ≡
(μE − μI )/2 (in what follows, we also consider �L = �R =
� and tL = tR = t).

III. FOUR MAJORANAS SUBSPACE

A convenient way of gaining physical intuition is by pro-
jecting the above full model onto a low-energy subspace. The

simplest approach, widely used in previous literature [33–36],
is to use a subspace spanned by just four MBSs: the two inner
γ B

L,2 and γ A
R,1, and the two external γ A

L,1 and γ B
R,2. This results

in an effective Josephson potential

V JJ
DQD(φ) = EM cos

φ

2
σx + ES

M sin
φ

2
σy + λσz, (4)

where σi are Pauli matrices defined onto the pseudospin parity
space spanned by |0〉 ≡ |nL = 0, nR = 0〉 and |1〉 ≡ |nL =
1, nR = 1〉, where nL = nL,1 + nL,2 and nR = nR,1 + nR,2 are
the fermion occupations in the left/right segments of the
junction. ES

M and λ are due to additional inter- and intra-
Majorana couplings {γ A

L,1 ↔ γ A
R,1, γ B

L,2 ↔ γ B
R,2} and {γ A

L,1 ↔
γ B

L,2, γ A
R,1 ↔ γ B

R,2}, respectively (for a detailed discussion, see
Appendix A). In the mirror-symmetric case, ES

M = λ = 0,
which gives

V JJ
DQD(φ) = tJ

2

[
1 − μ2

E

(t + �)2

]
cos

φ

2
σx. (5)

From this, it becomes clear that driving tJ would induce tran-
sitions between the qubit |0〉 and |1〉 states. Rotations along
the equator can be achieved by coupling the Majorana states
in the same Kitaev chain by detuning it away from the sweet
spot, a term proportional to λ in Eq. (4).

While being able to capture some of the phenomenology,
including the EM renormalization with the external gates, this
four-Majorana projection has important limitations. Most im-
portantly, detuning the chemical potentials μE and μI away
from zero affects the localization of the MBSs, which acquire
some weight in “bulk” sites removed from the projection (for
instance, a μE �= 0 induces weight of the order of ∼μE

t in
the inner dots [11]). This makes the four-Majorana projection
insufficient to describe the physics of the DQD junction [for
a full derivation of Eq. (5) and a detailed discussion about the
limitations of this projection, see Appendix A].

IV. BEYOND FOUR MAJORANAS

To go beyond the previous projection and its limitations,
we choose the subspace spanned by the two lowest-energy
many-body eigenstates {|o−

L , o−
R 〉, |e−

L , e−
R 〉} resulting from di-

agonalizing each isolated segment in the basis of occupation
states. The diagonal Hamiltonian in the bipartite Hilbert space
HL ⊗ HR can be represented on the basis of joint eigenstates
{|iL, jR〉 = |iL〉 ⊗ | jR〉} with i, j = o±, e± (see Appendix B):

H̃L + H̃R = (
P−1

L HLPL
) ⊗ IR + IL ⊗ (

P−1
R HRPR

)
, (6)

where Pα is the change-of-basis matrix onto the eigenbasis
of each chain. The off-diagonal Josephson term H̃J can be
easily represented on the joint-occupation basis {|nL,1, nL,2〉 ⊗
|nR,1, nR,2〉}nα,i=0,1 and then projected onto the eigenbasis by
the change-of-basis matrix PLR = PL ⊗ PR, which allows us to
obtain the Josephson potential analytically (see Appendix B).
Specifically, for the mirror-symmetric case, the many-body
eigenvalues ε±

e/o are equal for both left and right chains, and
this Josephson potential reduces to a very compact form

V JJ
DQD(φ) =

(
2 ε−

o EM cos φ

2
EM cos φ

2 2 ε−
e

)
(7)
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FIG. 2. Majorana polarization and Majorana coupling.
(a) 2EM/tJ and (b) |MPE | as a function of μE and μI . 2EM/tJ ,
|MPE |, and |MPI | as a function of (c) μE with μI = 0 and
(d) μE = μI = μ [blue and green dotted lines in panel (a),
respectively]. �/t = 1 for all panels.

with

EM = tJ�t

2(μ + ε−
o )(μ + ε−

e )
= tJ�t

2
√

(t2 + δ2)(�2 + μ2)
. (8)

Expanding Eq. (8) to leading order of μ and δ, we recover EM

in Eq. (5) for t = � and μ = δ (μI = 0).

V. MAJORANA POLARIZATION

For tJ = 0, the many body problem described above can
be separated into two independent blocks of even ({|o±

L , o±
R 〉,

|e±
L , e±

R 〉}) and odd ({|e±
L , o±

R 〉, |e±
L , o±

R 〉}) total parity, which

leads to a twofold-degenerate spectrum. To determine whether
these degeneracies are associated with MBSs, we use the

MP defined on the left Kitaev chain as MPi = w2
i −z2

i

w2
i +z2

i
, with

wi = 〈o|ci + c†
i |e〉, zi = 〈o|ci − c†

i |e〉, and i ∈ I, E (for conve-
nience, we already use the mirror-symmetric notation). For the
left DQD, we take |e〉 = |o−

L , o−
R 〉 and |o〉 = |e−

L , o−
R 〉, which

gives

MPE/I = t�

±δμ − (μ + ε−
o )(μ + ε−

e )
, (9)

where we have omitted the left subscript for simplicity. A
similar treatment can be performed for the right chain where
now the indexes I/E are exchanged.

