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Pairing symmetries of multiple superconducting phases in UTe2:
Competition between ferromagnetic and antiferromagnetic fluctuations
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The putative spin-triplet superconductor UTe2 exhibits multiple superconducting phases under applied pres-
sure [Braithwaite et al., Commun. Phys. 2, 147 (2019)]. The clarification of pairing mechanisms and symmetries
of gap functions are essentially important for understanding the multiple-phase diagram. Since the coexistence
of ferromagnetic and antiferromagnetic spin fluctuations with Ising-like anisotropy is suggested from mea-
surements of magnetic susceptibilities and neutron scattering measurements, it is expected that the interplay
between these spin fluctuations plays a crucial role in the emergence of the multiple superconducting phases.
Motivated by these observations, we examine the spin-fluctuation-mediated pairing mechanism, analyzing
the linearized Eliashberg equations for an effective model of f -electron bands. It is found that the Ising-like
ferromagnetic fluctuations stabilize spin-triplet pairings in either the Au or B3u states, whereas Ising-like antifer-
romagnetic fluctuations stabilize spin-triplet pairings in the B1u state. These results provide a plausible scenario
elucidating the multiple superconducting phases under pressure.

DOI: 10.1103/PhysRevB.109.064516

I. INTRODUCTION

The heavy fermion system UTe2 has been gathering signifi-
cant attention due to its distinctive superconducting properties
[1,2]. Notably, it exhibits an upper critical field that far ex-
ceeds the Pauli limit [1,3,4], reentrant and reinforcement
behaviors in response to magnetic fields [4–7], and multiple
superconducting phases under both magnetic fields and pres-
sure [5,6,8–14]. These remarkable features strongly suggest
the potential realization of a spin-triplet pairing state, holding
significant promise as a topological superconductor. The ex-
istence of Majorana surface states in UTe2 has been predicted
in previous studies [15,16].

However, the determination of the symmetries of the gap
functions, which is crucial in defining the superconducting
properties, remains a subject of controversy. In earlier studies,
spontaneous time-reversal symmetry breaking (TRSB) has
been discussed from scanning tunneling microscopy (STM)
measurements [17] and Kerr-effect measurements [18]. How-
ever, in contrast, recent Kerr-effect measurements utilizing
high-quality samples have shown no evidence for a spon-
taneous Kerr signal [19], leaving no conclusive empirical
support for TRSB.

In the case of spin-triplet pairings expected for UTe2, pos-
sible symmetries are the {Au, B1u, B2u, B3u} states, which
are irreducible representations of the point group D2h. Exten-
sive experimental studies have been performed to elucidate
the gap symmetry. The specific heat measurements [20,21]
and magnetic penetration depth measurements [21] provide
support for the existence of point nodes, indicating the B3u

state. In contrast, thermal conductivity measurements support
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a full gap state [22]. Also, the nuclear magnetic resonance
(NMR) measurements [23] demonstrate a reduction in Knight
shift for all directions, suggesting the Au state without nodes.
The notable recent improvement in sample quality [24] holds
promising prospects for further progress in experimental re-
search.

Another striking feature of UTe2 is the occurrence of multi-
ple superconducting phases under applied pressure [8,9]. The
schematic pressure-temperature phase diagram is depicted
in Fig 1(a). The superconducting phase at ambient pressure
denoted as SC1 is suppressed as applied pressure increases,
whereas another superconducting phase, labeled as SC2, ap-
pears under pressure and abruptly vanishes at around 1.5 GPa,
coinciding with the appearance of a putative antiferromag-
netic ordered phase [9,10,25,26].

To shed light on the nature of the multiple superconducting
phases, a comprehensive understanding of the pairing origin
is essential. In earlier studies [1], an anisotropic increase in
uniform magnetic susceptibility was observed, signifying the
presence of Ising-like ferromagnetic (FM) fluctuations and
indicating their potential as a pairing glue. However, direct
observation of the FM fluctuations has not been achieved
hitherto. In contrast, neutron scattering measurements have re-
vealed the presence of antiferromagnetic (AFM) fluctuations,
characterized by the ordering vector Q ≈ (0, π, 0) [27–29].
These experimental observations strongly suggest a coexis-
tence of FM and AFM fluctuations, which may hold the key to
unraveling the intricate nature of the multiple superconducting
phases under pressure.

