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Signatures of triplet superconductivity in ν = 2 chiral Andreev states
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We study the behavior of the conductance and the current noise in three-terminal configurations of edge modes
of a quantum Hall system in the ν = 2 filling factor with normal and s-wave superconducting contacts. We
discuss the impact of spin-orbit coupling in the quantum Hall system and the possibility of effectively inducing
triplet pairing in the edge states. We show that the presence of these correlations imprints very clear signatures
in both the nonlinear conductance and noise in these type of devices.
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I. INTRODUCTION

The coexistence of superconductivity with the quantum
Hall regime and the peculiar nature of the chiral Andreev
states that develop in the edge states when contacted to su-
perconductors motivated several works [1–7]. The search for
realization of topological superconductivity with p-wave pair-
ing [8–10] provided an extra boost to the study of such hybrid
structures. In fact, one of the proposed platforms to realize this
phase in two-dimensional structures relies on the hybridiza-
tion of a quantum anomalous Hall system with an s-wave
superconductor [11]. This strategy is akin to contacting the
edge states of the quantum Hall state to s-wave superconduc-
tors [12,13]. These ideas heightened the interest in studying
the exotic properties of these systems and resulted in a notable
upsurge in both experimental [14–25] and theoretical [26–34]
endeavors.

Several of these experiments focus on graphene
[15–19,23,25,35] since this material has the advantage of
requiring low magnetic fields, which favors the coexistence
of the quantum Hall regime with superconductivity. However,
experiments in hybrid structures with superconductors where
the two-dimensional electron system (2DES) is realized in
other materials such as InAs and InSb have also been reported
[2,20–22,24,36]. In such a scenario, spin-orbit coupling
(SOC) is expected to play a relevant role. The theoretical
description of SOC in a 2DES under the quantum Hall regime
has been discussed in Refs. [37,38]. The combination with
superconductors has been discussed in the spin-polarized
ν = 1 filling factor [7,39]. There, it was shown that the
Rashba SOC in the interface between the 2DES and the
superconductor in combination with the magnetic field leads
to an effective p-wave type of pairing in the chiral edge mode.
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In this paper, we analyze configurations where an s-wave
superconductor is proximitized to a 2DES in the quantum Hall
regime with filling factor ν = 2. This is the lowest ν host-
ing chiral Andreev states induced by proximity with s-wave
superconductors for which experimental results have been re-
ported. We show that the interplay between the magnetic field,
the SOC, and the superconductivity induces superconducting
pairing with both s- and p-wave-type components in the edge
states even when the SOC exclusively affects the 2DES. This
is a realistic scenario for compounds based on In [24], where
SOC is expected to be strong in contrast with graphene, where
it is thought to be weak. Importantly, we demonstrate that
nonlinearities in the dispersion relation of the edge states lead
to the development of p-wave superconductivity. We consider
a setup with three terminals—two normal ohmic contacts and
the superconductor—with a voltage bias applied at one of
the normal contacts, as sketched in Fig. 1. We calculate the
conductance within and beyond the linear response as well
as the current noise at the drain normal terminal. We show
that the behavior of these quantities provides crucial insight
into the nature of the pairing induced at the edge states.
Specifically, the presence of p-wave pairing reveals itself
through nonlinear response in both the conductance and the
noise. This phenomenon becomes a distinctive hallmark of the
elusive p-wave superconductivity.