For t = �, |MPE | (|MPI |) is maximum when μ = δ (μ =
−δ), that is, when μL,2 = 0 (μL,1 = 0), and it reads

MPI/E = −EM
tJ
2 ± δμ

t� EM

(10)

with EM given by Eq. (8). Note that for δ = 0 or μ = 0
(μE = μI or μE = −μI , respectively), MP is equal on every
QD and it is directly proportional to EM , see Fig. 2. Therefore,
a direct measurement of the MP via EM is possible through
MW spectroscopy, as we discuss now.

VI. HYBRID SUPERCONDUCTING QUBIT MODEL

We now study a DQD-based Majorana Josephson junction
in a superconducting qubit geometry (namely a split junction
shunted by a capacitor, with charging energy EC [37]; see
Fig. 1) described by the Hamiltonian

H = 4EC (n̂ − ng)2 − EJ cos(φ̂) + V JJ
DQD(φ̂ − φext ). (11)

FIG. 3. MW spectroscopy in the charging regime. Levels, parity texture 〈τz〉, and S(ω) from the solutions of Eq. (11) against ng with
μE = μI = 0 for (a)–(f) �/t = 0.5, 1, 1.5, and φext = 0; and (g)–(l) φext = π/2, π, 3π/2, and � = t (from top to bottom). EJ = EC = t and
tJ/t = 1 in all panels. All energies are shown in units of the plasma frequency ωpl = √

8EJ EC .
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Here, n̂ = −i ∂

∂φ̂
is the Cooper-pair number operator, conju-

gate to the junction superconducting phase difference φ̂, and
ng = Qg/(2e) = Vg/(2eCg) is the gate-induced offset charge
in the island (in units of Cooper pairs). The phase difference
across the DQD Josephson junction can be controlled by the
magnetic flux through the SQUID loop 
ext = φext
0/(2π ),
where 
0 = h/2e is the superconducting flux quantum. Using
the solutions of (11) [38], the microwave (MW) absorption
spectrum [39] of the superconducting island can be written
in linear response as S(ω) = ∑

k |〈k|n̂|0〉|2δ(ω − ω0k ), where
the index k orders the eigenstates of the system with increas-
ing energies. This response measures the energy transitions
ω0k = ωk − ω0 between the ground state E0 = h̄ω0 and the
excited states Ek = h̄ωk and with a probability weighted by
the matrix elements of n̂.

Single-electron tunneling processes mediated by the off-
diagonal terms of the DQD-based Josephson potential in
Eq. (7) lead to very specific predictions in the spectrum
that should be easily detected using standard circuit QED
techniques. For example, crossing the sweet spot, while keep-
ing μE = μI = 0, from the ECT-dominated regime [t > �,
Fig. 3(a)] to the CAR-dominated regime [t < �, Fig. 3(c)],
changes the fermionic parity of the GS. This is reflected as
an exact 1e shift in ng in the MW spectra [compare Figs. 3(d)
and 3(f)]. At the sweet spot for t = �, the intraband coupling
leads to maximally mixed parity states 〈τz〉 = 0 with avoided
crossings around ng = 0.25 and 0.75, Fig. 3(b). This results
in an overall 1e-periodic MW spectrum with a strong low-
frequency response near these gates, Fig. 3(e). Therefore, the
intraband transition ω01 is a direct indication of an EM �= 0 in
the spectrum.

VII. KITAEV-TRANSMON REGIME

A way to check that the low-frequency MW transitions ω01

near ng = 0.25 and ng = 0.75 are indeed due to parity mixing
mediated by MBSs in the DQD junction, instead of quasipar-
ticle poisoning [40–42], is to prove that they can be tuned by
φext, and reach a minimum value at φext = π , Figs. 3(j)–3(l).
Note, however, that due to quantum phase fluctuations, the
Josephson potential V JJ

DQD in Eq. (11) depends on a phase
drop that deviates from the external phase imposed by the
circuit, hence resulting in a residual splitting at ng = 0.25 that
does not close completely at φext = π . This effect is shown in
Fig. 4(a), where we plot the full φext dependence correspond-
ing to the MW spectra of Figs. 3(j)–3(l) at fixed ng = 0.25.
Interestingly, parity changes due to Majorana physics are al-
ready evident as a spectral hole near φext = π in the transition
ω02. By tracing such a spectral hole in ω02 (or, equivalently,
the appearance of the transition ω03), we can identify when
a true energy crossing occurs in the system as a function of
increasing EJ/EC ratios, Figs. 4(b) and 4(c). While, generally,
an analytical expression of the energy splitting at ng = 0.25
would require knowing the explicit form of the qubit wave
functions, the deep transmon regime with EJ/EC � 1 allows
us to approximate these eigenfunctions to two coupled (parity-
defined) harmonic-oscillator states sharpened around φext. In
this regime, the Kitmon qubit frequency ωKiT ≡ ω01 can be

FIG. 4. Kitaev-transmon qubit spectroscopy. (a) Full phase de-
pendence of the MW absorption spectrum of Figs. 3(g)–3(l) at ng =
0.25. (b),(c) Spectral weights for transitions ω02 (S2) and ω03 (S3) as
a function of φext and EJ/EC at the sweet spot (� = t , μE = μI = 0).
(d)–(i) MW absorption spectra as a function of (d) φext at the sweet
spot; (e) μE with μI = 0 and � = t and φext = 0; (f),(g) μE = μI =
μ with � = t and φext = 0, π ; and (h)–(i) �/t with μE = μI = 0
and φext = 0, π . Green dashed lines correspond to the analytical
qubit frequency ωKiT in Eq. (12). For panels (d)–(i) we have fixed
EJ = 50EC = 50t . tJ/t = 1 for all panels. All energies are shown in
units of the plasma frequency ωpl = √

8EJ EC .

written as

ωKiT ≈ 2

√
(ε−

e − ε−
o )2 + E2

M cos2 φext

2
(12)