Motivated by these considerations, we postulate that pair-
ing glues are both FM and AFM fluctuations, and analyze
the linearized Eliashberg equations to determine stable pairing
states under pressure. We introduce a pressure parameter that
controls the interplay between FM and AFM fluctuations,

2469-9950/2024/109(6)/064516(9) 064516-1 ©2024 American Physical Society

https://orcid.org/0000-0003-2604-3351
https://orcid.org/0000-0002-7313-6094
https://orcid.org/0000-0002-6201-4745
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.064516&domain=pdf&date_stamp=2024-02-22
https://doi.org/10.1038/s42005-019-0248-z
https://doi.org/10.1103/PhysRevB.109.064516


TEI, MIZUSHIMA, AND FUJIMOTO PHYSICAL REVIEW B 109, 064516 (2024)

(a)
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FIG. 1. (a) Schematic P-T superconducting phase diagram.
(b) Crystal structure of UTe2. Only U sites are depicted. (c) Cylindri-
cal electron Fermi surface of the two-orbital model of UTe2.

thereby reproducing the multiple superconducting phases un-
der applied pressure.

The organization of this paper is as follows. In Sec. II
we briefly describe a theoretical model of superconductivity
in UTe2 and a theoretical calculation method. In Sec. III
we present the calculated results obtained by analyzing the
linearized Eliashberg equations, and discuss the relationship
between characters of spin fluctuations and stable pairing
symmetries. Based on numerical results, we provide a sce-
nario for understanding the multiple superconducting phases
under pressure. A comprehensive discussion and summary are
presented in Sec. IV.

II. MODEL AND CALCULATION METHOD

To elucidate the superconducting states of UTe2, we con-
struct a minimal model that integrates crucial properties of
UTe2, including the orbital degrees of freedom, the Fermi
surface observed in de Haas–van Alphen (dHvA) experiments
[30,31], magnetic anisotropy, and magnetic spin fluctuations.
In this section, we explain the employed model and the basic
formulations for the calculations of stable superconducting
states.

A. Minimal model of superconductivity in UTe2

Here, we explain the tight-binding model utilized for inves-
tigating superconductivity in UTe2. UTe2 has a body-centered
orthorhombic lattice structure, characterized by the space-
group Immm(#71, D25

2h). Within the unit cell, two U atoms
organize dimers arranged along the c axis, and these dimer
chains extend parallel to the a axis, as depicted in Fig. 1(b).
The first-principle calculations suggest that f -orbital electrons

in the dimer chains are crucial for the band structure [32,33].
Motivated by these observations, we consider a two-orbital
system as a minimal model. Following Ref. [33], we exploit
the noninteracting Hamiltonian for the normal state with all
symmetry-allowed terms

HN (k) = (ε0(k) − μ)σ0τ0 + fx(k)σ0τx

+ fy(k)σ0τy + g(k) · στz, (1)

with

ε0(k) = 2t1 cos ka + 2t2 cos kb, (2)

fx(k) = t3 + t4 cos(ka/2) cos(kb/2) cos(kc/2), (3)

fy(k) = t5 cos(ka/2) cos(kb/2) sin(kc/2), (4)

ga(k) = Ra sin kb, (5)

gb(k) = Rb sin ka, (6)

gc(k) = Rc sin(ka/2) sin(kb/2) sin(kc/2), (7)

where σa,b,c and τx,y,z are Pauli matrices for spin and orbital
degrees of freedom, respectively, and σ0 and τ0 are 2 × 2
unit matrices. In this paper, we use the labels a, b, and c
to represent crystalline axes, and the labels x, y, and z are
employed to represent orbital degrees of freedom. The last
term in Eq. (1) is the staggered Rashba spin-orbit interaction,
arising from the local inversion symmetry breaking. To re-
produce the cylindrical electron Fermi surface illustrated in
Fig. 1(c), which is suggested by the dHvA experiments [30],
we choose the band parameters as follows: μ = −3.6, t1 =
−1.0, t2 = 0.75, t3 = −1.4, t4 = 1.3, t5 = −1.3, Ra = Rb =
Rc = 0.2. The presence of a cylindrical-hole Fermi surface
has also been reported in the dHvA experiments. However,
according to the first-principle band calculations [32,34], the
hole band primarily consists of d electrons of U sites and p
electrons of Te sites. Considering the substantive role played
by strongly correlated f electrons in magnetic fluctuations,
we expect that superconductivity is also mainly triggered by
f electrons, and disregards the influence from the hole band,
opting for a two-orbital model involving f electrons. This
minimal model is sufficient for our purpose of determining
the most stable pairing states induced by FM and AFM spin
fluctuations arising from f electrons.