II. MODEL

Our first goal is the derivation of an effective Hamiltonian
for the edge states of the 2DES under the ν = 2 quantum
Hall regime for the configuration sketched in Fig. 1(a) with
the s-wave superconductor contacted in a region of length L.
The 2DES is in the (x, y) plane under the effect of a magnetic
field in the z direction, which induces a Zeeman field in this
direction, in addition to the orbital magnetism. The 2DES is
also subject to a SOC of the Rashba type, induced by the elec-
tric field �E = E0�z, which is expected for this geometry. Such
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FIG. 1. (a) Sketch of the setup. The two-dimensional electron
system (2DES) in the quantum Hall state in the ν = 2 filling fac-
tor is contacted within a length L with a grounded superconductor
terminal. The edge states are also connected through normal ohmic
contacts to source and drain terminals at potentials V and zero,
respectively. (b) Profile of Landau levels and edge states with a
dispersion relation consistent with a spin-orbit coupling effectively
inducing p-wave-type intraedge pairing on the edge states. (c) Pairing
processes induced by proximity on the edge states. Without spin-
orbit coupling (SOC), only s-wave pairing interedge exists (see light
blue arrows). The effect of the SOC is to induce additional triplet
pairing (see violet ellipses).

interaction is described in terms of the following Hamiltonian:

HSOC = −μB

c2
(�vp × �E ) · �S, (1)

where μB is the Bohr magneton, while �S, �vp = vp�x, and
m are the spin, the velocity, and the mass of the electron,
respectively.

The evolution from the spectrum of bulk Landau levels to
edge modes has been the subject of many studies [40–44]. It is
usual to describe the edge states in terms of a linear dispersion
relation. It is, however, known that, in some phenomena, such
as thermalization of edge states, the deviation from linear
dispersion is found to play a crucial role [45–47]. Here, we
focus on the impact of such nonlinear effects on the SOC and
the consequences on the induced pairing. We consider edge
modes with the dispersion relation sketched in Fig. 1(b), and
we substitute Eq. (1) by the expansion with respect to the
Fermi momentum pF :

vp = dEp

d p
� v + δv(p − pF ), (2)

Under the effect of the external Zeeman field and the SOC,
the Hamiltonian matrix for the edge modes can be expressed
in the basis (cp,↑, cp,↓) with the spin-quantization axis along
z. It reads

H0(p) = vσ 0(p − pF ) − BZσ z − Bλσ
y − vλσ

y(p − pF ),

(3)

where the first term represents the kinetic energy assuming the
usual linear dispersion with velocity v, corresponding to the
velocity at the Fermi momentum. The second term represents
the Zeeman field. The SOC is described in terms of an effec-
tive magnetic field Bλ = μBvE0/(mc2), which corresponds to

substituting the constant term of the velocity in Eq. (1) and a
spin-dependent correction to the kinetic term corresponding to
the correction δv. The latter is encoded in the parameter vλ =
μBδvE0/(mc2). Reported calculations for the Landau levels in
the presence of SOC and a confinement potential generating
the edge states are fully consistent with this picture [37,38].
The Hamiltonian in Eq. (3) can be diagonalized, and the
corresponding eigenstates define the scattering states injected
from the source and exiting at the end of the superconducting
contact toward the drain (see Fig. 1).

We now consider the effect of the pairing correlations
induced on the edge modes by the proximity to the supercon-
ductor. The Hamiltonian describing the local s-wave pairing
reads

H� =
∫ L

0
dx[ψ†

↑(x)�sψ
†
↓(x) + H.c.], (4)

where the field operators describe the electrons with spin
σ =↑,↓ in the position x along the edge. It is important
to stress that the projection of this pairing in the basis that
diagonalizes Eq. (3) has singlet-type interedge and triplet-type
intraedge components (see Appendix A). The corresponding
amplitudes read, respectively,

�0 � BZ
�s

B0
, �T,p � −v� p. (5)

We have introduced the definition v� = �svλ/B0, with B0 =√
B2

Z + B2
λ.

