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Simple solvable model for heavy-fermion superconductivity from the two-fluid normal state
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Heavy-fermion superconductors exhibit unusual properties such as low transition temperatures, large specific
heat jumps, and normal states with universal two-fluid behaviors. Standard theoretical models such as the
Anderson or Kondo lattices often require uncontrolled approximations to solve. Here, we propose an exactly
solvable Kondo lattice model with a local-in-momentum Kondo interaction, which can be derived from an
Anderson lattice with a Hatsugai-Kohmoto interaction between f electrons. As the Kondo coupling increases,
the normal state evolves from a Fermi liquid to a non-Fermi liquid two-fluid state. With a pairing interaction
between electrons, the model exhibits a crossover from a weak-coupling superconductor to a strong-coupling
one showing many important features of heavy-fermion superconductivity, including the formation of Kondo-
induced composite-fermion Cooper pairs, the analog of heavy-electron Cooper pairs in real materials.
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I. INTRODUCTION

Heavy-fermion compounds are prototypical strongly cor-
related electron systems that exhibit unconventional su-
perconductivity [1–3]. Due to strong electron correlations
and interplay between multiple degrees of freedom, heavy-
fermion superconductors (HFSCs) are known for their rich
diversity of order parameter structures and pairing mecha-
nisms [4–12]. Despite such a diversity, they share important
macroscopic features. For example, they are often formed out
of an unusual two-fluid normal state, where physical quanti-
ties are contributed by two different parts: a Kondo liquid part
associated with the itinerant heavy electrons, and a classical
spin liquid part associated with the residual unhybridized local
spins [13–23]. The two-fluid normal state is also responsible
for the coexistence of superconductivity and magnetic order
observed in many heavy-fermion materials [20,24]. Other
common features of HFSCs include their low transition tem-
peratures, large jump anomaly of the specific heat, and often a
large ratio between the superconducting gap and the transition
temperature [2,25–30]. Therefore, seeking an efficient way
to describe both the two-fluid normal state and the universal
features of HFSCs emerging from it is an important issue in
this area.

Previous studies of HFSCs are based on either phenomeno-
logical models with effective pairing interaction [31,32] or
Anderson/Kondo lattice models that inevitably rely on ana-
lytical or numerical approximations [33–37]. Most of these
studies focus on certain microscopic properties, but fail to
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make a connection between the superconductivity and the
two-fluid normal state. The problem is rooted in the diffi-
culty of dealing with the strong f -electron interaction, and
the lack of a satisfactory microscopic theory for the two-fluid
behaviors despite several earlier attempts [38–44]. Recently,
it was found that the exactly solvable Hatsugai-Kohmoto
(HK) model may provide a convenient tool to study strongly
correlated electron systems [45–57]. The model assumes an
all-to-all nonlocal interaction that transforms to a local one in
momentum space, which represents a stable interacting fixed
point closely relevant to the Mott physics [45–48], unconven-
tional superconductivity [46–51], and correlated topological
materials [55–57]. Inspired by this, we recently proposed a
momentum-space Kondo lattice model, whose solution re-
veals the coexistence of Kondo and spin liquids akin to the
heavy-fermion two-fluid states [58]. A microscopic definition
of the Kondo liquid “order parameter” was found, which
exhibits a universal scaling consistent with experiments [58].
The Schrieffer-Wolf (SW) transformation relates this k-space
Kondo lattice to a modified Anderson lattice with HK interac-
tion between f electrons. As we will show, these models do
capture many important features of heavy-fermion materials.

In this paper, we introduce a BCS pairing interaction to
the k-space Kondo lattice model, and study superconductivity
emerged from the two-fluid normal state. By increasing the
Kondo coupling, we found a crossover from a weak-coupling
BCS superconductor to a strong-coupling superconductor as
the corresponding normal state evolves from a Fermi liquid to
a non-Fermi liquid (NFL) two-fluid state. The latter is featured
with low transition temperatures and significant enhancement
of both the gap ratio and the specific heat jump anomaly
relative to the BCS values, consistent with the HFSC. In
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addition, the Kondo effect leads to different types of Cooper
pairs formed by composite fermions (composite objects of
conduction electrons and f -spin fluctuations), which are the
analog of heavy-electron Cooper pairs in real materials. Our
exactly solvable model thus provides a different perspective
to study the heavy-fermion superconductors and their normal
states.