The pairing states of UTe2 are classified by the point group
D2h, encompassing eight irreducible representations: Ag, B1g,
B2g, B3g, Au, B1u, B2u, and B3u. In the two-orbital model, the
gap functions also have orbital degrees of freedom, and take
the following form:

� =
∑

j=0,x,y,z

τ j ⊗ {(d j · σ + ψ j )iσb}, (8)

where d = (da, db, dc) represents a d vector for spin-triplet
pairings and ψ is a component of a spin-singlet pairing state.
In the following, we refer to (d0 ≡ ψ, da, db, dc) as d-vector
components. The main basis functions of d-vector compo-
nents for each irreducible representation are summarized in
Table I. Note that the mixing of spin-triplet pairings d and
spin-singlet pairings ψ occurs in intraorbital pairing channels
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TABLE I. Irreducible representations (IRs) of the point group
D2h and basis functions. In the two-orbital system, the gap functions
take the form τ j ⊗ {i(d j · σ + ψ j )σb}, where τ j ( j = 0, x, y, z) are
Pauli matrices for orbital degrees of freedom. d (ψ) represents the
spin-triplet (spin-singlet) component.

Basis function

Orbital degrees of freedom
IRs τ0, τx τy τz

Au d = kaâ + kbb̂ + kcĉ d = ĉ ψ = kakb

B1u d = kbâ + kab̂ ψ = 1
B2u d = kcâ + kaĉ d = ĉ ψ = kbkc

B3u d = kcb̂ + kbĉ d = ĉ ψ = kcka

Ag ψ = 1 ψ = kc d = kbâ + kab̂
B1g ψ = kakb d = kaâ + kbb̂ + kcĉ
B2g ψ = kcka ψ = ka d = kcb̂ + kbĉ
B3g ψ = kbkc ψ = kb d = kcâ + kaĉ

due to local inversion symmetry breaking at each U atomic
site. Since inversion symmetry operation exchanges the two
orbitals, i.e., A and B sites in the unit cell, as seen in Fig 1(b),
global inversion symmetry implies

{�(k)}AA = ±{�(−k)}BB, (9)

{�(k)}AB = ±{�(−k)}BA, (10)

where + (−) sign is for the g(u) irreducible representations.

B. Pairing interaction

As mentioned in the Introduction, the superconductivity of
UTe2 occurs close to both ferromagnetic and antiferromag-
netic critical points. Additionally, applied pressure induces
the magnetically ordered phase. From these perspectives, it
is plausible to consider that the competition between FM and
AFM fluctuations, controlled by pressure, gives rise to the
multiple superconducting phases under pressure. Guided by
this consideration, we postulate that pairing glues are FM and
AFM fluctuations and examine pairing states induced by these
spin fluctuations. To delineate these interactions, we employ
an effective Hamiltonian with the following form of spin-spin
interactions

V̂ = −
∑
μ,q

χμ(q)Ŝμ(q)Ŝμ(−q). (11)

Here, q = (q, i	n), and 	n = 2nπT represents the bosonic
Matsubara frequency. Ŝμ (μ = a, b, c) is the spin operator
expressed as

Ŝμ(q) =
∑

k,λ,α,β

c†
k+q,λα

σ
μ
αβck,λβ, (12)

where k = (k, iωn), ωn = (2n + 1)πT represents the
fermionic Matsubara frequency, and ck,λα (c†

k,λα
) is an

annihilation (creation) operator of an f electron with
momentum k and Matsubara frequency ωn, and spin α on an
atomic site λ = A, B. χμ(q) is the magnetic susceptibility, as

given by the phenomenological form following Ref. [35]:

χμ(q) = Jμ

1/ξμ2 + (q̂ − Q̂)2 + |	n|q̂2−z/Tsf
, (13)

where Jμ = g2χ0/(ξμ
0 )2, g is the coupling constant of interact-

ing strength, ξμ (ξμ
0 ) is the correlation length with (without)

strongly correlated effects, Q̂ is the ordering vector defined
as Q = 0 (Q = (0, π, 0)) for FM (AFM) fluctuations, z is the
dynamical exponent z = 3 (z = 2) for the FM (AFM) fluctu-
ations, and Tsf is a characteristic spin-fluctuation temperature
and we set Tsf = 4. For Eq. (13) to satisfy body-centered peri-
odicity, let the momentum dependence for FM fluctuations be
replaced as

(q̂ − Q̂)2 ⇒ 8 − 8 cos
qa

2
cos

qb

2
cos

qc

2
, (14)

and for AFM fluctuations be replaced as

(q̂ − Q̂)2 ⇒ 8 − 8 cos
qa

2
cos

qb ± π

2
cos

qc

2
. (15)

Note that, in the above notation, length is nondimensionalized
in units of lattice constants Lμ, thus q̂ is also a dimensionless
quantity whose unit is L−1

μ . We assume Ja � Jb, Jc due to
the considerable Ising anisotropy observed in UTe2 [1]. For
simplicity, we assume that the magnetic susceptibility is inde-
pendent of the atomic sites of U denoted by λ.

