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Parity-violating superconductors can support a low-dimension local interaction that becomes, upon conden-
sation, a purely spatial Chern-Simons term. Solutions to the resulting generalized London equations can be
obtained from solutions of the ordinary London equations with a complex penetration depth, and suggest several
remarkable physical phenomena. The problem of flux exclusion by a sphere brings in an anapole moment, the
problem of current-carrying wires brings in an azimuthal magnetic field, and the problem of vortices brings in
currents along the vortices. We demonstrate that interactions of this kind, together with a conceptually related
dimensionally reduced Chern-Simons interaction, can arise from physically plausible microscopic interactions.
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I. INTRODUCTION

The principles of symmetry and locality allow us to survey
interactions that are likely to emerge in the description of
materials at low energy in a systematic way. This Ginzburg-
Landau or effective field theory approach has proved to be
a fruitful guide to low-energy dynamics, phase transitions,
and response to external fields in many applications. In this
approach, the focus is on possible interactions represented
by local operators of low mass dimension. In this paper,
we shall study terms in the effective Lagrangian, specifically
�β · �A × �E − A0 �β · �B and especially �A · �B, that break discrete
symmetries. For general reasons related to gauge symmetry, it
appears that the second of these terms cannot appear in a nor-
mal material in its thermodynamic ground state [1]. However,
as demonstrated below, it is permitted in superconducting
states that can support persistent current. We will provide
examples of microscopic models that illustrate both terms.
These terms have noteworthy phenomenological implications,
which we will explore further and exemplify below. Interac-
tions mediated by Lagrangian densities of the Chern-Simons
form

L ∝ εαβγ Aα∂βAγ , (1)

involving a gauge field Aα , and their multifield and non-
Abelian generalizations, have attracted much attention in
recent years, mostly in the context of (2+1)-dimensional sys-
tems, where they can have a topological character. In its most
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straightforward application, the gauge field �A is the gauge
field of electromagnetism. Then these terms directly induce,
and parametrize, interesting aspects of electromagnetic re-
sponse that, at a heuristic level, derive from current-field
mixing. Here we will examine a different appearance of in-
teractions of this kind, in 3+1 dimensions, where we take all
the indices to be spatial:

LCSt = −β

2
�A · �B. (2)

Terms of this kind are not relativistically invariant, and they
also violate parity (but not time reversal). That does not forbid
their appearance, since many materials, such as those based
on crystals lacking an inversion center, and others described
below, violate those symmetries. More seriously, such terms
embody only a limited form of gauge symmetry. Under a local
gauge transformation Aα → Aα + ∂α�, we have

εαβγ Aα∂βAγ → εαβγ Aα∂βAγ + ∂α (εαβγ �∂βAγ ), (3)

so the change in the bulk interaction can be cast into a surface
term; but in possible applications, the surface term requires
careful consideration. Notably, in the context of the quantum
Hall effect, it is connected to the existence of edge modes
and is canceled through an anomalous surface theory [2]. In
addition to the spatial Chern-Simons term Eq. (2), we shall
also consider the term

LCSs = 1
2 (�β · �A × �E − A0 �β · �B). (4)

In a superconductor, we can generate a spatial Chern-
Simons interaction from a conventional, manifestly gauge
invariant interaction by condensation, viz.:

Re φ†i �Dφ · �B → qv2 �A · �B, (5)

where �D ≡ �∇ − iq �A is the covariant derivative, φ → 〈φ〉 ≡ v

through condensation, and where we used the London gauge.
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This is similar to how condensation generates a photon mass
term ∝ A2 from the kinetic energy ∝ φ† �D2φ. We can expect
such terms to arise even in s-wave superconductors that vi-
olate parity symmetry, for example, those based on chiral
crystals, on organic superconductors subject to chiral selec-
tion of the base molecules, generic s-wave superconductors
incorporating chiral dopants, or noncentrosymmetric super-
conductors [3–6].

Spatial Chern-Simons terms are also known to be directly
connected to the chiral magnetic effect (CME), and arise
naturally in various Weyl systems as a consequence of driving
or domain-wall motion [7–10]. The presence of these terms
have, however, been debated in the past years, for instance,
in Refs. [11,12] (see, also Refs. [10,13] for a summary). Care
must be taken to distinguish the equilibrium ground state from
driven states, and also to take the correct order of the limits
�q → 0 and ω → 0 [14,15]. In Sec. V below, we will further
investigate the presence of both �A · �B, and �β · �A × �E terms in
equilibrium Weyl systems.