II. MODEL AND RESULTS

We start from the Hamiltonian containing conduction elec-
trons, f electrons (Hf ), and a general form of Kondo-like
spin-flip scattering between them:

H =
∑

i j

(ti j − μδi j )c
†
iαc jα + Hf

+
∑
i ji′ j′

Ji ji′ j′

4Ns
c†

iασαβci′β · f †
jγ σγ δ f j′δδri+r j ,ri′+r j′ , (1)

where repeated indices imply summations, and Ns is the num-
ber of lattice sites. The δ function keeps the center of mass
of the two particles conserved in the scattering process. The
translational invariance requires that the coupling constant
Ji ji′ j′ depend only on ri − r j and ri − ri′ . Other than the local
Kondo interaction, Eq. (1) includes nonlocal c- f scatterings
that represent collective Kondo hybridizations at low temper-
atures in a dense Kondo lattice, which should be important for
understanding the two-fluid phenomenology [21].

To make the scattering term mathematically tractable, we
assume a constant coupling Ji ji′ j′ = JK , so that it simply be-
comes JK

4

∑
k c†

kασαβckβ · f †
kγ σγ δ fkδ . Similar infinitely ranged

all-to-all interactions were studied in the Sachdev-Ye-Kitaev
(SYK) model [59] and the HK model [45]. We further assume
the f electrons described by Hf are in a perfect Mott insu-
lating state such that every k point in the Brillouin zone is
singly occupied. Then one can replace the f electrons with a
well-defined spin operator Sk = 1

2

∑
γ δ f †

kγ σγ δ fkδ , and arrives
at the k-space Kondo lattice model:

HK =
∑
kα

εkc†
kαckα + JK

2

∑
kαβ

c†
kασαβckβ · Sk. (2)

Such a featureless Mott state of f electrons can indeed be
obtained from the HK Hamiltonian [45–48,52,57]:

Hf =
∑

k

ξkn f
k + U

∑
k

n f
k↑n f

k↓, (3)

where the double occupancy in momentum space is penalized
by a Hubbard-U -type repulsion. This interaction leads to a
breakdown of Fermi liquid and gives rise to Mott physics. At
half filling, the exact solution of Hf reveals a quantum phase
transition between a NFL metal and a Mott insulator as U
increases [46]. This leads to the constraint n f

k = 1 and the k-
space f spins deep inside the Mott insulating state. Therefore,
one can derive Eq. (2) more rigorously by combining Eq. (3)
with the usual c- f hybridization term,

Hc + Hhyb =
∑
kα

εkc†
kαckα + V

∑
kα

(c†
kα fkα + H.c.), (4)

FIG. 1. (a) Three different ground states of the k-space Kondo
lattice model HK as JK increases: Fermi liquid (FL), non-Fermi liquid
(NFL) metal, and Kondo insulator (KI). The conduction electron
occupation number nc

k is shown for each phase. Kondo singlets only
reside on the singly occupied region �1. (b) The phase diagram of the
k-space Kondo-BCS model with pairing interaction V = 1. (c) The
energy gap for the superconducting state (	) and the KI state (	KI),
and the superconducting gap ratio 2	/Tc at different JK .

and performing a SW transformation of this modified Ander-
son lattice model. As shown in Appendix A, this gives the
relation JK ≈ 8|V|2/U for large U .

A. Normal states

Equation (2) can be exactly solved since the local Hilbert
space at each k can be independently diagonalized. Fig-
ure 1(a) shows the ground-state phase diagram of HK and
the corresponding conduction electron occupation number nc

k.
For simplicity, here we have assumed a parabolic dispersion
εk = k2/2π − 1 with an ultraviolet cutoff k� = 2

√
π , so that

the half-bandwidth D = 1 serves as the energy unit, and the
electron density is nc = N−1

s

∑
k nc

k = 1 throughout our cal-
culations. At JK = 0, the conduction electrons form a Fermi
liquid (FL) that is completely decoupled from the f spins. A
finite JK destroys the Fermi liquid by replacing the original
Fermi surface with a singly occupied momentum region �1,
separated from the empty region (�0) and the doubly occu-
pied region (�2) by two filling surfaces at momenta kF1 and
kF2, here denoted as FS1 and FS2. The appearance of three
occupation regions with two filling surfaces is a hallmark of
NFL ground states in HK-like models [45,60,61]. The exact
Green’s function of conduction electrons reveals quasiparticle
excitations at FS1 and FS2, with dispersions reminiscent of
the mean-field c- f hybridized dispersions in the usual Kondo
lattice (see Appendix B). The f spins form k-space Kondo
singlets with conduction electrons only in the �1 region,
while remaining free in �0 and �2, since the Pauli princi-
ple forbids spin-flip scattering at a doubly occupied k point.
As JK increases, the �1 region also enlarges, until it covers
the entire momentum space at JK = 4/3, beyond which the
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system enters into a Kondo insulating (KI) phase due to the
complete screening of f spins. The above picture does not
change qualitatively with the spatial dimension of the system.