The resulting Bogoliubov–de Gennes (BdG) Hamiltonian
expressed in the basis that diagonalizes Eq. (3) reads

HBdG(p) = τ 0 ⊗ [vpσ 0 − B0σ
z] − ε0τ

z ⊗ σ 0

+ {v�(x), p}τ x ⊗ σ y + �0(x)τ x, (6)

where σ j, τ j, j = 0, . . . , 3 are 2 × 2 unit matrices ( j = 0)
and the three Pauli matrices ( j = 1, 2, 3) acting, respectively,
on the spin (with the quantization axis along �B0) and particle-
hole degrees of freedom. Here, the pairing functions v�(x)
and �0(x) are nonvanishing in the finite region 0 � x � L.
We also introduced the parameter ε0, which considers that
the Fermi level of the 2DES can be slightly shifted away
from vpF without changing the filling factor by recourse to
a gate voltage. Finally, {v�, p} denotes the anticommutator,
which accounts for the spatial dependence of v� in terms of
a Hermitian operator. This Hamiltonian defines the effective
model for energies lower than �s to describe the edge states
of the 2DES with SOC in proximity with the superconductor.

In compounds like those studied in Ref. [24], the SOC
acts on the full 2DES. The starting point in our derivation
of Eq. (6) was an effective model for the edge modes in
the presence of SOC, including terms beyond the usual lin-
ear dispersion relation of these modes. In what follows, we
benchmark the validity of our conclusions against results of
numerical calculations based on a 2D lattice Hamiltonian for
the full structure, accounting for the effect of a magnetic
field, the SOC, and the proximity with the s-wave super-
conductor. This model is obtained by discretizing the BdG
equations describing the 2DES contacted with the supercon-
ductor (see Appendix B for details). In these calculations,
periodic boundary conditions in the x direction (parallel to
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FIG. 2. Left: Spectrum calculated with exact diagonalization of a discretized Bogoliubov–de Gennes (BdG) Hamiltonian on a square
lattice (with lattice parameter a) with a magnetic flux and spin-orbit coupling (SOC) within the normal region and local s-wave pairing in the
superconducting region (see text). Periodic boundary conditions are considered along x. Right: Probability density of the chiral Andreev states
indicated with the arrow in the left panel, along the direction y together with the weight of the polarization components 〈Sy〉 and 〈Sz〉 (top)
and the functions ti,k,σ and si,k characterizing the pairing amplitudes in the triplet and singlet channels (bottom). Inset: Ratio R between of the
space-averaged triplet and singlet amplitudes as a function of the strength of the SOC, as defined in the text. For details on the parameters see
Appendix B.

the boundary between the two systems) are imposed. The
2DES is defined in the region denoted by N in Fig. 2. In
this region, a Peierls phase accounts for the magnetic flux,
and a Zeeman field is also considered. The remaining sites
define the superconductor (region S in the figure), where the
Hamiltonian has a local s-wave pairing. The effect of the SOC
is described by a Rashba Hamiltonian in the 2DES with a
modulating function 1

2 − tanh[(y − yb)/ξλ]/2, with yb being
the position of the boundary between the 2DES and the su-
perconductor and ξλ a characteristic length of a few lattice
sites that describes a smooth transition decay of the SOC into
the superconductor. The chemical potential is fixed to have
the 2DES in the ν = 2 filling factor, corresponding to the
state where the two Zeeman levels of the lowest Landau
level are filled. The spectrum of the BdG Hamiltonian is
shown in the left panel of Fig. 2 as a function of the wave
vector k defined along the x direction. We can clearly iden-
tify the two pairs of particle-hole chiral Andreev states. As
mentioned before, due to the combination of the Zeeman
field and the effective SOC field, the spin of these states has
components 〈Sz〉 and 〈Sy〉. The upper right panel of Fig. 2
shows the behavior of these components along the y direction
and across the interface for one of the edge states. For the
other chiral Andreev state, we observe a similar behavior (see
Appendix B). We notice that both states overlap in space
with similar weights and opposite signs of 〈Sz〉 and 〈Sy〉.
This behavior is in agreement with the description of the
effective model of Eq. (6). In the bottom-right panel of
Fig. 2, we analyze the singlet and triplet pairing compo-
nents of these states. To this end, we define the function