Heuristically, one identifies quantities �̃j that appear in La-

grangian densities of the form �A · �̃j as effective currents, since

they will appear as such in the Maxwell equations. (If �̃j de-
pends explicitly on �A, slight complications ensue.) Famously,
the London diamagnetic current �jd ∝ �A is characteristic of
the superconducting photon mass. Following this heuristic,
the spatial Chern-Simons term Eq. (2) gives us a current �jCS

proportional to the magnetic field:

�jCSt ∝ �B. (6)

This yields unusual, interesting, and potentially important
phenomenological consequences, which is the subject of
Sec. II.

From a broader theoretical perspective, a natural term
descending from a Lorentz invariant effective action is
εμνσωβμAνFσω, where βμ is an axial (i.e., unnatural) four-
vector. Constant values of β violate Lorentz invariance, and
a constant β0 can be powerfully constrained phenomenolog-
ically using astronomical data [16]. But interactions of the
form Eqs. (2) and (4) arise naturally from the canonical axion
coupling to electromagnetic fields

L ∝ aεαβγ δ∂αAβ∂γ Aδ (7)

for the simplest space-time variations of a, corresponding
to the axion background a = βt and a = �β · �x, respectively,
where the latter describes an axion wind background, one that
is constant in time but varies linearly in a spatial direction. Of
course, both can occur together.

The expression �A · �B appears in many places in the lit-
erature on magnetohydrodynamics [17], where it is used to
characterize the magnetic field configurations in the plasmas.
In particular, Eq. (6) describes a force-free field since the
Lorentz force on a current parallel with the magnetic field
vanishes [18]. We stress, however, that here we are interested
in the response of materials where �A · �B is part of the ef-
fective action, and thus determines the response to external
fields.

II. PHENOMENA IN ACTIVELY CHIRAL
SUPERCONDUCTORS

For ease of reference, and in view of their connection with
chirality and optical activity, we shall refer to superconductors
that incorporate a purely spatial Chern-Simons term LCSt as
actively chiral superconductors. We will work with the La-
grangian density:

L = 1

2
E2 − 1

2
B2 − β

2
�A · �B − γ

2
A2. (8)

A. Plane waves and stability

From Eq. (8), we derive, after fixing the gauge A0 = 0 and
adopting the plane-wave ansatz

�A = �ε exp i(�k · �x − ωt ), (9)

the equations of motion

�k · �ε = 0, (10)

(ω2 − k2 − γ )�ε ∓ β�k × �ε = 0. (11)

The eigenpolarizations are transverse and circular. Indeed,
with

�k = (0, 0, k), �ε ∝ (1,±i, 0), (12)

we find the dispersion relations:

(ω2 − k2 − γ ) ∓ βk = 0. (13)

The two circular polarizations propagate with different ve-
locities. This gives rise to optical activity, i.e., rotation of the
plane of linear polarization as the (transverse) wave propa-
gates.

For stability in time, we require that for real k the ω that
solve the dispersion relation are real. This gives us the stability
condition

4γ � β2. (14)

The same condition also ensures the positivity of the energy.
Indeed, since the electric field contribution is manifestly pos-
itive, at issue is only the positivity of the magnetic energy

E = 1

2

∫
B2 + β �A · �B + γ A2. (15)

We can write this as

E = 1

4

∫ (
1 + β

2
√

γ

)
( �B + √

γ �A)2

+
(

1 − β

2
√

γ

)
( �B − √

γ �A)2. (16)

When Eq. (14) is satisfied the coefficients of these two mani-
festly positive terms will both be non-negative.

The stability condition Eq. (14) requires, for β �= 0, that
γ > 0. Thus, it requires a nonzero effective photon mass, such
as we have in superconductivity. Note that if the condition
Eq. (14) is relaxed, the modes at very low k will still be
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stable since the A2 term dominates, and the same will be
true for large k modes where the B2 term dominates. There
will, however, be a region of intermediate k where the �A · �B
term will give an instability. In a more complete theory, this
instability could be cured by higher order terms and this would
open for a nontrivial magnetic structure in the ground state.
We will revisit this subject in a slightly different context in
Sec. III.