[a detailed check of the validity of Eq. (12) for increasing
values of EJ/EC ratios can be found in Appendix D]. When
t = � and δ = ±μ (μI = 0 or μE = 0), the qubit frequency
is directly proportional to EM ,

ωKiT ≈ 2EM cos
φext

2
= tJ

1 + (μ/�)2
cos

φext

2
. (13)

A direct comparison between the full numerics and
Eq. (12) against different parameters of the junction,
Figs. 4(d)–4(i), demonstrates an almost perfect agreement.
Therefore, MW measurements like the ones discussed here
should allow us to check our predictions, e.g., the resonant
behavior against μE in Eq. (13), see Fig. 4(e). More impor-
tantly, a measurement like the one shown in Figs. 4(f) and
4(g) (namely ωKiT versus μ = μE = μI , hence δ = 0) would
allow us to directly extract EM and hence determine the MP
polarization of the junction via Eq. (10).

In conclusion, we have proposed a minimal Kitaev-
Transmon qubit based on a QD Josephson junction array
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embedded in a superconducting circuit. Deep in the trans-
mon regime with EJ/EC � 1 we have found an analytical
expression for the qubit frequency, Eq. (12), that allows us
to obtain very precise predictions of its evolution against
QD parameters, Fig. 4, and to extract the Majorana polar-
ization. These predictions in terms of analytics would allow
us to experimentally distinguish the physics discussed here
from either quasiparticle poisoning or 4π phase slips due
to QD resonances [43]. The Kitmon qubit architecture is
a natural extension of the recent experimental implementa-
tions of nanowire-based double island devices [44], gatemons
[45–48], and Andreev spin qubits [49], although free from the
uncertainties originated from disorder. Most importantly, QD-
based Josephson junctions embedded in a transmon circuit
have recently been implemented experimentally [41,42,50]. In
the strong Coulomb blockade regime, they have been used to
show spin-split MW transition lines [51] forming a QD-based
superconducting spin qubit coherently coupled to a trans-
mon [52]. In this context, our DQD proposal could be seen
as a minimal Majorana-based nonlocal parity pseudospin,
Eqs. (7) and (12), coupled to a transmon. All this experimental
progress, together with the recent demonstration of poisoning
times of the order of milliseconds [53] and quasiparticle trap-
ping engineering [54–57], make the physics discussed here
within reach [58] with superconductor-semiconductor hybrid
devices [59].
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APPENDIX A: FOUR MAJORANAS SUBSPACE

1. Effective low-energy projection

To derive a quantitative low-energy description of our sys-
tem, we project the full Hamiltonian H JJ

DQD—Eqs. (1) and (2)
of the main text—onto the fermionic parity subspace that
forms the superconducting qubit. This procedure considers
both standard Josephson events due to Cooper pair tunneling,
as well as anomalous Majorana-mediated events, where a sin-
gle electron is transferred across the junction. Hence, we can
distinguish two contributions of the Josephson potential, VJ =
V bulk

J + V JJ
DQD. The first one takes into account the bulk con-

tribution of the Bogoliubov–de Gennes (BdG) levels above
the gap to the ground-state energy, which we just assume to
be of the standard form V bulk

J (φ) = −EJ cos φ. The second
contribution corresponds to the subgap sector, and it can be
expressed as the projection onto a fermionic parity basis of an

effective model of four Majorana operators, γ A
L,1, γ

B
L,2 ∈ L and

γ A
R,1, γ

B
R,2 ∈ R, corresponding to the end modes of both chains.

Its effective Hamiltonian takes the general BdG form

Hγ = i

2

(
γ A

L,1 γ B
L,2 γ A

R,1 γ B
R,2

)

×

⎛
⎜⎜⎝

0 λL1,L2 λL1,R1 λL1,R2

−λL1,L2 0 λL2,R1 λL2,R2

−λL1,R1 −λL2,R1 0 λR1,R2

−λL1,R2 −λL2,R2 −λR1,R2 0

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

γ A
L,1

γ B
L,2

γ A
R,1

γ B
R,2

⎞
⎟⎟⎟⎠.

(A1)

Our objective is now to relate H JJ
DQD to this general effective

model of four Majoranas Hγ to obtain an explicit expression
of its coefficients. Thus, we project the BdG form of the
former, H JJ

BdG—Eqs. (1) and (2) of the main text using the
Majorana spinor in Eq. (3) of the main text—onto the low-
energy subspace of Majorana operators. To do that, we define
a basis of fermionic operators

cα = 1√
2

(
γ A

α,1 + iγ B
α,2

)
, c†

α = 1√
2

(
γ A

α,1 − iγ B
α,2

)
, (A2)

and we compute the matrix elements of the resolvent of H JJ
BdG,

G(ω) = [
(ω + i ε)I − H JJ

BdG

]−1
, ε → 0+ (A3)

at ω = 0 on the ψ0 = (cL, cR, c†
L, c†

R)T
0 state basis. The proce-

dure is as follows: first of all, we calculate G(ω) by inverting
the matrix (ω + i ε)I − H JJ

BdG written on the Majorana state
basis of the whole system,

� =(
γ A

L,1 γ B
L,1 γ A

L,2 γ B
L,2 γ A

R,1 γ B
R,1 γ A

R,2 γ B
R,2

)T
.

(A4)

Then, we evaluate this resolvent matrix at ω = 0 and we
project it onto the ψ0 basis, expressed in terms of � states as

(1 0 0 0)T
0 ≡ 1√

2
(1 0 0 i 0 0 0 0)T ,

(0 1 0 0)T
0 ≡ 1√

2
(0 0 0 0 1 0 0 i)T ,

(0 0 1 0)T
0 ≡ 1√

2
(1 0 0 −i 0 0 0 0)T ,

(0 0 0 1)T
0 ≡ 1√

2
(0 0 0 0 1 0 0 −i)T .