si,k = 〈ci,k,↑ci,−k,↓ − ci,k,↓ci,−k,↑〉 as a measure of the singlet
pairing in the state k at the lattice site with coordinate i along
the y direction. Similarly, the functions ti,k,↑ = 〈ci,k,↑ci,−k,↑〉
and ti,k,↓ = 〈ci,k,↓ci,−k,↓〉 are signatures of triplet pairing. The
behavior of these quantities for the state at zero energy (in-
dicated with arrows in the figure) is in full agreement with
the effective Hamiltonian. Furthermore, we can see in the
inset that the ratio R = ∑

i(|ti,k,↑|2 + |ti,k,↓|2)/
∑

i |si,k|2 goes
to zero as the intensity of the SOC vanishes, in agreement with
Eq. (5).

III. TRANSPORT PROPERTIES

Having verified the validity of the effective Hamiltonian
for the edge states defined in Eq. (6), we now focus on the
analysis of the transport properties generated by a bias voltage
V at the source reservoir. We rely on this model to calculate
the conductance associated to the current entering the drain
reservoir as well as the associated noise.

The current can be expressed in terms of the transfer matrix
M(E ) relating the outgoing states with respect to the super-
conductor (for x > L) with the incoming ones (for x < 0). It
reads (see Appendix C)

J = e

2h

4∑
α=1

∫
dEMα,α (E , E ) fα (E ), (7)

with M(E , E ′) = M†(E ) τ z ⊗ σ 0 M(E ′). Here, α labels the
four components of the spinor associated with the incoming
electrons. Hence, fα (E ) = 1/{1 + exp[(E − μα )/kBT ]} is the
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Fermi function corresponding to the temperature T and the
bias voltage for the particle and hole components. Respec-
tively, μ1 = μ2 = eV and μ3 = μ4 = −eV .

Expanding the Fermi functions, we get the expressions for
the linear and nonlinear components of the conductance from
J = ∑∞

n=0 G(2n+1)V 2n+1. We introduce the definition of the
transmission function:

T (E ) = 1
2 Tr[τ z ⊗ σ 0M(E , E )], (8)

in terms of which the different orders of the conductance at
T = 0 read

G(2n+1) = e2

h

1

(2n + 1)!

d (2n)T (E )

dE (2n)

∣∣∣∣
0

. (9)

We notice that only the odd powers in V are nonvanishing.
Following a similar procedure we calculate the noise

corresponding to the current-current correlation (details are
presented in Appendix D). It can be expressed as follows:

S(eV ) = e2

4h2

∑
α,α

∫
dEMαα (E , E )Mαα (E , E )Fα (E ), (10)

where we have introduced the definition Fα (E ) = fα (E )[1 −
fα (E )]. The nonvanishing combinations in the sum are α =
1, 2; α = 3, 4.

The transfer matrix for the Hamiltonian in Eq. (6) is (see
Appendix E)

M(E ) = exp

{
iLEv

h̄ṽ2

}
exp

{
iL

h̄ṽ

[
ε0τ

z ⊗ σ 0 − B0τ
0 ⊗ σ z

+ �0 τ x ⊗ σ 0 − v�E

ṽ
τ x ⊗ σ y

]}
, (11)

with ṽ =
√

v2 − v2
�, assuming v > v�.

IV. RESULTS

It is useful to analyze the limiting cases of pure singlet-type
interedge pairing corresponding to �0 �= 0, v� = 0 and pure
triplet pairing corresponding to �0 = 0, v� �= 0. Although
the latter limit cannot be achieved in the model defined from
Eq. (5), we analyze it here as a reference. In these cases,
we can derive the following analytical expressions for the
transmission function. For the pure singlet case, we have

Ts = 2

r2
s

[
ε2

0 + �2
0 cos

(
2L

vh̄
rs

)]
, v� = 0, ∀B0, (12)

where rs =
√

ε2
0 + �2

0. We clearly see that the transmission
function is independent of E , which implies a purely linear
conductance:

G(1)
s = TsG0, G(2n+1)

s = 0, n �= 0. (13)