B. Connection to optical activity

The optical activity of a material is usually described in
terms of a frequency and momentum-dependent dielectric
constant and/or magnetic permeability. We shall consider the
latter case and write the magnetic energy density as

Em = 1

2
Biμ−1

i j (ω, �∇ )B j

→ 1

2μ
B2 + α(ω)

2
�B · �∇ × �B, (17)

where in the second line we put μi j (ω, �∇ ) = μ(δi j −
α(ω)εik j∇k ) and expanded to leading order in �∇. The energy
corresponding to the second term can be rewritten as

Ec = α(ω)

2

∫
V

d3x ( �∇ × �A) · ( �∇ × �B)

= −α(ω)

2

∫
V

d3x �A · ∇2 �B

+ α(ω)

2

∫
δV

dSi A j (∂iB j − ∂ jBi ). (18)

We already mentioned that the first term on the second line
is not gauge invariant, but in this case it is easy to show that
the surface term in the last line, as expected, restores gauge
invariance, so there is no need for an additional surface theory.

Let us now assume that we have a superconductor with
randomly implanted optically active impurities that will add
a term Ec to the free energy functional of the superconductor.
To leading order in α, we can then just substitute the London
relation ∇2 �B = λ−2

L
�B in Eq. (17), and assuming that α(ω)

can be approximated by a constant α at low frequencies, we
obtain the low-energy Lagrangian in Eq. (8) if we identify
β = α(0)/λ2

L.

C. Solution schema

We are interested in solving the equation

�∇ × �∇ × �B + β �∇ × �B + γ �B = 0. (19)

Equation (19) is a generalization of the famous London equa-
tion for superconducting magnetostatics, which is the special
case β = 0. In the London equation, γ represents the inverse
square of the penetration depth. As we now demonstrate, one
can generate solutions to Eq. (19) out of solutions to the
London equation with a complex coefficient.

Indeed, inserting the superposition ansatz

�B = �Ba + κ �∇ × �Ba (20)

into Eq. (19) leads to

(1 + βκ ) �∇ × �∇ × �Ba + γ �Ba + κ �∇ × �∇ × �∇ × �Ba

+ (β + γ κ ) �∇ × �Ba = 0, (21)

and therefore when

�∇ × �∇ × �Ba + α �Ba = 0 (22)

to

[−α (1 + βκ ) + γ ] �Ba + ( −ακ + β + γ κ ) �∇ × �Ba = 0.

(23)

Thus, if we enforce the algebraic relations

−α (1 + βκ ) + γ = 0,

−ακ + β + γ κ = 0, (24)

then �B will satisfy the generalized London equation Eq. (19).
We are given β, γ and seek to solve for α, κ . From

Eqs. (24), we derive a quadratic equation for κ that is
solved by

κ = −β ± i
√

4γ − β2

2γ
. (25)

Here we see that the realistic situation 4γ − β2 > 0 brings
in complex numbers. Having gotten κ in terms of β, γ it is
straightforward to further arrive at

α = γ + β

2
(−β ∓ i

√
4γ − β2). (26)

Thus, we have two complex conjugate solutions for our
auxiliary inverse square penetration depth. An immediate
physical implication is that we can expect oscillations to ac-
company the exponential damping of fields (and currents) we
usually encounter as we penetrate a superconductor.

Ultimately, we want real solutions of our field equations.
Since our auxiliary equations are linear, we can simply use
the real and imaginary parts of their solutions. Note that since
the auxiliary equations are complex conjugates of one another,
they both lead us to the same real fields.

This solution scheme embodies in a precise form the con-
cept of field-current mixing that we anticipated heuristically.
Indeed, since �∇ × �Ba is the London diamagnetic current as-
sociated to �Ba, the solution �B defined in Eq. (20) is a linear
combination of its field and current.

Let us further note the curious fact that our construction
in Eq. (20) leads to (complex-valued) fields �B that, like �Ba,
satisfy Eq. (22) and, thus, in view of Eq. (19),

β �∇ × �B = (α − γ ) �B (27)

or

�∇ × �B = 1
2 (−β ∓ i

√
4γ − β2) �B. (28)

In the critical case 4γ − β2 = 0, we get force-free fields.
The solutions to the generalized London equation govern

the magnetostatics for parity-violating superconductors. Ex-
amples are the noncentrosymmetric superconductors [3–6],
which allows for Lifshitz invariants in the Ginzburg-Landau
free energy. These terms are linear in covariant derivatives
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and magnetic fields, and can give rise to to helical phases
and effects similar to the CME, see Ref. [5] for an extensive
summary on the topic.