C. Eliashberg equation

To discuss instability toward superconducting states, we
analyze the linearized Eliashberg equations:

ε�ζζ ′ (k) = −T

N

∑
k′,ζ1,ζ2,ζ3,ζ4

Vζ ζ1;ζ ′ζ2 (k − k′)

× Gζ1ζ3 (k′)�ζ3ζ4 (k′)Gζ2ζ4 (−k′), (16)

G(k) = [iωn − HN (k) − �(k)]−1, (17)

�ζζ ′ (k) = −T

N

∑
k′,ζ1,ζ2

Vζ ζ1;ζ ′ζ2 (k − k′)Gζ1ζ2 (k′), (18)

where label ζ = (λ, α) denotes orbital and spin degrees of
freedom, Gζ ζ ′ (k) is the single-particle Green’s function, and
�ζζ ′ (k) is the quasiparticle self-energy. The explicit expres-
sion of Gζ ζ ′ (k) is presented in Appendix A. Equation (16)
determines the transition temperature, when the eigenvalue
condition ε(T ) → 1 is satisfied. However, to reduce compu-
tational cost, we keep the temperature at a constant value of
T = 0.02|t1| for solving the linearized Eliashberg equations,
and compare the maximum eigenvalues εmax of all the irre-
ducible representations to determine the most stable pairing
state.

Because of spin-orbit interactions, Eq. (16) is a set of
coupled equations encompassing all d-vector components.
Each d-vector component is coupled to a specific form of the
effective interaction Vζ ζ1;ζ ′ζ2 (q), as summarized in Table II.
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TABLE II. Form of the effective interaction which couples to
each d-vector component.

d-vector component Effective interaction

d0(ψ ) −χ a − χ b − χ c

da −χ a + χ b + χ c

db +χ a − χ b + χ c

dc +χ a + χ b − χ c

III. NUMERICAL RESULTS OF STABLE PAIRING STATES

In this section, we delve into the superconducting states
induced by the interplay between FM and AFM fluctuations,
comparing the Eliashberg eigenvalues of all irreducible rep-
resentations for pairing states. First, we consider the case
that the interaction between electrons is mediated solely by
FM or AFM fluctuations. The calculated results of the largest
eigenvalues of the Eliashberg equations are shown in Fig. 2. In
Tables III and IV, we show the numerical results of the norms
of d-vector components |dα| =

√∑
k,n, j |dα

j (k, iωn)|2, which

are defined by the sum of all orbital contributions.
In the case of FM fluctuations, we set the interaction pa-

rameters as follows: Ja = 30, Jb = 0, Jc = 0, and (1/ξ a)2 =
0.1. The eigenvalues of the Au and B3u states are the largest
among all the irreducible representations and are nearly de-
generate as shown in Fig. 2(a). For the Au (B3u) state, the
predominant d-vector component is db ∼ kb (dc ∼ kb) as
shown in Table III. Given the nearly degenerate d vectors, they
can rotate within the bc plane. These results are in agreement
with a previous theoretical study [34]. As is well known [35],
longitudinal FM fluctuations along the easy axis (a axis) stabi-
lize the spin-triplet pairings with the magnetic moment along
this axis.

In the case of AFM fluctuation, we set the interaction pa-
rameters as follows: Ja = 100, Jb = 0, Jc = 0, and (1/ξ a)2 =
0.1. As shown in Fig. 2(b) and Table IV, the B1u state ex-
hibits the largest eigenvalue, with the predominant d-vector

(a) (b)

FIG. 2. The largest eigenvalue of the Eliashberg equation for
each irreducible representation in the case of Ising (a) FM and
(b) AFM fluctuations, respectively. The interaction parameters are
set as (a) Ja

FM = 30, (b) Ja
AFM = 100, Jb

FM/AFM = 0, Jc
FM/AFM = 0, and

(1/ξ a )2 = 0.1. In the case of (a) FM fluctuations, the eigenvalues of
the Au and B3u states are the largest values and nearly degenerate. All
the even-parity representations do not have finite eigenvalues. In the
case of (b) AFM fluctuations, the eigenvalue of the B1u state is the
largest.