This is expected to display oscillations as a function of ε0 for
fixed values of the parameters L,�0. Such oscillations will
become sizable for L > ξ0, with ξ0 = (h̄v)/�0, the effective
superconducting length on the edge. Unlike the usual trans-
mission function for normal systems, Ts displays changes in
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FIG. 3. Conductance and noise as a function of the bias voltage
V at temperature T = 0, for a superconducting contact of width
L = 10ξ0 and BZ = 0.2�0. �0 = �s = 1 and v�/v = 0.2. Dashed
lines correspond to v�/v = 0. Bottom panels correspond to �0 = 0.
Different plots correspond to different values of the gate voltage
represented by ε0. All the energies are expressed in units of �s.

the sign as a function of the gate voltage represented by ε0.
This striking feature is a consequence of the exotic nature
of these Andreev states, which consist of an interference of
particles and holes propagating chirally. This peculiar behav-
ior has been reported in experimental studies [23,24].

Instead, for the pure triplet-type intraedge case, the trans-
mission function depends on E and reads

Tt (E ) =
∑

σ=↑,↓

1

r2
t,σ

[
ε2
σ +

(
v�E

ṽ

)2

cos

(
2Lrt,σ

ṽh̄

)]
,

�0 = 0, (14)

with ε↑,↓ = ε0 ± B0 and rt,σ =
√

ε2
σ + ( v�

ṽ E )2. Remarkably,
Tt (0) = 2, which implies that the linear conductance is al-
ways equal to the ideal conductance quantum per channel for
any value of ε0, B0. The other remarkable feature is the fact
that the nonlinear conductance is nonvanishing. Explicitly,
the linear conductance and the lowest nonlinear component
read

G(1)
t = 2G0, G(3)

t = −8G0

3

(
v�

ṽεσ

)2

sin2

(
L|εσ |

ṽh̄

)
.

(15)

The analysis of the behavior of the transmission function
T (E ) in cases with both singlet and triplet types of pairing
is presented in Appendix E.

The current noise also exhibits a very different behavior in
these two limits. While it is a linear as a function of V for pure
singlet pairing, it is fully nonlinear for the pure triplet case.

The nonlinear conductance dJ/dV as well as the noise
dS/dV are shown, respectively, in the left/right panels of
Fig. 3 for temperature T = 0. The upper panels of the
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figure correspond to a system with both singlet and triplet
components in the pairing. As a reference, we show in dashed
lines the corresponding (constant) values for pure singlet
pairing defined in Eq. (13). The limit of pure triplet pair-
ing is shown in the bottom panels, where we see that the
conductance approaches the limit G(1)

t defined in Eq. (15),
while dS/dV vanishes as V → 0. The behavior of these quan-
tities in the case of both types of pairing has features of the two
limiting cases. In fact, the conductance becomes flat as V → 0
and tends to a value different from 2G0. Furthermore, it may
achieve positive as well as negative values as ε0 changes, as is
the case for pure singlet pairing, albeit the values at V = 0 are
different from the ones for v� = 0 shown in dashed lines. For
large V , the nonlinear response clearly emerges. The behavior
of dS/dV is also different from zero for V → 0, as in the case
for pure singlet pairing. As V increases, the nonlinear features
are also clear in the behavior of the noise.

V. CONCLUSIONS AND DISCUSSION

We have shown that, in a 2DES under the ν = 2 quantum
Hall regime in proximity to an s-wave superconductor, s-
wave-type interedge as well as p-wave-type intraedge pairing
is induced in the chiral edge states as a consequence of the
spin-orbit coupling.

We have calculated the transport properties, and we have
identified the hallmark of the two types of pairing components
in the behavior of the conductance and current noise. The
most remarkable feature introduced by the triplet pairing is the
development of a nonlinear response in both the conductance
and the noise, which could be easily identified in experimental
studies. This component is originated in the intraedge pairing
induced in the chiral edge modes under the influence of the
spin-orbit coupling. We have shown that a fundamental ingre-
dient in this scenario is to consider the nonlinear dispersion
relation of these states. This intraedge triplet component coex-
ists with the singlet interedge component. The latter generates
a linear response in the conductance with a peculiar positive
or negative sign, which could be tuned by means of a gate
voltage.