We now turn to the explicit solutions of the generalized
London equations in various geometries with the purpose to
demonstrate how pertinent effects, such as as induced currents
and magnetic field profiles, are affected by the geometry of the
superconductor.

D. Slab geometry

A relatively simple, yet physically significant and mathe-
matically transparent situation to analyze is the half space or
slab geometry. Thus, we imagine our superconductor to fill the
half space x > 0 while in the remaining half space, we have a
constant magnetic field:

�Bext. = ẑB0, (x < 0). (29)

Here we match onto the solution of the ordinary London
equation Eq. (22) proportional to

�Ba = ẑB0e−√
αx, (30)

whose curl

�∇ × �Ba = ŷB0
√

αe−√
αx (31)

is the diamagnetic screening current. We will build our solu-
tion using this auxiliary form with B0 = 1.

We invoke Eq. (26) to choose

√
α =

√
γ − β2

4
+ i

β

2
≡ p + iq, (32)

where positive square roots are understood throughout. Note
that to get solutions that fall off as x → ∞, we must take roots
with a positive real part; the remaining choice associated with
the ∓ in α has no effect on our final result, and we have chosen
the lower sign.

With that preparation, we can use our solution scheme to
solve the generalized London Eq. (19). After some algebra,
we arrive at

Bz = e−px cos qx,

By = − e−px sin qx, (33)

Bz = − e−px sin qx,

By = − e−px cos qx, (34)

for the real and imaginary parts. Finally, to ensure continu-
ity of the magnetic field at the boundary we take the linear
combination of these two solutions that has By(0) = 0 and
Bz(0) = B0. This gives us the magnetic field

Bz(x) = B0e−px cos qx,

By(x) = − B0e−px sin qx, (35)

and the current

jz(x) = ∂By

∂x
= −B0e−px(−p sin qx + q cos qx),

jy(x) = − ∂Bz

∂x
= B0e−px(p cos qx + q sin qx), (36)

inside the superconductor.

As anticipated, this solution displays three qualitatively
new features relative to the usual London (β = 0) case. Most
profoundly, there is a current running parallel to the exter-
nal field direction. Second, there is an induced perpendicular
magnetic field in the interior. Thirdly, the interior fields and
currents have an oscillatory character.

We can also consider a slab, occupying the region 0 � x �
a. We can use the same solution inside the superconductor,
matched to the constant field

Bz(x � a) = − B0e−pa sin qa,

By(x � a) = − B0e−pa cos qa. (37)

This represents the result of applying B = B0ẑ at x � 0 and
a rotated (and damped) field at x � a. Here we see a close
analogy, in magnetostatics, to optical activity (accompanied
by absorption).

E. Intrinsic solenoid (trapped flux and model vortex)

We can notionally insert a solenoid into our superconduc-
tor, and ask that it be generated self-consistently by screening
currents within the superconductor. This is of interest in itself,
and also allows us to anticipate and model, within the rela-
tively simple and parameter-sparse context of the (modified)
London equations, properties of trapped flux and of quantized
magnetic vortices.

In cylindrical coordinates, our solenoid is defined by

�B(r, z, φ) = B0ẑ, r � R, (38)

and it joins on to a solution of Eq. (19) for r � R. The
self-consistency condition is that there are no singular surface
currents, which we enforce by demanding continuity of the
tangential magnetic fields at r = R.

The auxiliary solution of the ordinary London equa-
tion brings in the Bessel function K1, which dies exponentially
at infinity:

Ba(r, z, φ) = B0ẑ
K1(

√
αr)

K1(
√

αR)
, r � R. (39)

From the curl of this field, we infer the azimuthal diamagnetic
screening current. With this starting point, we can invoke the
machinery of our solution schema to generate solutions of our
generalized London equation in the exterior (superconduct-
ing) region. Details are spelled out in Appendix B.

Let us mention how the qualitative novelties we observed
above get manifested here: within the superconductor, we find
longitudinal current flows jz, azimuthal magnetic fields Bφ ,
and oscillatory behavior (possibly damped) of all the fields
and currents as functions of r. These general findings are
displayed in Fig. 1 for some exemplary values of β and γ .

It is possible to consider cylindrical shells, fields imposed
from the outside, and so forth, both analytically and numer-
ically (and, presumably, experimentally), based on the same
ideas.