The partial Kondo screening in the NFL state has two con-
sequences: (1) The Mott insulated f electrons in �1 become
itinerant through the Kondo hybridization, such that the total
number of charge carriers per spin is now counted by the
“Fermi volume” enclosed by FS1, which is larger than the
Fermi volume at JK = 0 but smaller than the standard large
Fermi volume of a heavy-Fermi-liquid state. Such a partially
enlarged Fermi volume is also found in previous large-N
[62–64] or numerical calculations [65] for strongly frustrated
or one-dimensional Kondo lattices where nonlocal Kondo
interactions play an important role. (2) The itinerant Kondo
singlets in �1 form a Kondo liquid, with an “order parameter”
satisfying a universal scaling consistent with the phenomeno-
logical two-fluid model [58]. The remaining unhybridized f
spins in �0 and �2 form another fluid that is generally referred
to as a “spin liquid.” Moreover, the conduction electrons in �0

and �2 also form a third liquid, as implicitly assumed in the
two-fluid model [21]. The above NFL properties persist within
a finite temperature region below the characteristic Kondo
coherence temperature T ∗ as shown in Fig. 1(b), above which
the thermal fluctuations destroy the Kondo singlets and the
normal state becomes a Fermi liquid just like the trivial fixed
point at JK = 0.

B. Superconductivity

To study the superconducting instability, we consider the
simplest s-wave pairing interaction between conduction elec-
trons,

HV = − V

Ns

∑
kk′

c†
k↑c†

−k↓c−k′↓ck′↑, (5)

and calculate the electron pair-binding energy, Eb =
〈ψ |H ′|ψ〉 − 〈G|H ′|G〉, where H ′ = HK + HV , |G〉 is the
ground state of HK , and |ψ〉 is the state with an additional
Cooper pair (see Appendix C). The resulting Eb satisfies

1 = V

16D
ln

∣∣∣∣ (2D − Eb)4(3JK − Eb)

−(3JK/2 − Eb)4Eb

∣∣∣∣, (6)

and the numerical results are shown in Appendix C. At JK =
0, Eq. (6) reduces to the BCS result. Increasing JK reduces the
absolute value |Eb|, but Eb stays negative throughout the entire
NFL state for arbitrarily small V , indicating Cooper instabil-
ity. Next, we choose a finite V and perform a BCS mean-field
decomposition of HV , and solve the combined Hamiltonian:

H = HK + HBCS,

HBCS = 	c

∑
k

c†
k↑c†

−k↓ + H.c. + Ns	
2
c

V
, (7)

where 	c = −VN−1
s

∑
k〈c−k,↓ck↑〉 is the pairing amplitude.

Equation (7) is still exactly solvable, since it can be written
as H = 1

2

∑
k Hk, where each Hk is a conserved quantity

with a 64-dimensional Hilbert space, hence can be exactly
diagonalized.

The phase diagram for V = 1 is shown in Fig. 1(b). A su-
perconducting phase is found for JK < 4/3, with the transition

temperature Tc decreasing monotonically with increasing JK .
A rapid suppression of Tc is found between JK = 0.3 and 0.4,
where the phase boundary changes its sign of curvature. At
this point, the normal state also evolves from a FL to a NFL
two-fluid state. The crossover temperature T ∗ is determined
by a broad maximum of the specific heat coefficient associated
with the Kondo effect. Without pairing interaction, T ∗ de-
creases almost linearly with JK and vanishes at JK = 0. With
finite pairing interaction, T ∗ continues to exist below Tc albeit
being suppressed, which separates the superconducting phase
into two regions: a weak-coupling BCS superconductor and a
strong-coupling superconductor which we simply denote as
HFSC because of its many similarities with heavy-fermion
superconductors. The superconducting transition is continu-
ous for JK � 0.5 but becomes weakly first order for JK � 0.6,
where 	c jumps discontinuously at Tc (see Appendix D). We
notice that the first-order transition is not rare in studies of
superconductivity emerging from non-Fermi liquids [51,66].
The interaction-driven superconductor-to-insulator quantum
phase transition at JK = 4/3 is another interesting topic that
may have experimental relevance [67,68], which we leave for
future investigation.