So far, only signatures of such a singlet interedge type
of pairing have been detected in experiments carried out in
ν = 2 quantum Hall systems in proximity to superconductors
[15,24]. In fact, it is important to notice that only the behavior
of the linear conductance has been reported in these works.
Our results constitute a motivation for the analysis of non-
linear features in In-based devices and other systems where
spin-orbit coupling is expected to play a role. We expect that
such nonlinear features should be robust and amenable to be
observed in experimental samples hosting spin-orbit coupling.

ACKNOWLEDGMENTS

We are grateful for stimulating conversations with Felix
von Oppen, Stefan Heun, Matteo Carrega, and Alexander
Mirlin. Support from CONICET as well as FonCyT, Ar-
gentina, through Grants No. PICT-2018-04536 and No. PICT
2020-A-03661 (L.A.); No. PICT 2016-0791, No. PICT 2018-
1509, and No. PICT 2019- 0371 (C.A.B.), and Grant No.
PIP-CONICET 11220150100506 (C.A.B.) is acknowledged.

A.L.Y. acknowledges support from Spanish AEI through
Grant No. PID2020-117671GB-I00 and EU through FET-
Open grant AndQC.

APPENDIX A: INDUCED PAIRING IN EDGE STATES
WITH SOC AND A ZEEMAN FIELD

Equation (3) can be diagonalized by the transformation:(
cp,↑
cp,↓

)
=

(
up −vp

vp up

)(
c̃p,+
c̃p,−

)
, (A1)

with

up = 1√
2

√
1 + BZ

rp
,

vp = i√
2

sgn[λp]

√
1 − BZ

rp
, (A2)

where rp =
√

λ2
p + B2

Z .
In the transformed basis, the Hamiltonian reads

H0 =
∑
s=±

E0
p,sc̃

†
p,sc̃p,s, (A3)

with

E0
p,s = v(p − pF ) + s

√
[vλ(p − pF ) + Bλ]2 + B2

Z

� v(p − pF ) + sB0. (A4)

We have introduced the definition B0 =
√

B2
Z + B2

λ, and in the
last step, we assumed B0 � vλ(p − pF ).

We now consider the effect of the pairing term induced by
the proximity to the superconductor described by the Hamil-
tonian:

H� = �0

∑
p

(c†
p,↑c†

−p,↓ − c†
p,↓c†

−p,↑ + H.c.). (A5)

Substituting the change of basis, it can be written as follows:

H� =
∑
p,s

[�S,p(sc̃†
p,sc̃

†
−p,−s + H.c.)

+ �T,p(c̃†
p,sc̃

†
−p,s + H.c.)],

which describes pairing in the singlet interedge and triplet
intraedge channels. The corresponding amplitudes read, re-
spectively,

�S,p = �s
(
u2

p − v2
p

) = �0
BZ

rp
,

�T,p = −2�supvp = −�0
λp

rp
, (A6)

which reduce to Eq. (5) for dominant B0.

APPENDIX B: NUMERICAL SIMULATIONS

To analyze the properties of the chiral Andreev states at the
interface between a spin-orbit coupled 2DES in the quantum
Hall regime and a proximitixed superconducting region, we
discretize the corresponding BdG equations in a square lat-
tice (with lattice parameter a), which leads to the following
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FIG. 4. Left: Spectrum calculated with exact diagonalization of a discretized Bogoliubov–de Gennes (BdG) Hamiltonian on a square
lattice (with lattice parameter a) with a magnetic flux and spin-orbit coupling (SOC) within the normal region and local s-wave pairing in the
superconducting region (see definitions in the main text). Periodic boundary conditions are considered along x. Right: Probability density of
the chiral Andreev states indicated with the arrows in the left panel (top) and amplitudes of the pairing potential in the singlet (middle) and
triplet channels (bottom).