(A5)

This gives rise to a 4 × 4 matrix(
H−1

0

)
i j = 〈

ψ0
i

∣∣G(ω = 0)
∣∣ψ0

j

〉
, (A6)

whose inverse

H0 = 1

2

∑
i, j

ψ
0†
i (H0)i jψ

0
j (A7)

is the projection of H JJ
DQD onto the subspace of low-energy

fermions. Finally, a simple change of basis ψ0 → ψγ =
(γ A

L,1, γ
B
L,2, γ

A
R,1, γ

B
R,2)T

γ will allow us to identify this matrix H0

with the effective subgap Hamiltonian (A1). Indeed, writing
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the ψγ basis states in terms of ψ0 components,

(1 0 0 0)T
γ ≡ 1√

2
(1 0 1 0)T

0 , (0 1 0 0)T
γ ≡ 1√

2
(−i 0 i 0)T

0 ,

(0 0 1 0)T
γ ≡ 1√

2
(0 1 0 1)T

0 , (0 0 0 1)T
γ ≡ 1√

2
(0 −i 0 i)T

0 , (A8)

we can express the Hamiltonian H0 in this new basis as

(Hγ )i j = 〈
ψ

γ
i

∣∣H0

∣∣ψγ
j

〉
, (A9)

which yields

Hγ = 1

2

∑
i j

ψ
γ †
i (Hγ )i jψ

γ

j

= i

2
ψγ †

⎛
⎜⎜⎜⎜⎜⎝

0 μL,1μL,2−(tL+�L )(tL−�L )
tL+�L

− tJμL,1 sin φ

2
tL+�L

− tJμL,1μR,2 cos φ

2
(tL+�L )(tR+�R )

(tL+�L )(tL−�L )−μL,1μL,2

tL+�L
0 tJ cos φ

2 − tJμR,2 sin φ

2
tR+�R

tJμL,1 sin φ

2
tL+�L

−tJ cos φ

2 0 μR,1μR,2−(tR+�R )(tR−�R )
tR+�R

tJμL,1μR,2 cos φ

2
(tL+�L )(tR+�R )

tJμR,2 sin φ

2
tR+�R

(tR+�R )(tR−�R )−μR,1μR,2

tR+�R
0

⎞
⎟⎟⎟⎟⎟⎠ψγ . (A10)

Therefore, we can identify each element of this ma-
trix with one coefficient λαβ of Eq. (A1). This effective
Hamiltonian contains three different contributions: (i) terms
∼ cos(φ/2) and ∼ sin(φ/2) are interchain Majorana cou-
plings {γ B

L,2 ↔ γ A
R,1, γ A

L,1 ↔ γ B
R,2} and {γ A

L,1 ↔ γ A
R,1, γ B

L,2 ↔
γ B

R,2}, respectively, whereas (ii) φ-independent terms are in-
trachain couplings {γ A

L,1 ↔ γ B
L,2, γ A

R,1 ↔ γ B
R,2}. As we will see

in Appendix A 3—Eq. (A16)—the intercouplings ∼ sin(φ/2)
will give rise to an off-diagonal contribution acting on the
pseudospin parity space additional to the term EM cos(φ/2)
usually found in the literature. It should also be noted that
this low-energy projection is an approximation: the separation
between bulk and subgap contributions is only well-defined
if the subgap modes are well-detached from the quasicontin-
uum.

2. Comparison between eight and four Majoranas

Since our main objective is to study the physics of a su-
perconducting qubit modified by the presence of the DQD
Josephson junction, we first check the limitations of the ef-
fective Josephson potential obtained previously. At this level,
it is enough to compare results from the projected potential in
Eq. (A10) with the phase-dependent energy spectrum E (φ)
of the BdG form of the full Hamiltonian H JJ

BdG before any
projection, Fig. 5. At the sweet spot [� = t , μE = μI = 0,
Fig. 5(a)], the subgap spectrum shows a 4π Josephson ef-
fect indicating the presence of Majorana zero modes (thin
gray lines). This spectrum originates from the fusion (energy
splitting) of the inner MBSs living in the junction γ B

L,2 and
γ A

R,1 (which is maximum at φ = 0, 2π ), but without breaking
the degeneracy point at φ = π . Moreover, two states remain
at zero energy for all phases, corresponding to the Majo-
rana states γ A

L,1 and γ B
R,2 living in the outermost quantum

dots. In this regime, both the full solution (left panel) and
the four MBSs projection (right panel) coincide. Of course,
the latter does not capture the bulk solutions that disperse

with phase near 2� = 2t . Deviations from the sweet spot
by changing the internal chemical potential μI �= 0 do not
affect the low-energy spectrum but open gaps in the bulk
(colored lines). When moving away from the sweet spot by
tuning the external chemical potentials μE �= 0, while keeping
μI = 0, the spectrum remains 4π–periodic. In this case, the
low-energy states are lifted away from zero energy, Fig. 5(b)
(blue/green colored lines), resulting in a characteristic dia-
mondlike shape. The crossings forming the diamonds become
avoided crossings for μI �= 0 and μE �= 0, Fig. 5(c), which
also splits the crossings of the bulk bands near φ = π , giving
an overall 2π -periodic spectrum. In contrast, a zero-energy
state persists for μE = 0 and independently from μI , even at
large values, Fig. 5(d), corresponding to the Majorana states
of the outermost dots having zero weight in the inner ones.
In this regime, the effect of detuning μI away from the sweet
spot only affects the localization of the inner Majorana state,
decreasing the splitting between the blue states, and resulting
in a robust 4π -periodic spectrum.