Figure 1(c) plots the zero-temperature superconducting en-
ergy gap 	 and the gap ratio 2	/Tc, as well as the Kondo
insulating gap 	KI at JK > 4/3. Note that 	 is determined by
the electron spectral function, which is generally unequal to
the pairing amplitude 	c, except for JK = 0 where the BCS
relation holds. The gap ratio is quite close to (less than) the
universal BCS value 3.53 for JK � 0.3, but becomes signifi-
cantly enhanced for JK � 0.4, with a maximal value 2	/Tc ≈
17 at JK = 1.1. Such an extremely large gap ratio is also
found in quantum critical models where the pairing glue has
a power-law local susceptibility [69,70], or superconductivity
emerged from incoherent metals with SYK interactions [66].
In our case, we attribute the large gap ratio at JK � 0.4 to the
unusual Kondo liquid in the normal state, which suppresses
Tc and induces another type of Cooper pair that is strongly
coupled in nature.

To distinguish the two regions of the superconducting state,
we define a composite fermion operator Fkα , and study its
pairing correlation:

	F (k) = −〈F−k↓Fk↑〉, Fkα =
∑

β

σαβ · Skckβ. (8)

In heavy-fermion literature, the composite fermion is usually
defined in the coordinate space, which transforms to a con-
volution in the momentum space [71–73]. For the k-space
Kondo model studied here, Eq. (8) is a more appropriate
definition, since the SW transformation used to derive HK

also transforms the f -electron operator fkα to Fkα (see Ap-
pendix E). Therefore, one can view Fkα as the renormalized
f electrons in the Kondo lattice model. A finite 	F (k) indi-
cates the presence of composite fermion Cooper pairs, which
requires both pairing interaction and Kondo entanglement.

Figure 2(a) compares the temperature evolution of
	c(k) = −〈c−k↓ck↑〉, 	F (k), and the entropy distribution
s(k) = − 1

2 Tr[ρk ln ρk] (ρk is the density matrix of Hk) for
JK = 0.1. Above Tc ≈ 0.152, both 	c(k) and 	F (k) are
zero, while s(k) shows a peak around the bare (JK = 0)
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FIG. 2. (a) Evolution of 	c(k), 	F (k), and s(k) with decreasing
temperature at JK = 0.1. For clarity, the data curves are shifted with
each other by a constant 0.3. The black dashed line in 	c(k) is the
BCS result, 	c(k) = 	c/(2

√
ε2

k + 	2
c ). (b) The pairing amplitudes

	c and 	F as functions of temperature at JK = 0.1. The inset shows
a zoom-in view of 	c. (c) The entropy as a function of temperature
at JK = 0.1. The inset shows the specific heat coefficient.

Fermi momentum k0 = √
2π , with a constant background

ln 2 contributed by the free f spins. Below Tc, 	c(k) be-
comes finite for all values of k, while 	F (k) is almost
zero within a broad range of temperature. The shape of
	c(k) can be fitted perfectly by the BCS formula 	c(k) =
	c/(2

√
ε2

k + 	2
c ) as shown in Fig. 2(a). The entropy peak

around k0 is gradually consumed by the conduction electrons
forming Cooper pairs, leaving a constant ln 2 plateau of local
spins, which is also clearly seen in the integrated entropy
S = N−1

s

∑
k s(k) as shown in Fig. 2(c). Below the charac-

teristic temperature T ∗ ≈ 0.002, a large number of f spins
start to combine with conduction electrons to form composite
fermion Cooper pairs, as indicated by the peak of 	F (k) and
the dip of s(k) around k0. Interestingly, the rapid development
of composite pairs is accompanied by a slight suppression
of the conduction electron pair amplitude, as shown by
the temperature dependence of 	c = VN−1

s

∑
k 	c(k) and

	F = VN−1
s

∑
k 	F (k) in Fig. 2(b). This suggests that some

Cooper pairs unbind themselves in order to form the compos-
ite pairs, indicating that these are indeed different types of
Cooper pairs.

Just below T ∗, the peak of 	F (k) is concentrated in the
vicinity of k0, which quickly extends to the entire momentum
space as the system approaches zero temperature. The same
happens to the dip (gap) of s(k), indicating all the f spins
finally become a part of the superconducting condensate. This
process happens within a small temperature window, but con-
sumes the extensive f -spin entropy in the �0 and �2 regions,

FIG. 3. (a) Temperature evolution of 	c(k), 	F (k), and s(k) for
JK = 0.5. The data curves are shifted with each other by a constant
0.3. The dashed lines in s(k) mark the positions of the two filling sur-
faces at kF1 = 1.17k0 and kF2 = 0.79k0. (b) The pairing amplitudes
	c and 	F as functions of temperature at JK = 0.5. (c) The entropy
as a function of temperature at JK = 0.5. The inset shows the specific
heat coefficient.

giving rise to a huge peak of C/T at another characteristic
temperature T ′. Due to this huge peak, the broad maximum of
C/T at T ∗ now appears as a shoulder, as shown in the inset
of Fig. 2(c). Below T ′, 	F saturates to a constant, while S
approaches zero. This characteristic temperature exists for all
0 < JK < 4/3; see for example Fig. 3 for JK = 0.5. However
it may not occur in real materials, since a more natural way
to consume the extensive spin entropy is to form a nearby or
coexisting magnetic order as observed in many HFSCs.