TABLE III. Norms of d-vector components |dα| =√∑
k,n, j |dα

j (k, iωn)|2 which are defined by the sum of all

orbital contributions, in the case of FM fluctuations. Bold types
represent predominant components. Ising FM fluctuations orient
the d vector toward the b or c axis. Namely, the spin momentum of
Cooper pairs aligns along the a axis.

|ψ | |da| |db| |dc|
Au 0.04 0.01 0.99 0.05
B1u 0.10 0.12 0.13 0.98
B2u 0.13 0.11 0.98 0.10
B3u 0.01 0.04 0.05 0.99

component being da ∼ kb. To elucidate why the B1u state is
stabilized by AFM fluctuations, we present heatmaps illus-
trating the k dependence of the da component of the B1u

state in Fig. 3. The sign of da is changed by shifting the mo-
mentum k → k + Q (illustrated in bold arrow). Furthermore,
according to Table II, the longitudinal fluctuations χa with a
negative sign couple to da in the Eliashberg equations. Thus,
the Ising AFM fluctuations give rise to an attractive interaction
for the da component. This is analogous to the scenario of
high-Tc cuprate superconductors, wherein isotropic AFM fluc-
tuations trigger spin-singlet superconductivity [35]. However,
in the case of the Ising AFM fluctuations without χb and
χ c, the interacting channel is solely χa. Consequently, a one-
dimensional ordering vector stabilizes the p-wave B1u pairing
states more than even-parity pairing states. In Appendix B,
we will see that the even-parity pairing states are stabilized in
the case with substantial transverse fluctuations, which is in
agreement with previous studies [34].

The numerical results obtained above yield insights into
the multiple superconducting phases of UTe2 under applied
pressure. To address this issue, we consider the case with
both FM and AFM fluctuations and examine stable pairing
states, changing the correlation length of these fluctuations.
We take into account the coexistence of FM and AFM fluc-
tuations by assuming a simple form χa = χa

FM + χa
AFM. The

origin of the AFM fluctuations observed in neutron scattering

FIG. 3. The k dependence of da for the intraorbital pairings (τ0

component) of the B1u state which is induced by Ising AFM fluctu-
ation. The color bar represents da

0 (ka, kb, kc, n = 1) and the orange
curves represent the electron Fermi surface. The sign of da changes
by shifting the momentum k → k + Q, where Q is illustrated by the
bold arrow. The da for the interorbital pairings (τx component) of the
B1u state also exhibits similar k dependence.
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TABLE IV. Norms of d-vector components |dα| in the case of
AFM fluctuations. Bold types represent predominant components.
The d vector of the B1u state is aligned nearly parallel to the a axis.

|ψ | |da| |db| |dc|
Au 0.00 0.04 0.06 0.99
B1u 0.39 0.92 0.05 0.03
B2u 0.00 0.33 0.05 0.94
B3u 0.04 0.00 0.99 0.06
Ag 0.99 0.03 0.05 0.00
B1g 0.99 0.10 0.10 0.00
B2g 0.99 0.03 0.10 0.01
B3g 0.99 0.11 0.04 0.00

experiments remains unclear. However, it is plausible to con-
sider that they are deeply related to a magnetically ordered
phase which appears under pressure higher than 1.5 GPa [9].
Hence, we postulate the presence of an antiferromagnetic
critical point around pc = 1.5 GPa, and the correlation length
of AFM fluctuations obeys the power law with the mean-field
exponent

ξ a
AFM(p) = C

(pc − p)1/2
, (19)

where p is the pressure parameter, pc is the critical pressure,
and a constant C is set to 5 for numerics. On the other hand,
to simplify the analysis, we hypothesize that weak FM fluctu-
ations exist only close to ambient pressure, and ξ a

FM = 4 (p <

0.2) and ξ a
FM = 1 (p > 0.2). The parameters Jμ are set as fol-

lows: Ja
FM = 10, Ja

AFM = 100, Jb
FM/AFM = 0, and Jc

FM/AFM = 0.
Figure 4 illustrates the largest eigenvalue of the Eliashberg

equation for each irreducible representation as a function of
the pressure parameter p. At lower pressures p < 0.2, the
coexistence of FM and AFM fluctuations stabilizes the nearly

FIG. 4. The largest eigenvalue of the Eliashberg equation for
each irreducible representation versus the pressure parameter p. The
correlation length of weak FM fluctuations is assumed to be ξ a

FM = 4
for p < 0.2 and ξ a

FM = 1 for p > 0.2, while the correlation length
of AFM fluctuations obeys Eq. (19). The parameters Jμ are set as
follows: Ja

FM = 10, Ja
AFM = 100, Jb

FM/AFM = 0, and Jc
FM/AFM = 0. At

lower pressure (p < 0.2), the coexistence of FM and AFM fluctua-
tions stabilize the nearly degenerate Au and B3u states, In contrast, at
higher pressure (p > 0.2), AFM fluctuations stabilize the B1u state.