model Hamiltonian:

H2D =
Ntot∑

i=1,k

�
†
i,k{[2t cos(ka + τzφi ) − μi − 4t]τzσ0 − 2α sin(ka + τzφi)σyτ0 − �iτxσz + Vi,Zσzτ0}�i,k

+
Ntot−1∑
i=1,k

�
†
i,k (tτzσ0 + iασxτ0)�i+1,k + H.c., (B1)

where �i,k = (ci,k,↑ ci,k,↓ c†
i,−k,↓ c†

i,−k,↑)T ; and t =
−h̄2/(2m∗a2) is a nearest-neighbor spin-conserving hopping
determined by the discretization parameter a and the effective
mass m∗, αi is a spin-flipping hopping amplitude determined
by the Rashba spin-orbit coupling in each region, μi and �i

are the local chemical and pairing potentials, respectively, Vi,Z

is the Zeeman field, and φi is the Peierls phase determined
by the applied field. In this model, we have assumed periodic
boundary conditions on the x direction, so that the momentum
h̄k in this direction is conserved. Within this model, the first
Nn sites correspond to the normal region, where �i = 0,
Vi,Z = VZ , and μi = μn, while the rest of the Ntot − Nn sites
correspond to the superconducting region, where �i = �,
Vi,Z = 0, and μi = μs.

We assume that the spin-orbit coupling varies as

αi = α0

4a

{
1 − tanh

[
(i − Nn)a

ξλ

]}
,

where ξλ is the characteristic length of a few lattice sites
describing a smooth decay of the SOC inside the supercon-
ducting region.

On the other hand, the magnetic field is assumed to be finite
only in the normal region, so that

φi =
{

c φ

Nn
(i − Nn) if i � Nn

0 if i > Nn
,

where φ is the total flux in the normal region in units of the
flux quantum.

For the calculations in Fig. 4, we have used Ntot = 400,
Nn = 100, a = 2 nm, m∗ = 0.08, μn = 3.3 meV, μs = 18.8
meV, α0 = 25 meV nm, � = 1 meV, VZ = 0.2 meV, and φ =
1.75π/4. These are the same as in Fig. 1.

APPENDIX C: DETAILS ON THE CALCULATION
OF THE CONDUCTANCE

The current entering the drain reservoir is

J = ev

2

4∑
α=1

〈[�o(t )†τ z ⊗ σ 0�o(t )]α,α〉, (C1)

where the field operator �o(t ) = [ψo,↑(t ), ψo,↓(t ),
ψ

†
o,↓(t ),−ψ

†
o,↑(t )]T is defined for the edge states, in the

region x > L, between the end of the scattering region and
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the drain normal contact. We introduce the representation:

�o(t ) =
∫

dE√
hv

exp

(
− i

h
Et

)
�o(E )

=
∫

dE√
hv

exp

(
− i

h
Et

)
M(E )�i(E ), (C2)

with M(E ) being the transfer matrix relating incoming and
outgoing particles. We define the matrix:

M(E , E ′) = M†(E )τ zM(E ′). (C3)

Substituting Eq. (C2) into Eq. (C1), we get

J = e

2h

4∑
α,α′=1

∫
dEdE ′Mα,α′

(E , E ′)
〈[
�α

i (E )
]†

�α′
i (E ′)

〉
,

(C4)
In these expressions, �α

i/o denotes the component α of the
spinor �i/o defined previously. We now consider that〈[

�α
i (E )

]†
�α′

i (E ′)
〉 = fV (E )δα,α′δ(E − E ′), α = 1, 2,〈[

�α
i (E )

]†
�α′

i (E ′)
〉 = f−V (E )δα,α′δ(E − E ′), α = 3, 4.