Figure 3 shows the same physical quantities at JK = 0.5.
Above Tc ≈ 0.021, both 	c(k) and 	F (k) are zero, while
s(k) evolves from a single peak to two peaks centered around
the two filling surfaces at kF1 = 1.17k0 and kF2 = 0.79k0.
The entropy depletion between kF1 and kF2 is due to the
formation of Kondo singlets in the �1 region. It causes a
broad maximum of C/T at T ∗ ≈ 0.1, as shown in the inset
of Fig. 3(c). Superconductivity occurs at Tc ≈ 0.021, above
which the Kondo singlets in the �1 region have already been
fully developed. Therefore, both the conduction electrons and
composite fermions form Cooper pairs immediately below Tc.
The two-peak structure of 	c(k) and 	F (k) suggests that the
Cooper pairs are mainly formed by quasiparticles around the
two filling surfaces, similar to the HK model [46,51]. Below
Tc, the pairing amplitudes 	c and 	F increase monotonically
with decreasing temperature as shown in Fig. 3(b). Different
from the case of JK = 0.1, here 	F is much larger than 	c,
indicating that the composite fermion Cooper pairs play a
dominant role.

064517-4



SIMPLE SOLVABLE MODEL FOR HEAVY-FERMION … PHYSICAL REVIEW B 109, 064517 (2024)

FIG. 4. The specific heat coefficient around the superconduct-
ing transition temperature at different JK . Inset: The specific heat
anomaly 	C/γ Tc as a function of JK .

Since the superconducting transitions for JK � 0.4 require
f spins around the two filling surfaces to form composite
Cooper pairs, they consume more entropy and lead to large
specific heat anomaly 	C/γ Tc, as shown in Fig. 4. Here,
the Sommerfeld coefficient γ = 3.77 is universal for the
two-fluid normal state within 0 < JK < 4/3, which is only
slightly larger than the noninteracting value γ = π2/3 ≈ 3.29
at JK = 0. It may require local-in-space Kondo interaction to
obtain a γ as large as in real heavy-fermion materials. As JK

increases, 	C/γ Tc first decreases for JK � 0.3, then increases
rapidly for 0.4 � JK � 0.6, and decreases again for JK � 0.6
where the superconducting transition becomes first order. For
continuous transitions within 0 < JK < 0.6, the evolution of
	C/γ Tc follows that of the gap ratio, indicating the same
microscopic origin behind them. For a rough comparison, ex-
periments on two of the most studied strong-coupling HFSCs,
CeCoIn5 and CeRhIn5, show 	C/γ Tc = 4.5 ∼ 4.7 [5,74],
2	/Tc = 6 ∼ 10 [26,75], and 	C/γ Tc = 4.2 [27], 2	/Tc =
5 [76], consistent with our results at JK = 0.4 ∼ 0.5.

III. DISCUSSION AND CONCLUSION

We have checked different values of V and the results re-
main qualitatively the same. Our method can be conveniently
generalized to d-wave or p-wave pairing interactions. In all
cases, the combined effect of Kondo and electron pairing in-
teraction leads to the formation of composite-fermion Cooper
pairs, corresponding to the heavy-electron Cooper pairs in real
materials. An implication of our study is that the light con-
duction electron pairs and “heavy” composite fermion pairs
may coexist in heavy-fermion superconductors reflecting the
two-fluid nature of their normal states. A similar conclusion
has been drawn from earlier studies [77]. What remains unex-
plored in this work is the microscopic mechanism behind the
pairing interaction, which is often associated with the f -spin
fluctuations in real materials. It is found that a Heisenberg ex-
change interaction between Sk and S−k indeed induces pairing
correlation between conduction electrons, which may require
additional scattering to establish phase coherence [58].

Our method can be generalized to the multiband Kondo
lattice, where each unit cell contains one f impurity and M
conduction electron sites. Such multiband model effectively
describes materials with caged structure [78] and shares many

similarities with the dilute Kondo lattice, which is important
for understanding the crossover between the Kondo impurity
limit and the dense Kondo lattice limit. For the multiband
case, one introduces a “band” index η = 1, . . . , M to describe
the conduction electrons, so that the Hamiltonian reads

H =
∑
kα

�
†
kαTk�kα +

∑
kηαβ

JK (η)

2
c†

kηασαβckηβ · Sk, (9)

where �kα = (ck1α, . . . , ckMα )T, and Tk is an M × M kinetic
energy matrix. This model can be exactly diagonalized as long
as M is not too large.