degenerate Au and B3u states. At higher pressures p > 0.2,
since FM fluctuations are suppressed, whereas AFM fluctua-
tions are enhanced, the B1u state is stabilized. These results
provide a comprehensive understanding of the multiple su-
perconducting phases of UTe2 under pressure. Comparing the
phase diagram shown in Fig. 4 and the experimental obser-
vation [Fig. 1(a)], we can identify the SC1 phase with the Au

or B3u state, and the SC2 phase with the B1u state. Although
we use the particular pressure dependence of the correlation
length Eq. (19), in the calculations, the qualitative behaviors
of the phase diagram shown in Fig. 4 are not changed by
other choices of pressure dependence of ξFM/AFM, as long as
the AFM fluctuations are weaker than the FM fluctuations
at ambient pressure, and ξAFM (ξFM) increases (decreases)
substantially as the pressure increases.

IV. SUMMARY AND DISCUSSION

In this paper, we postulate that pairing glues are FM and
AFM fluctuations, and investigate the stability of supercon-
ducting states by analyzing the linearized Eliashberg equa-
tions. Our findings reveal that for the two-orbital model with
the cylindrical Fermi surface observed via the dHvA mea-
surements, Ising-like spin fluctuations give rise to spin-triplet
superconductivity, irrespective of their origin from either FM
or AFM characters. Furthermore, our results provide a useful
framework for understanding the multiple superconducting
phases in UTe2 based on the spin-fluctuation-mediated pairing
mechanism. According to the results shown in Fig. 4, the
SC1 phase in Fig. 1(a) is either the Au or B3u states, while
the SC2 phase under higher pressure is identified with the
B1u state for which the d vector is aligned almost parallel to
the a axis.

The recent NMR measurements under applied pressure
[36] show that the Knight shift does not decrease below the
superconducting transition temperature of the SC2 phase for
a magnetic field along the b axis, which is consistent with our
finding that the db component is negligibly small.

The result of a spin-triplet pairing state induced by Ising
AFM fluctuations raises an interesting question about to what
extent this result is general or model-dependent. As a matter
of fact, our calculations indicate that this is model dependent,
since the stability of the spin-triplet B1u state strongly relies
on the matching of the Q vector and the shape of the Fermi
surface, as depicted in Fig. 3. That is, within our theoretical
framework, the nesting with the ordering vector Q occurs
within a cylindrical Fermi surface, which stabilizes the d
vector of the B1u state.

In this study, we mainly consider the case of Ising spin
fluctuations. However, as discussed in Appendix B, if trans-
verse spin fluctuations as well as longitudinal spin fluctuations
develop, stable pairing states may be changed: i.e., trans-
verse spin fluctuations comparable to longitudinal fluctuations
stabilize spin-singlet pairing states, suppressing spin-triplet
pairing states. Thus, it is quite important to clarify exper-
imentally the character of spin fluctuations of UTe2 under
pressure. According to the measurement of magnetic suscep-
tibilities under pressure [25], there is still strong Ising-like
anisotropy even under high pressure of 1.4 GPa, where the
SC2 phase appears. Although the anisotropy of the static
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susceptibilities is not directly related to the anisotropy of
spin fluctuations, the origin of magnetic anisotropy, spin-orbit
interactions, should be common between the static and dy-
namical magnetic properties, and hence, it is highly expected
that even under high-pressure region, where the SC2 phase
appears, transverse spin fluctuations are suppressed compared
to longitudinal fluctuations. The elucidation of the nature of
spin fluctuations under pressure is a quite important future
issue. Finally, we comment on the recently proposed pairing
mechanism resulting from the interplay between the Hund
coupling and the Kondo exchange interactions [37], distinct
from the spin-fluctuation-mediated mechanism. The pairing
symmetries generated by these two mechanisms are generally
different and may be in competition in some cases. Exploring
this competition is an interesting future issue.
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APPENDIX A: GREEN’S FUNCTION

Here, we present the single-particle Green’s function for
the normal Hamiltonian in Eq. (17). With the basis of orbital
and spin τ ⊗ σ , the normal Hamiltonian Eq. (1) is written in
the form of the 4 × 4 matrix

HN (k) =
(

ε0(k) − μ + g(k) · σ fx(k) − i fy(k)

fx(k) + i fy(k) ε0(k) − μ − g(k) · σ

)
.