In all the cases described above, the approximation derived
in Eq. (A10) using four Majorana states describes well the
low-energy states of the system close to the sweet spot. In
contrast, this approximation largely deviates from the results
of the full Hamiltonian for sufficiently large μE � � and
irrespective of μI , Figs. 5(e) and 5(f). In this regime, the bulk
solutions that appear at E ∼ 2� at the sweet spot hybridize
with the low-energy states, renormalizing their energy and
strongly affecting their dispersion against phase. Therefore,
the low-energy states cannot be described by only four Majo-
rana states (one per dot).

We demonstrate the importance of considering all the
Majorana states in every dot by calculating the real space-
resolved distribution of the wave functions, taken as the
probability Pj (γ

A/B
α,i ) = 〈ψ j |�A/B

α,i 〉〈�A/B
α,i |ψ j〉 of the eigenstate

|ψ j〉 of H JJ
BdG on each mode γ

A/B
α,i , represented in the Majorana

basis (A4). Here indices i = 1, 2 and α = L, R denote the sites
of each chain, whereas j = green, blue labels the different
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(a) (b) (c)

(d) (e) (f)

FIG. 5. Evolution of the energy spectrum as a function of φ for the parameter trajectory indicated in each panel. In each case, the leftmost
panels correspond to the BdG form of the full Hamiltonian—Eqs. (1) and (2) using the Majorana spinor (3) of the main text—and the
rightmost panels to the four Majoranas projection—Eq. (A10). Gray/colored levels denote the beginning/end of each trajectory. We have fixed
tJ = t = � for every panel.

levels that appear in Fig. 5. As we can see in Fig. 6, at the
sweet spot the outermost Majoranas are pinned to zero energy
(green states in Fig. 5), whereas (oscillating) blue states cor-
respond to innermost Majoranas at φ = 0. Starting from this
point, varying φ causes the blue states to delocalize along the
junction. A similar behavior is found on the green states with
variations of μE outside the sweet spot. Changing tJ , however,
does not cause any change in the wave functions of the subgap
states.

The fact that the eigenstates of the system have non-
negligible values outside the low-energy subspace points to a
limitation of the projection performed in the previous section,
which is only valid close to the sweet spot. As we discuss in
what follows, a low-energy subspace that is written in terms
of many-body occupations (even and odd) of the system is
much more powerful. Starting first from the four Majoranas
projection written in the many-body fermionic occupation
basis (Appendix A 3), we obtain the corresponding subgap
Josephson potential [Eq. (5) in the main text]. In Appendix B,
we go beyond this picture and describe the effective low-
energy physics of the problem in terms of total many-body
occupations including contributions from the four QDs (eight
MBSs) forming the Josephson junction, which allows us to
obtain a subgap Josephson potential that includes terms con-
taining both μE and μI on an equal footing and to all orders
[Eq. (8) of the main text].

3. Projection in the left/right fermionic parity basis

We can now write the matrix elements of V JJ
DQD in the

fermionic parity basis |nL, nR〉. For the total even-parity state,

the effective Josephson coupling reads

V JJ
DQD =

(〈00|Hγ |00〉 〈00|Hγ |11〉
〈11|Hγ |00〉 〈11|Hγ |11〉

)
. (A11)

Since the parity states are defined such that (similar for
cR, c†

R)

c†
L|nL, nR〉 =

√
nL + 1|nL + 1, nR〉,

cL|nL, nR〉 = √
nL|nL − 1, nR〉, (A12)

n̂L|nL, nR〉 = c†
LcL|nL, nR〉 = nL|nL, nR〉,

and attending to the decomposition of these fermionic opera-
tors in Majorana operators (A2), we can write the following
operations:

iγ A
α,1γ

B
α,2|00/11〉 = −/ + |00/11〉,

γ A
L,1γ

A
R,1|00/11〉 = −/ + |11/00〉,

iγ A
L,1γ

B
R,2|00/11〉 = |11/00〉, (A13)

iγ B
L,2γ

A
R,1|00/11〉 = |11/00〉,

γ B
L,2γ

B
R,2|00/11〉 = +/ − |11/00〉.

Therefore, the subgap contribution written in the even
fermionic parity basis is

〈00|Hγ |00〉 = −(λL1,L2 + λR1,R2),

〈11|Hγ |11〉 = λL1,L2 + λR1,R2,

〈00|Hγ |11〉 = iλL1,R1 + λL1,R2 + λL2,R1 − iλL2,R2,

〈11|Hγ |00〉 = −iλL1,R1 + λL1,R2 + λL2,R1 + iλL2,R2, (A14)
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FIG. 6. Evolution of the space distribution of subgap states as a function of (a) tJ with μE = μI = 0 and φ = 0; (b) φ with μE = μI = 0;
(c) μE with μI = 0 and φ = 0; and (d) μI with μE = 0 and φ = 0. We have fixed � = t = tJ for all panels, and subtitles refer to each eigenstate
plotted in Fig. 5.

where λαβ are the matrix elements of (A10). Finally, the subgap Josephson potential takes the form

V JJ
DQD(φ) = 1

2

(
2(t+�)(t−�)−(μL,1μL,2+μR,1μR,2 )

t+�
tJ

(
1 − μL,1μR,2

(t+�)2

)
cos φ

2 − itJ
μL,1−μR,2

t+�
sin φ

2

tJ
(
1 − μL,1μR,2

(t+�)2

)
cos φ

2 + itJ
μL,1−μR,2

t+�
sin φ

2
(μL,1μL,2+μR,1μR,2 )−2(t+�)(t−�)

t+�

)
. (A15)

Therefore, we can split this subgap effective potential in three different terms acting on a pseudospin parity space [Eq. (4) of
the main text],

V JJ
DQD(φ) = EM cos

φ

2
σx + ES

M sin
cos

2
σy + λσz, EM = tJ

2

(
1 − μL,1μR,2

(t + �)2

)
,

ES
M = tJ

μL,1 − μR,2

2(t + �)
, λ = 2(t + �)(t − �) − (μL,1μL,2 + μR,1μR,2)

2(t + �)
. (A16)

It is straightforward to see that, when restricting ourselves to the symmetric case μL,1 = μR,2 = μE and μL,2 = μR,1 = μI ,
the Josephson potential reduces to Eq. (5) of the main text.