In conclusion, our work shows that the k-space
Kondo/Anderson lattice model has the advantage over con-
ventional real-space models in that it can be solved exactly,
while at the same time it captures many important features
of heavy-fermion materials, and thus it opens a new window
toward the ultimate solving of heavy-fermion problems.
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APPENDIX A: DERIVATION OF THE k-SPACE
KONDO MODEL

In this section, we derive the k-space Kondo model from
the Hatsugai-Kohmoto-Anderson lattice model [52]:

H = Hc + Hf + Hhyb,

Hc =
∑
kα

εkc†
kαckα,

Hf =
∑

k

ξkn f
k + U

∑
k

n f
k↑n f

k↓,

Hhyb = V
∑
kα

(c†
kα fkα + H.c.). (A1)

Here ξk = ε
f
k − μ f , ε

f
k ∈ [−D f , D f ] is the f -electron disper-

sion, and μ f is its chemical potential. At V = 0, the ground
state of Hf is known exactly [46]. At half filling (μ f = U/2),
the ground state is a NFL metal for U < 2D f and a Mott
insulator for U > 2D f . To describe heavy-fermion systems,
here we assume half filling and U � 2D f .

The k-space Kondo model can be derived from a
Schrieffer-Wolf (SW) transformation of the above model. We
start with the low-energy states of Hc + Hf :

|l〉 : |�〉c ⊗
∏

k

∣∣n f
k = 1

〉
, (A2)
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where |�〉c denotes the eigenstates of Hc. Turning on the
hybridization V will induce charge fluctuations and lead to
high-energy states with n f

q �= 1 at some momentum q:

|h〉 : cqσ |�〉c ⊗ f †
qσ

∏
k

∣∣n f
k = 1

〉
,

c†
qσ |�〉c ⊗ fqσ

∏
k

∣∣n f
k = 1

〉
. (A3)

Here we have ignored high-energy states with more than one
empty or doubly occupied momentum point, which only give
higher-order [O(V4)] corrections. Using Eqs. (A2) and (A3)
as a basis, one can rewrite Eq. (A1) into the following matrix
form separating the low (L) and high energy (H) subspaces:

H =
[

HL M†

M HH

]
, (A4)

where (HL)ll ′ = 〈l|Hc + Hf |l ′〉, (HH)hh′ = 〈h|Hc + Hf |h′〉,
and Mhl = 〈h|Hhyb|l〉 mixes different subspaces. The SW
transformation is a canonical transformation U = eS that turns
Eq. (A4) into block-diagonal form:

U
[

HL M†

M HH

]
U† =

[
H∗ 0

0 H ′

]
. (A5)

Then Heff = PLH∗PL provides the effective low-energy
Hamiltonian, where PL = ∑

l |l〉〈l| is the projection operator.
Equation (A5) is satisfied up to order O(V2) if

S =
[

0 −s†

s 0

]
, shl = Mhl

EH
h − EL

l

, (A6)

where EH
h and EL

l are the eigenvalues of HH and HL. Substi-
tuting Eq. (A6) into Eq. (A5) leads to H∗ = HL + 	H , with

(	H )ll ′ = −1

2

∑
h

M†
lhMhl ′

(
1

EH
h − EL

l

+ 1

EH
h − EL

l ′

)

= 	H f 1+e−↔ f 2

ll ′ + 	H f 1↔ f 0+e−
ll ′ , (A7)

where the last line corresponds to two different types of charge
fluctuations in Eq. (A3). Using

EH
h − EL

l =
{

ξk + U − εk, f 1 + e− ↔ f 2,

−ξk + εk, f 1 ↔ f 0 + e−,
(A8)

one has

H f 1+e−↔ f 2

ll ′ = −V2
∑
kαβ

〈l|c†
kα fkα f †

kβckβ |l ′〉
ξk + U − εk

(A9)

and

H f 1↔ f 0+e−
ll ′ = −V2

∑
kαβ

〈l| f †
kβckβc†

kα fkα|l ′〉
−ξk + εk

. (A10)

One important observation from Eqs. (A9) and (A10) is that
the k point must be singly occupied by conduction electrons
in both |l〉 and |l ′〉 in order to give a nonzero matrix element
for α �= β, which then leads to the Kondo spin-flip scattering.
Therefore, the k-space Kondo interaction only operates in the
singly occupied (�1) region, as is indeed revealed by the exact

solution of HK . After rearranging the four fermion operators
in Eqs. (A9) and (A10), we obtain

PL	HPL =
∑

k

JK (k)sk · Sk, (A11)

with a generally k-dependent Kondo coupling,

JK (k) = 2V2

(
1

ξk + U − εk
+ 1

−ξk + εk

)

= 8V2U

U 2 − 4ε2
k

, (A12)

where we have assumed ξk = −U/2 for the f electrons in
the second line. For U � D, Eq. (A12) reduces to the con-
stant Kondo coupling JK = 8V2/U . Since PLHLPL = Hc +
constant, we finally obtain the k-space Kondo model HK stud-
ied in this paper.