(C5)

Hence, after some algebra, we get

J = e

2h

4∑
α=1

∫
dEMα,α (E , E ) fα (E ), (C6)

where fα (E ) = 1/{1 + exp[(E − μα )/kBT ]} is the Fermi
function corresponding to the temperature T and the bias volt-
age μα = ±eV with +, (−) for α = 1, 2, (3, 4), respectively.

To fulfill conservation of the current, the following should
be satisfied:

2∑
α=1

Mα,α (E , E ) +
4∑

α=3

Mα,α (E , E ) = 0. (C7)

APPENDIX D: DETAILS ON THE CALCULATION
OF THE NOISE

The noise correlation function at a voltage V is defined as

S(eV ) =
∫ ∞

−∞
dτS(t, t − τ ),

S(t, t ′) = 〈[δJ (t )δJ (t ′) + δJ (t ′)δJ (t )]〉, (D1)

with δJ (t ) = ṄN(t ) − J (t ).
Following a similar procedure as with the current, we eval-

uate

S = e2

4h2

∑
α1,α2,β1,β2

∫
dE1dE2dE3Mα1α2 (E1, E2)Mβ1β2 (E3, E3)

× 〈[
�

α1
i (E1)

]†
�

α2
i (E2)

[
�

β1
i (E3)

]†
�

β2
i (E3)

〉− JJ. (D2)

We analyze∑
α1,α2,β1,β2

〈[
�

α1
i (E1)

]†
�

α2
i (E2)

[
�

β1
i (E3)

]†
�

β2
i (E3)

〉

=
∑

α1,α2β1,β2

〈[
�

α1
i (E1)

]†
�

β2
i (E3)

〉〈
�

α2
i (E2)

[
�

β1
i (E3)

]†〉
+ . . . , (D3)

where . . . denotes a term that cancels out with JJ in Eq. (D2).
The other terms are〈[

�
α1
i (E1)

]†
�

β2
i (E3)

〉〈
�

α2
i (E2)

[
�

β1
i (E3)

]†〉
= δ(E1 − E3)δ(E2 − E3)

× δα1,β2δα2,β1 fα1 (E1)
[
1 − fα2 (E2)

]
. (D4)

APPENDIX E: DETAILS OF THE CALCULATION
OF THE TRANSFER MATRIX

Following the procedure explained in Ref. [7], we define
the operator:

ṽJ = ∂H

∂ p
≡ vτ 0 ⊗ σ 0 + v�τ x ⊗ σ y, (E1)

which transforms the original Hamiltonian into a Hermitian
one:

H̃BdG(x) = J−1/2HBdG(x)J−1/2. (E2)

Given the operator defined in Eq. (E1), we can calculate

J−1/2 = aτ 0 ⊗ σ 0 + bτ x ⊗ σ y, (E3)

with the result:

a = ± 1√
2ṽ

√
v ± ṽ, b = ∓ v�√

2ṽ
√

v ± ṽ
,

ṽ =
√

v2 − v2
�. (E4)

Therefore,

H̃BdG(x) = −i∂xṽτ 0 ⊗ σ 0 − ε0(a2 − b2)τ z ⊗ σ 0

+ �0[(a2 + b2)τ x ⊗ σ 0 + 2abτ 0 ⊗ σ y]

= −i∂xṽσ 0 ⊗ τ 0 − ε0τ
z ⊗ σ 0

+ �0

[
v

ṽ
τ x ⊗ σ 0 − v�

ṽ
τ 0 ⊗ σ y

]
. (E5)

The transfer matrix is calculated from

H̃BdG(x)�̃(x) = EJ−1�̃(x),

J−1 = 1

ṽ
(vτ 0 ⊗ σ 0 − v�τ x ⊗ σ y), (E6)

and �̃(x) = J1/2�(x), with ṽ =
√

v2 − v2
�, where we fo-

cus on v > v�. Hence, �̃(x1) = M(E )�̃(x2). The result is
Eq. (11).
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