APPENDIX B: BEYOND THE FOUR MAJORANAS PROJECTION:
PROJECTION ONTO A FULL MANY-BODY PARITY BASIS

A reasonable alternative treatment of the problem is to choose as our new fermionic parity subspace the two lowest-energy
many-body eigenstates {|O−

L , O−
R 〉, |E−

L , E−
R 〉} of both chains isolated from each other (tJ = 0), where

Hα =

⎛
⎜⎜⎝

0 0 0 �α

0 −μα,1 −tα 0
0 −tα −μα,2 0

�α 0 0 −(μα,1 + μα,2)

⎞
⎟⎟⎠ (B1)
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is the many-body Hamiltonian of one chain in the basis of occupation states {|00〉, |10〉, |01〉, |11〉}. Defining μα = (μα,1 +
μα,2)/2 and δα = (μα,1 − μα,2)/2, its eigenstates and eigenenergies are

|O−
α 〉 = (

0, �A
α,1, �B

α,1, 0
)T ∝

(
0,

2δα + ε+
αO − ε−

αO

2tα
, 1, 0

)T

, ε−
αO = −μα −

√
t2
α + δ2

α,

|O+
α 〉 = (

0, �A
α,2, �B

α,2, 0
)T ∝

(
0,

2δα − ε+
αO + ε−

αO

2tα
, 1, 0

)T

, ε+
αO = −μα +

√
t2
α + δ2

α,

|E−
α 〉 = (

�A
α,3, 0, 0, �B

α,3

)T ∝
(−ε+

αE

�α

, 0, 0, 1

)T

, ε−
αE = −μα −

√
�2

α + μ2
α,

|E+
α 〉 = (

�A
α,4, 0, 0, �B

α,4

)T ∝
(−ε−

αE

�α

, 0, 0, 1

)T

, ε+
αE = −μα +

√
�2

α + μ2
α. (B2)

To construct the Hamiltonian of the junction living in the bipartite Hilbert space HL ⊗ HR, we represent it on the basis of
joint eigenstates {|iL, jR〉 = |iL〉 ⊗ | jR〉} with i, j = O±, E±. Thus, the Hamiltonian H̃ JJ

DQD = H̃L + H̃R + H̃J has a diagonal term

H̃L + H̃R = (
P−1

L HLPL
) ⊗ IR + IL ⊗ (

P−1
R HRPR

) = diag(ε−
LO, ε+

LO, ε−
LE , ε+

LE ) ⊗ IR + IL ⊗ diag(ε−
RO, ε+

RO, ε−
RE , ε+

RE ), (B3)

where Pα is the change-of-basis matrix onto the eigenbasis of each chain. On the other hand, the off-diagonal term H̃J is due
to the Josephson tunneling between both chains, which can be easily represented on the joint-occupation basis {|nL,1, nL,2〉 ⊗
|nR,1, nR,2〉}nα,i=0,1 and then projected onto the eigenbasis by the change-of-basis matrix PLR = PL ⊗ PR.

Finally, the Josephson potential (ignoring higher-order contributions from the rest of the eigenstates) can be written as

V JJ
DQD =

(〈O−
L , O−

R |H̃ JJ
DQD|O−

L , O−
R 〉 〈O−

L , O−
R |H̃ JJ

DQD|E−
L , E−

R 〉
〈E−

L , E−
R |H̃ JJ

DQD|O−
L , O−

R 〉 〈E−
L , E−

R |H̃ JJ
DQD|E−

L , E−
R 〉

)
,

〈O−
L , O−

R |H̃JJ
DQD|O−

L , O−
R 〉 = ε−

LO + ε−
RO, 〈E−

L , E−
R |H̃JJ

DQD|E−
L , E−

R 〉 = ε−
LE + ε−

RE ,

〈E−
L , E−

R |H̃JJ
DQD|O−

L , O−
R 〉 = tJ

⎛
⎝4t2

√
ε+

RE

ε+
LE

eiφ/2 +
√

ε+
LE

ε+
RE

(2δL + ε−
LO − ε+

LO)(2δR + ε−
RO − ε+

RO)e−iφ/2

⎞
⎠

×
�

√
(2δL + ε+

LO − ε−
LO)(2δR + ε+

RO − ε−
RO)

8t2
√

(ε+
LO − ε−

LO)(ε+
RO − ε−

RO)(ε+
LE − ε−

LE )(ε+
RE − ε−

RE )

= −tJ�
A
L,1�

A
R,1

(
�B

L,3�
A
R,3eiφ/2 − �B

L,4�
A
R,4

�A
L,2�

A
R,2

�B
L,2�

B
R,2

e−iφ/2

)
. (B4)

One can see that if the chemical potentials are constrained to the special symmetric choice μL,1 = μR,2 = μE and
μL,2 = μR,1 = μI (external versus internal), such that μL = μR = (μE + μI )/2 = μ and δL = −δR = (μE − μI )/2 = δ, and
considering �L = �R and tL = tR, this Josephson potential reduces to the simpler form [Eq. (7) of the main text]