(A1)

This matrix can be readily diagonalized as follows:

U †(k)HN (k)U (k) =
(

E+(k)1̂

E−(k)1̂

)
, (A2)

E±(k) = ε0(k) − μ ±
√

|g(k)|2 + | f (k)|2, (A3)

where f (k) = fx(k) − i fy(k), 1̂ is a 2 × 2 unit matrix, the
unitary operator U (k) is

U (k) =

⎛
⎜⎜⎜⎜⎜⎝

cos θ
2 cos ϕ

2 sin θ
2 sin ϕ

2 e−iψ cos θ
2 sin ϕ

2 e−iφ sin θ
2 cos ϕ

2 e−iψe−iφ

sin θ
2 cos ϕ

2 eiψ − cos θ
2 sin ϕ

2 sin θ
2 sin ϕ

2 eiψe−iφ − cos θ
2 cos ϕ

2 e−iφ

cos θ
2 sin ϕ

2 eiφ sin θ
2 cos ϕ

2 e−iψeiφ − cos θ
2 cos ϕ

2 − sin θ
2 sin ϕ

2 e−iψ

sin θ
2 sin ϕ

2 eiψeiφ − cos θ
2 cos ϕ

2 eiφ − sin θ
2 cos ϕ

2 eıψ cos θ
2 sin ϕ

2

⎞
⎟⎟⎟⎟⎟⎠, (A4)

and

tan φ = fy

fx
, cos ϕ = |g|√

|g|2 + | f |2 ,

cos θ = ga

|g| , tan ψ = −gb

gc
.

The single-particle Green’s function for noninteracting electrons, G0(k, iωn) = [iωn − HN (k)]−1, is expressed in the diagonal-
ized basis as

G0(k, iωn) = U (k)

(
G+

0 (k, iωn)1̂

G−
0 (k, iωn)1̂

)
U †(k), (A5)

where G±
0 (k, iωn) = 1/(iωn − E±(k)). We assume that the Fermi level resides solely within the lower band denoted by E−, while

the upper band is far away from the Fermi level. The parameters adopted in the main text indeed satisfy this condition. Then, we
can reasonably neglect the contribution of the upper band channel in the Green’s function. Within this approximation, we arrive
at

G0(k, iωn)

= G−
0 (k, iωn)

⎛
⎜⎜⎜⎜⎜⎝

cos2 θ
2 sin2 ϕ

2 + sin2 θ
2 cos2 ϕ

2 − 1
2 sin θ cos ϕe−iψ − 1

2 sin ϕe−iφ 0

− 1
2 sin θ cos ϕeiψ cos2 θ

2 cos2 ϕ

2 + sin2 θ
2 sin2 ϕ

2 0 − 1
2 sin ϕe−iφ

− 1
2 sin ϕeiφ 0 cos2 θ

2 cos2 ϕ

2 + sin2 θ
2 sin2 ϕ

2
1
2 sin θ cos ϕe−iψ

0 − 1
2 sin ϕeiφ 1

2 sin θ cos ϕeiψ cos2 θ
2 sin2 ϕ

2 + sin2 θ
2 cos2 ϕ

2

⎞
⎟⎟⎟⎟⎟⎠.

(A6)

The full single-particle Green’s function used for the calculations of superconducting states is defined as
G(k, iωn) = [G0(k, iωn)−1 − �(k, iωn)]−1, where �(k, iωn) is the single-particle self-energy of f electrons expressed
as Eq. (18).
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FIG. 5. The largest eigenvalue of the Eliashberg equation of
each irreducible representation in the case with both longitudinal
and transverse AFM fluctuations. The interaction parameters are
set as follows: Ja

AFM = 100, Jb
AFM = 30, Jc

AFM = 30, (1/ξ a)2 = 0.1,
(1/ξ b)2 = 0.1, (1/ξ c )2 = 0.1, and Tsf = 4. In the presence of trans-
verse AFM fluctuations, the B1u state becomes unstable, whereas
even-parity irreducible representations B3g and B1g become much
more stable.

APPENDIX B: EFFECTS OF TRANSVERSE
FLUCTUATIONS

Although we consider the case with strong Ising anisotropy
of spin fluctuations in the main text, it is important to ex-
amine the effects of transverse spin fluctuations, which may
exist to some extent in UTe2. Particularly, our computations
reveal that Ising AFM fluctuations induce spin-triplet pair-
ings, whereas conventional wisdom posits that isotropic AFM
fluctuations stabilize spin-singlet pairings. In fact, a previous
study for UTe2 [34] has reported that AFM fluctuations induce
an even-parity irreducible representation when the anisotropy
of spin fluctuations becomes weaker.