F. Sphere geometry

Another accessible problem, often considered to be the
paradigmatic Meissner effect, is the superconducting sphere
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FIG. 1. Azimuthal and longitudinal components of the magnetic
field and the currents inside the superconductor with a solenoid
for β = 15, γ = 57, B0 = 100, and R = 1, displaying a (spatially
damped) longitudinal current. Notably, the applied, constant, and
longitudinal magnetic field in the solenoid gives rise to an azimuthal
field component inside the superconductor that further oscillates in
a damped fashion, just as the longitudinal component, as a function
of r.

exposed to a constant external magnetic field. The auxiliary
reference problem here was solved and presented by Lon-
don himself in his classic book [19]. One finds, for spheres
much larger than the penetration depth, the field canceled or
expelled by azimuthal diamagnetic screening currents near
the surface of the sphere. Magnetic field lines with the su-
perconductor get routed to within that penetration region, as
displayed by Fig. 2. In additional to the imposed field, one
finds a calculable magnetic dipole arising from the circulating
currents.

Since the auxiliary solution is expressed in terms of ex-
ponentials, we can use our solution schema to generate
completely explicit solutions of the modified equations in
terms of exponentials and trigonometric functions. The be-
havior of the magnetic field is illustrated in Fig. 2 for various
penetration depths, and calculational details along with the
full solution are spelled out in Appendix B.

FIG. 3. Currents in spherical coordinates inside a superconduct-
ing unit sphere generated by the external and constant magnetic for
polar angle θ = π

3 . Note that the radial component of the current
vanishes at the boundary. No current escapes from the sphere, but
there is an anapole moment.

In Fig. 3, we see that the currents that run along the surface
of the sphere and return in a (squashed) toroidal fashion give
no external moment, but represent a form of what are called
anapole moments in the literature. An anapole moment, or a
magnetic toroidal moment, is a term in the multipole expan-
sion of the electromagnetic field that violates both P and T
symmetry. The anapole moment is given by

Ti = 1

10

∫
[ri(�r · �j) − 2r2Ji]d

3x, (40)

where ri are the Cartesian coordinates and �j the current. Using
the explicit solutions of the magnetic field inside the sphere
(see Appendix B for their explicit appearance), the current is
given by �jsphere = �∇ × �Bin

sphere, it can be shown that Tx and Ty

are identically zero. However, Tz is finite and for the two cases

FIG. 2. Expulsion of the magnetic field by a superconducting unit sphere for representative parameter values. The magnetic field forms
closed loops inside the superconducting sphere. Panels (a) and (d) display how the parity violating azimuthal component oscillates inside the
sphere, for polar angle θ = π

3 . The field configuration gives rise to an anapole moment, as discussed in the text.
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illustrated in Fig. 2 given by

Tz(β = 15, γ = 65) = −15.5804, (41)

Tz(β = 20, γ = 200) = 2182.52. (42)

Appendix B contains a general expression for the z component
of the anapole moment.

III. ACTIVELY CHIRAL MAGNETISM

Chiral materials generally, and not only superconductors,
support a �B · ( �∇ × �B) term in the effective Lagrangian density.
At optical frequencies, it gives optical activity. One should
also consider its effect in magnetostatics. In that context, the
most relevant terms are

−L = 1

2μ
B2 + κ �B · ( �∇ × �B) + λ

2
( �∇ × �B)2. (43)

This Lagrangian density bears a close family resemblance to
the effective Lagrangian we used in our analysis of chirally
active superconductivity.. Indeed, the substitution �∇ × �B →
�A brings it into the form we analyzed above.

A simple heuristic consideration suggests the common
occurrence of this term in organic (chiral) diamagnetism.
Imagine a helical molecule segment along which diamagnetic
currents can flow. If we apply magnetic flux along the axis
of the helix, the diamagnetic current that along the helix,
regarded vectorially, will have a component along the applied
magnetic field direction. But the current sources �∇ × �B, so
this correlation represents a �B · �∇ × �B. If the magnetic field is
off axis, only its component along the axis will be operative,
but the same logic applies. Helices of the same chirality will
all contribute with the same sign.