APPENDIX B: QUASIPARTICLE DISPERSIONS

The quasiparticle dispersions can be calculated from the
zero-temperature Green’s function of conduction electrons,
defined as G(k, t ) = −iθ (t )〈{ckσ (t ), c†

kσ }〉. The result is [58]

G(k, ω) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1/4

ω−εk+ 3JK
4

+ 3/4

ω−εk− JK
4

, k ∈ �0,

1/2

ω−εk− 3JK
4

+ 1/2

ω−εk+ 3JK
4

, k ∈ �1,

1/4

ω−εk− 3JK
4

+ 3/4

ω−εk+ JK
4

, k ∈ �2.

(B1)

The poles of G(k, ω) give rise to two branches of quasiparticle
dispersions intersecting with the Fermi level at FS1 and FS2

(there are another two branches located far away from the
Fermi level):

ω±(k) = εk ± 3JK

4
. (B2)

The above equation is reminiscent of the mean-field c- f hy-
bridized dispersions of the Kondo lattice model; both split
the bare conduction dispersion into two branches. Here, the
direct gap between the upper and lower branches is propor-
tional to the Kondo coupling. For constant JK , they have
the same curvature as the bare conduction dispersion, hence
no mass enhancement. However, if one uses the general k-
dependent Kondo coupling, Eq. (A12), then the direct gap
12V2U/(U 2 − 4ε2

k ) reaches its minimum at the original Fermi
surface εk = 0 and becomes larger away from it. This leads to
the band bending and mass enhancement as shown in Fig. 5.
Nevertheless, we noticed that the mass enhancement in this
model is usually quite weak, and some fine-tuning is required
to obtain an almost flat band near the Fermi energy. Therefore,
we believe the usual local Kondo term is still needed to fully
capture the “heavy fermion” property of real materials.

APPENDIX C: COOPER INSTABILITY

To study the pair-binding energy of conduction electrons,
we consider the following variational wave function:

|ψ〉 =
∑
k∈�0

αkb†
k|G〉 +

∑
k∈�1

βkb†
k|G〉, (C1)
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FIG. 5. Exact quasiparticle dispersions obtained from Eq. (B1)
using (a) constant JK and (b) momentum-dependent JK for V = 0.52
and U = 3.

where b†
k = c†

k↑c†
−k↓ creates a Cooper pair, αk and βk are two

variational parameters, and

|G〉 =
∏

k

|g〉k, (C2)

with

|g〉k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1√
2
(|0 ⇑〉 + |0 ⇓〉), k ∈ �0,

1√
2
(| ↑⇓〉 − | ↓⇑〉), k ∈ �1,

1√
2
(|2 ⇓〉 + |2 ⇑〉), k ∈ �2,

(C3)

is the ground state of HK . Here |φσ 〉 denotes the con-
duction electron state φ = 0,↑,↓, 2 and the f -spin state
σ = ⇑,⇓ at each momentum point. Note that each f spin
in �0 and �2 has a twofold spin degeneracy, while here
we choose the unpolarized state to calculate the binding
energy [51]. The normalization condition of |ψ〉 gives the
constraint

1 = 〈ψ |ψ〉 =
∑
k∈�0

|αk|2 + 1

4

∑
k∈�1

|βk|2. (C4)

The binding energy is defined as

Eb = 〈ψ |H ′|ψ〉 − 〈G|H ′|G〉, (C5)

where H ′ = HK + HV is the total Hamiltonian including the
pairing interaction

HV = − V

Ns

∑
kk′

c†
k↑c†

−k↓c−k′↓ck′↑. (C6)

The final result of Eb is

Eb = 2
∑
k∈�0

|αk|2εk +
∑
k∈�1

(
εk

2
+ 3JK

8

)
|βk|2

− V

Ns

∑
k,k′∈�0

α∗
k′αk − V

16Ns

∑
k,k′∈�1

β∗
k′βk

− V

4Ns

∑
k∈�0,k′∈�1

(αkβ
∗
k′ + α∗

kβk′ ). (C7)