V JJ
DQD(φ) =

⎛
⎝ −2μ − 2

√
t2 + δ2 tJ�t

2
√

(t2+δ2 )(�2+μ2 )
cos(φ/2)

tJ�t

2
√

(t2+δ2 )(�2+μ2 )
cos(φ/2) −2μ − 2

√
�2 + μ2

⎞
⎠. (B5)

Moreover, asymmetries in CAR and ECT amplitudes be-
tween left and right chains could arise in an experimental
realization of the device. However, we can demonstrate that all
the physics of the MW response presented in this work remain
true at the sweet spot (∀μα,i = 0, tα = �α), but with different
tL and tR. Indeed, when all the chemical potentials are tuned
to zero, EM is independent of tα and the diagonal terms of the
Josephson potential are equivalent to the symmetric case:

V JJ
DQD(φ) =

( −tL − tR
tJ
2 cos(φ/2)

tJ
2 cos(φ/2) −�L − �R

)
. (B6)

Hence, the spectral hole shown in Fig. 4 of the main
text will arise at the sweet spot although tL �= tR, as a clear
signature of the 4π -Josephson effect. Furthermore, the ex-
act 1e shift in ng going from the ECT-dominated regime to
the CAR-dominated regime will also appear, as the diagonal
splitting between the even and odd states does not depend
on the coupling strengths in each single chain, but the global
ratio (tL + tR)/(�L + �R). Finally, note that the possibility of
extracting EM from the qubit frequency ωKiT in the transmon
regime is a universal prediction that remains true for any
configuration of the parameters of the device.
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FIG. 7. Transition frequency ω01 for EJ/EC = 2, 4, 10, 50, compared to analytical result (D1), black line, as a function of (a) φext at the
sweet spot; (b) μE with μI = 0, � = t , and φext = 0; (c),(d) μE = μI = μ with � = t and φext = 0, π , respectively; and (e),(f) �/t with
μE = μI = 0 and φext = 0, π , respectively. We have fixed tJ/t = 1 for all panels.

APPENDIX C: MAJORANA POLARIZATION

The Hamiltonian H JJ described above can be separated
into two independent blocks of even ({|O±

L , O±
R 〉, |E±

L , E±
R 〉})

and odd ({|E±
L , O±

R 〉, |E±
L , O±

R 〉}) total parity, which leads to
a twofold-degenerate spectrum. To determine whether these
degeneracies are associated with MBSs, we use the Majo-
rana polarization (MP). This magnitude quantifies the MBS
quality and is defined as the degree that a Hermitian operator
localized on one of the quantum dots can switch between the
lowest-energy states of even and odd blocks,

MPα,i = w2
α,i − z2

α,i

w2
α,i + z2

α,i

, wα,i = 〈O|cα,i + c†
α,i|E〉,

zα,i = 〈O|cα,i − c†
α,i|E〉. (C1)

We can see that, for tJ = 0, MP can be written as

MPα,i = tα�α

(−1)i+1δαμα −
√(

t2
α + δ2

α

)(
�2

α + μ2
α

) , (C2)

where |E〉 = |O−
L , O−

R 〉, |O〉α=L = |E−
L , O−

R 〉, |O〉α=R =
|O−

L , E−
R 〉. Restricting ourselves to tα = �α , |MPα,1| (|MPα,2|)

is maximum when μα = δα (μα = −δα), that is, when
μα,2 = 0 (μα,1 = 0).

Furthermore, from (B5), the effective Majorana coupling
EM is related to this quantity such that

EM = −tJMPα,i/2

1 + (−1)i+α δμ

t�MPα,i

, (C3)

where α = {0 ≡ L, 1 ≡ R}. Thus, if μE = μI (μE = −μI ),
that is, δ = 0 (μ = 0), then EM is proportional to MP: EM =
−tJMP/2.

APPENDIX D: INTRABAND SPLITTING IN
TRANSMON REGIME

At ng = 0.25, the energy splitting between the ground
state and the first excited state is merely due to the sub-
gap Josephson potential since the rest of the terms on the
qubit Hamiltonian give rise to a doubly degenerate state at
this point. Hence, it is reasonable to express the Kitmon
qubit frequency ωKiT ≡ ω01 as the difference between the two
eigenvalues of V JJ

DQD(φ),

�E JJ(φ) = 2

√
(
√

t2 + δ2 −
√

�2 + μ2)2 + E2
M cos2 φ

2
.

(D1)

As we can see, this difference depends on φ and, hence, one
should know the explicit form of the qubit wave functions to
relate this quantity to ω01. Nevertheless, in the deep transmon
regime (EJ/EC � 1) these eigenfunctions can be approxi-
mated to harmonic-oscillator states sharpened around φext, so
that the Kitmon frequency is ωKiT ≈ �E JJ(φext )—Eq. (12)
of the main text. Likewise, in the transmon regime the qubit
spectrum is insensitive to changes in the charge offset ng, this
approximation being valid for every parametric configuration
of the system, even when diagonal terms of V JJ

DQD(φ) are not
equal and these avoided crossings do not occur at ng = 0.25
in the charging regime.

Figure 7 displays the transition frequency ω01(ng = 0.25)
as a function of different parameters, showing their evolution
with increasing EJ/EC ratios. We show the convergence to
�E JJ(φext ) in the limit EJ/EC � 1.

We can also check this approximation numerically by cal-
culating the distance between the curves that the analytical
result (D1) and ω01 trace for increasing EJ/EC ratios. The
distance between two curves described by the functions f (x)
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FIG. 8. Distance between curves ω01 and �E JJ(φext ) as a func-
tion of EJ/EC for the same curves shown in Fig. 7 (see the legend).

and g(x) over a parametric trajectory x ∈ X is written as

d ( f , g) =
(∫

X
dx | f (x) − g(x)|2

)1/2

. (D2)

As we can observe in Fig. 8, increasing the ratio EJ/EC

minimizes the distance between numerical results and our
analytical approximation, which allows us to predict ωKiT with
great precision in the deep transmon regime.