We can write the energy density as

1

4

[(
1

μ
+ κ√

λμ

)
( �B +

√
λμ �∇ × �B)2

+
(

1

μ
− κ√

λμ

)
( �B −

√
λμ �∇ × �B)2

]
, (44)

from which we see that we have stability for

λ

μ
� κ2, (45)

and of course μ, λ � 0.
Alternatively we can consider plane waves

�A =
⎛
⎝ 1

±i
0

⎞
⎠eikz, (46)

with energy density proportional to

1

μ
± 2κk + λk2. (47)

Here, positivity of the energy density (for real k) leads again
to Eq. (45). As long as λ > 0, we can stabilize the model by
adding a (B2)2 term.

Taking λ, κ, k > 0, the minimum energy density tak-
ing into account only quadratic terms occurs, according to

Eq. (47), at

kc = κ

λ
, (48)

with the lower choice of sign, where it has the value

ε ≡ 1

μ
− κ2

λ
. (49)

When ε < 0, we can lower the energy by bringing in fields of
the form

Bx ∝ cos kcz,

By ∝ sin kcz, (50)

Bz = 0.

Note that this instability does not require μ < 0, i.e., insta-
bility toward ordinary (i.e., k = 0) ferromagnetism, though
of course it includes that possibility. To describe a stable
system, we must bring in a (B2)2 penalty term that limits the
amplitude of the spontaneously developed structure. Equa-
tions (50) represent fields that are constant within z = const
planes whose direction rotates periodically within the x − y
plane as z varies. In other words, we see here magnetic fields
characteristic of optical activity frozen in time.

A point of interest is that because the coupling λ
2 ( �∇ × �B)2

required to stabilize the κ �B · ( �∇ × �B) optical activity term
contains a larger number of derivatives than the minimal
Maxwell 1

2μ
B2 term, it cannot be regarded as a uniformly

small perturbation, even when λ is small. Indeed, it changes
the nature of the boundary value problem. If we fix the gauge
�∇ · �A = 0 and (for simplicity) set κ = 0, varying L leads to
the equation [

1

μ
+ λ(∇2)

]
∇2 �A = 0. (51)

Any harmonic vector field will solve this equation, and very
naively one might expect that for small λ such fields provide
excellent approximate solutions, in general. But in regions
where �A varies rapidly, the second term comes in strongly, and
other solutions may be physically appropriate. In particular,
the boundary conditions one must apply at surfaces where the
value of λ changes (notably, at boundaries between our chi-
ral magnetic materials and conventional materials, or empty
space) must enforce additional continuity of normal deriva-
tives, beyond what is usually required for harmonic fields,
and this may require substantial adjustments of candidate
solutions near the boundary. Closely related mathematical
issues arise in hydrodynamics, where they have stimulated the
development of boundary layer theory.

The solution schema we used in the �A · �B problem contin-
ues to work in this new context, so we can leverage known
solutions of Eq. (51) to get solutions of the full (κ �= 0) equa-
tions in various geometries.

IV. PHENOMENOLOGY OF AXION WIND MATERIALS

The axion wind term

Lw ∝ �βi · εiαβγ AαFβγ ∝ �β · ( �A × �E ) − A0 �β · �B (52)
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breaks rotation symmetry (and time-reversal symmetry), so
its phenomenology is more complicated. Here we confine
ourselves to a simple but important general observation and
a calculation of its effect on wave propagation. For simplicity,
we will take �β = β ẑ.

Whereas the term ∝ �A · �B brings in spatial derivatives in
all directions, and thereby involves the material as a whole,
the term �β · ( �A × �E ) does not bring in derivatives in the
ẑ direction, and in that sense reduces to a stack of pla-
nar terms. (Of course, other terms in the Lagrangian will
link the planes.) Within each plane, we have, in effect, a
(2 + 1)-dimensional Chern-Simons theory. Indeed, through
the alternative formulation ε3αβγ Aα∂βAγ of our term, we see
that in isolation it literally represents a stack of independent
(2 + 1)-dimensional Chern-Simons theories. This interpreta-
tion indicates that in a bounded sample there will be massless
surface modes, as in the quantum Hall effect, whose anoma-
lies cancel the surface terms that otherwise obstruct full gauge
invariance of the bulk theory.

From the Lagrangian

L = 1

2
E2 − 1

2
B2 + β

2
[ẑ · ( �A × �E ) − A0Bz], (53)

we derive the equations of motion

�∇ · �B = 0,

�∇ × �E = − ∂ �B
∂t

,

�∇ · �E = βBz, (54)

�∇ × �B = ∂ �E
∂t

− β ẑ × �E .