We consider the case of anisotropic AFM fluctuations with
weak transverse fluctuations. We set the interaction param-
eters as follows: Ja

AFM = 100, Jb
AFM = 30, Jc

AFM = 30, and
(1/ξ

μ
AFM)2 = 0.1 (μ = a, b, c). We show the largest eigenval-

ues of all the irreducible representations in Fig. 5, and also the
norms of d-vector components of B1u, B1g, and B3g in Table V.
In these calculations, the even-parity state B3g exhibits the
largest eigenvalue among all the irreducible representations.
Notably, the B1u state is not stabilized by AFM fluctuations,
and its d vector is not aligned along the a axis as shown in
Table V, in contrast to the case of Ising fluctuations in the

TABLE V. Norms of d-vector components |dα| in the case with
both longitudinal and transverse AFM fluctuations. Bold types rep-
resent predominant components. The d vector of the B1u state is not
aligned along the a axis in contrast to the case with longitudinal
fluctuations only.

|ψ | |da| |db| |dc|
B1u 0.57 0.04 0.82 0.05
B1g 0.99 0.03 0.06 0.00
B3g 0.99 0.03 0.03 0.00

FIG. 6. The largest eigenvalue of the Eliashberg equation of each
irreducible representation versus the pressure parameter p for sce-
nario I. In addition to the longitudinal fluctuations considered in the
main text, we assume the presence of weak transverse fluctuations
with ξ b

FM/AFM = 2 and ξ c
FM/AFM = 2. The parameters Jμ are set as

follows: Ja
FM = 10, Ja

AFM = 100, Jb
FM/AFM = 10, and Jc

FM/AFM = 10.
The results are qualitatively similar to those in the case with only
longitudinal fluctuations shown in Fig. 4.

main text. This is because the longitudinal fluctuations χa,
and the transverse fluctuations χb and χ c, cancel each other
for the channel of the da component as shown in Table II.
On the other hand, all fluctuations χa, χb, and χ c, act to
stabilize the spin-singlet components ψ . Consequently, AFM
fluctuations with a certain degree of transverse fluctuations
stabilize spin-singlet pairings.

Based on this result, we examine two scenarios of the
multiple superconducting phases under pressure. In the first
scenario (scenario I), which is a slight modification of
the scenario in the main text, we assume the existence
of AFM longitudinal fluctuation along the a axis with the

FIG. 7. The largest eigenvalue of the Eliashberg equation of each
irreducible representation versus the pressure parameter p for sce-
nario II. In addition to the longitudinal fluctuations considered in the
main text, strongly developed transverse AFM fluctuations with the
correlation length given by Eq. (B1) are included. The parameters are
set as follows: Ja

FM = 20, Ja
AFM = 100, Jb

FM = 10, Jb
AFM = 30, Jc

FM =
10, and Jc

AFM = 30. At higher pressure p > 0.2, the even-parity B3g

state is most stable.
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correlation length given by Eq. (19) and the existence of weak
ferromagnetic fluctuations along the a axis characterized by
ξ a

FM = 4 (p < 0.2) and ξ a
FM = 1 (p > 0.2). Additionally, we

assume the presence of weak transverse fluctuations char-
acterized by ξ b

FM/AFM = 2 and ξ c
FM/AFM = 2. The parameters

Jμ are set as follows: Ja
FM = 10, Ja

AFM = 100, Jb
FM/AFM = 10,

and Jc
FM/AFM = 10. In Fig. 6, we show the largest eigenvalues

of each irreducible representation as a function of pressure.
The result remains qualitatively similar to the case without
transverse fluctuations considered in the main text. At lower
pressure p < 0.2, FM fluctuations stabilize the nearly degen-
erate Au and B3u states, while at higher pressure p > 0.2, Ising
AFM fluctuations stabilize the B1u state.

On the other hand, in the second scenario (scenario II),
in addition to the strong AFM longitudinal fluctuation, we
consider the comparable transverse AFM fluctuations as well,

with their correlation length characterized by the power
law

ξ
μ
AFM(p) = C

(pc − p)1/2
, μ = a, b, c. (B1)

We also assume the existence of weak ferromagnetic fluctu-
ations with ξ a

FM = 4 (p < 0.2), ξ a
FM = 1 (p > 0.2), ξ b

FM = 2,
and ξ c

FM = 2. The parameters Jμ are set as follows: Ja
FM = 20,

Ja
AFM = 100, Jb

FM = 10, Jb
AFM = 30, Jc

FM = 10, and Jc
AFM =

30. Note that these spin fluctuations are still anisotropic χa >

χb, χ c. Figure 7 illustrates the largest eigenvalues of all the
irreducible representations as a function of pressure. At lower
pressure p < 0.2, FM fluctuations stabilize the nearly degen-
erate Au and B3u states. In contrast, at higher pressure p > 0.2,
where transverse fluctuations develop, the B3g state is the most
stable.
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