Finally, we include some additional results that show a full
progression of the energy spectrum and its MW response for
increasing EJ/EC ratios. In particular, we can see in Fig. 9
an enhancement of the insensitivity to the charge offset as
the qubit enters in the transmon regime, with a dominant
transition ω02. Furthermore, Fig. 10 shows how the spectral
hole in ω02 at φext narrows until true energy crossing appears
as the EJ/EC ratio increases.

APPENDIX E: NUMERICAL METHODS
FOR THE MAJORANA-TRANSMON QUBIT:

TIGHT-BINDING TREATMENT

1. Phase space

In phase space, the numerical solution of the qubit Hamil-
tonian

HQ = 4EC (n̂ − ng)2 + VJ (φ) (E1)

is accomplished by discretizing the phase space as φ j =
2π j/lφ , with j = 1, . . . , lφ , defining a set of sites arranged
into a circular chain. In so doing, the Hamiltonian acquires a
tight-binding form and it allows us to define a finite fermionic
Hilbert space and operators b(†)

j such that their action on the

ground state is b†
j |0〉 = �(φ j ), where �(φ) is the eigenstate at

phase φ.
Then, starting from the definition of the derivative

df (x)

dx
= lim

h→0

f (x + h) − f (x − h)

2h
, (E2)

we can express the operator n̂ = −i∂φ in the discretized form

−i∂φ = −i
(b†

i+1 − b†
i−1)bi

2aφ

, (E3)

where aφ = 2 sin(π/lφ ) is a phase lattice constant. By con-
struction, the second derivative is defined as

d2 f (x)

dx2
= lim

h→0

f (x + h) − 2 f (x) + f (x − h)

h2
, (E4)

so we can write

∂2
φ = (b†

i+1 − 2b†
i + b†

i−1)bi

a2
φ

. (E5)

Hence, the Hamiltonian (E1) reads

H =
∑

j

b†
jh

φ
j b j +

∑
〈 j,k〉

b†
jv

φ

jkbk,

hφ
j = 4EC

(
2a−2

φ + n2
g

) + VJ (φ j ), (E6)

v
φ

jk = 4EC
[
sgn( j − k)inga−1

φ − a−2
φ

]
,

where each site element hφ
j , v

φ

jk is a 2 × 2 matrix, due to the
pseudospin structure from even-odd projection.

Secondly, the eigenstates of the Hamiltonian (E1) are
defined as a two-component spinor �k = ( fk (φ), gk (φ))T

with periodic/antiperiodic boundary conditions in phase
space, f (φ + 2π ) = f (φ) and g(φ + 2π ) = −g(φ), due to
their even/odd fermionic parity. To make the Hamiltonian
fully periodic, it is rotated according to H (φ) → UH (φ)U †,
with U = diag (1, eiφ/2). Therefore, the final form of the

FIG. 9. Full evolution of the energy spectrum and its MW response as a function of ng at the sweet spot (φext = 0) for EJ/EC = 1.5, 3, 5, 10
(from left to right).
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FIG. 10. Full evolution of the energy spectrum and its MW response as a function of φext at the sweet spot for EJ/EC = 1.5, 3, 5, 10 (from
left to right).

Hamiltonian (E1) is

H =
(

h(ng) + V 11
J V 12

J e−i φ

2

ei φ

2 V 21
J h

(
ng + 1

2

) + ei φ

2 V 22
J e−i φ

2

)
, (E7)

and hence the site elements hφ
j and v

φ

jk change according to
this transformation.

2. Charge space

In charge representation, the set of states {|n〉}∞n=−∞ form
an orthonormal basis of such space. Here, the number of
Cooper pair operators is defined as

n̂ =
∞∑

n=−∞
n|n〉〈n|, (E8)

whereas the action of its conjugate operator φ on each one of
those states is

eikφ |n〉 = |n + k〉. (E9)

Therefore, the Hamiltonian (E1) can be expressed as

H =
∞∑

n=−∞
(n − ng)2|n〉〈n| + VJ (φ), (E10)

where the form of the Josephson potential is conditioned by
its phase-dependent terms, the most usual of which are

cos(kφ) = 1

2

∞∑
n=−∞

(|n + k〉〈n| + H.c.),

sin(kφ) = −i

2

∞∑
n=−∞

(|n + k〉〈n| − H.c.). (E11)

Indeed, for more complex potentials, we can perform a
Fourier transform that reduces it to a simple sum of these
terms. This representation gives rise to an identical spec-
trum to that calculated in phase space. However, in this case
we require a smaller (truncated) number of sites N of the
tight-binding Hamiltonian matrix, so this method needs less
computational power and time than the other one. Note that,
in phase space, dim = 2N since each site is a spinor with two
possible parities, whereas in charge space we have a set of
states {|n〉} (n = −N,−N + 1/2, . . . , 0, 1/2, . . . , N), so that
dim = 2N + 1.

Indeed, Fig. 11 shows the convergence of the first four
states as a function of N , defined as the maximum number
of sites that discretize the tight-binding space. This conver-
gence is defined as the distance between the curves that

FIG. 11. Distance between curves EN−1
i (ng) and EN

i (ng) (where i = 0, 1, 2, 3 labels eigenstates of increasing energy) at the sweet spot as
a function of a cutoff N . Numerical methods are implemented in (a) charge space and (b) phase space.
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each eigenstate traces (as a function of ng) with N − 1 and
N sites. It is straightforward to see that the tight-binding

method converges much faster in charge space than in phase
space.
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