We then use the Lagrange multiplier method to find the
minimum of Eb. By taking partial derivatives of the func-
tion Q = Eb − λ(〈ψ |ψ〉 − 1) with respect to α∗

k and β∗
k ,

FIG. 6. The Cooper pair binding energy Eb as a function of V
(left panel) and JK (right panel). The dashed lines show J−3

K depen-
dence of |Eb| at large JK .

we have

0 = (2εk − λ)αk − y,

0 =
(

2εk − λ + 3JK

2

)
βk − y, (C8)

where y = V
Ns

(
∑

k∈�0
αk + 1

4

∑
k∈�1

βk ). Multiplying the

above equations by α∗
k and 1

4β∗
k , respectively, and summing

over the momentum leads to λ = Eb. Thus we have

αk = y

2εk − Eb
,

βk = y

2εk + 3JK
2 − Eb

. (C9)

Substituting the above result into Eq. (C4) leads to

1 = 1

Ns

∑
k∈�0

V

2εk − Eb

+ 1

4Ns

∑
k∈�1

V

2εk + 3JK
2 − Eb

. (C10)

Using the density of states

ρ(ω) = 1

Ns

∑
k

δ(ω − εk ) = 1

2D
, (C11)

we finally obtain

1 = V

16D
ln

∣∣∣∣ (2D − Eb)4(3JK − Eb)

−(3JK/2 − Eb)4Eb

∣∣∣∣. (C12)

For JK = 0 and small V , the above equation reduces to
the BCS result Eb = −2De−4D/V . For JK , D � Eb, we ob-
tain the asymptotic behavior Eb ∝ −D4J−3

K e−16D/V , as shown
in Fig. 6.

APPENDIX D: FIRST-ORDER TRANSITIONS

Here we provide the full data of the temperature depen-
dence of mean-field order parameter 	c at different JK for
V = 1, as shown in Fig. 7(a). The general behavior of 	c for
JK � 0.3 is similar to the BCS result at JK = 0, except for the
low-temperature minima at which 	F increases rapidly. For
JK � 0.4, 	c has a large slope at intermediate temperatures,
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FIG. 7. (a) The mean-field order parameter 	c as a function of
temperature at different JK and V = 1. (b) An enlarged view of 	c

for 0.6 � JK � 1.3, showing discontinuous jumps at Tc. (c) The free
energy difference δF = F (	c ) − F (0) as a function of 	c around Tc

for JK = 0.9.

which is quite different from the BCS theory. For JK � 0.6,
	c jumps discontinuously at Tc as shown in Fig. 7(b), in-
dicating first-order transitions. Accordingly, the free energy
as a function of 	c exhibits two minima at 	c = 0 and
	c �= 0 within a small temperature window [see Fig. 7(c)
for JK = 0.9], corresponding to the metastable normal and
superconducting states in the coexisting region of a weakly
first-order transition.

APPENDIX E: COMPOSITE FERMION

The fact that the composite fermion corresponds to
the SW transformation of the f electron has been noted
earlier in Ref. [72]. Here we derive this result for the k-space

Kondo model. We first notice that the f -electron annihila-
tion (creation) operator itself connects the low-energy and
high-energy subspaces, so it appears in the off-diagonal block
of the matrix form in Eq. (A4). The canonical transfor-
mation U = eS ≈ 1 + S then transforms the f annihilation
operator into

eS

[
fkσ

fkσ

]
e−S

=
[
−s† fkσ − fkσ s fkσ

fkσ s fkσ + fkσ s†

]
+ O(V2). (E1)

Using the expression of s in Eq. (A6), we have the following
renormalized f -electron operator in the low-energy subspace:

−PL(s† fkσ + fkσ s)PL

= −
∑
ll ′h

|l〉〈l|V ∑
pα c†

pα fpα + H.c.|h〉〈h| fkσ |l ′〉〈l ′|
EH

h − EL
l

−
∑
ll ′h

|l〉〈l| fkσ |h〉〈h|V ∑
pα c†

pα fpα + H.c.|l ′〉〈l ′|
EH

h − EL
l ′

≈ −2V
U

PL

∑
α

( f †
kαckα fkσ + fkσ f †

kαckα )PL

= 4V
U

Fkσ , (E2)

where

Fkσ = −1

2
PL

∑
α

( f †
kαckα fkσ + fkσ f †

kαckα )PL

= PL

(
f †
k,−σ fkσ ck,−σ + f †

kσ fkσ ckσ − 1

2
ckσ

)
PL

= S−σ
k ck,−σ + 1

2
( f †

kσ fkσ − f †
k,−σ fk,−σ )ckσ

= S−σ
k ck,−σ + sgn(σ )Sz

kckσ

=
∑

β

σσβ · Skckβ (E3)

is just the composite fermion operator defined in Eq. (8).
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