Thus we have effective charge and current densities

ρe = βBz, (55)

�je = − β ẑ × �E (56)

that automatically satisfy the conservation equation.
Having imposed the corresponding variational equation,

we can set the nondynamical field A0 = 0.
For plane waves propagating in the ẑ direction, we use the

ansatz A = ε ei(kz−ωt ). We find that transverse circular polar-
izations lead to uncoupled dispersion relations, in the forms

�A =
⎛
⎝ 1

±i
0

⎞
⎠ei(kx−ωt ), (57)

0 = ω2 − k2 ∓ βω. (58)

Here again we find that the different circular polarizations
travel at different velocities, so there is optical activity. Unlike
before, however, here we have no zone of instability.

For plane waves propagating in the x̂ direction, we use the
ansatz A = εei(kx−ωt ). One eigenmode does not feel the new
term at all:

�A =
⎛
⎝0

0
1

⎞
⎠ei(kx−ωt ), (59)

0 = ω2 − k2. (60)

The other eigenmode is more unusual. It is

�A =

⎛
⎜⎝i β

ω

1
0

⎞
⎟⎠ei(kx−ωt ), (61)

with the dispersion relation

0 = ω2 − k2 − β2. (62)

This dispersion relation is characteristic of a massive exci-
tation. The polarization, which is never transverse, becomes
increasingly longitudinal at low frequencies.

It is straightforward, though lengthy, to calculate the gen-
eral case �k = k(sin θ x̂ + cos θ ẑ). Here we only record the
dispersion relation:

ω2 = k2 + β2

2
± β

√
k2 cos2 θ + β2

4
. (63)

V. MICROSCOPIC MODELS BASED ON SEMIMETALS

Previously, we discussed, in general terms, several situa-
tions where we can expect emergent Chern-Simons terms to
arise. In this section, we will describe in detail a specific con-
struction, inspired by the appearance of anomalies in quantum
field theories, that gives rise to them.

The P- or T -breaking terms we seek are quadratic in
gauge potentials and involve cross products. A natural way
for those to arise, in Feynman graphs, is through the struc-
ture Tr[(�a · �σ )(�b · �σ )(�c · �σ )] when integrating over fermions
in vacuum polarization loops. This is similar to the structure
that gives rise to chiral anomalies in relativistic theories in
even dimensions. Inspired by these thoughts, we are led to
consider Dirac and Weyl materials.

A. Axion wind terms in Weyl semimetals

In WSMs, the different chiralities can be split in momen-
tum space by imposing stress. The vector separating the nodes
is axial, and thus provides a candidate for the axial vector
�k. We now show, by an explicit calculation of the vacuum
current, that such a splitting does lead to a ∼�k · ( �A × �E ) term
in Seff [13].

Consider an inversion symmetric Weyl semimetal with
Hamiltonian

H =
∑
a=±

∑
�q

c†
a(�qa)ha(�qa)ca

=
∑

�q
�̃†(�q)

(
h−(�q−) 0

0 h+(�q+)

)
�̃(�q), (64)

where

h±(�q±) = q±
x σ x + q±

y σ y + q±
z σ z − b±

0 σ 0, (65)

�q± = [kx ± bx, ky ± by,∓(kz ± bz )], (66)

and the wave functions are defined as

�̃(�q) =
(

c−(�q)

c+(�q)

)
. (67)

064514-7



M. STÅLHAMMAR et al. PHYSICAL REVIEW B 109, 064514 (2024)

FIG. 4. Given an effective axial vector potential, two-photon re-
sponse includes the classic VVA triangle anomaly graph.

The Weyl semimetal has a pair of nodes located at �k = ±�b
at energies b±

0 . Here, we have set the product of Planck’s
constant and the Fermi energy, h̄vF = 1. In the following, to
simplify notation, the sum over momenta will be left implicit.

The Hamiltonian can be rewritten as

H = �̃†

(
(�k + �b) · �σ + b−

0 0

0 σ z[−(�k − �b) · �σ + b+
0 ]σ z

)
�̃

= �†

(
(�k + �b) · �σ + b−

0 0

0 −(�k − �b) · �σ + b+
0

)
�, (68)

with �(�q) = (c−(�q), σ zc+(�q))T. Using the chiral representa-
tion of the Weyl matrices,

γ 0 =
(

0 σ 0

σ 0 0

)
, �γ =

(
0 �σ

−�σ 0

)
, γ 5 =

(−σ 0 0
0 σ 0

)
,

(69)

the Hamiltonian becomes

H = �̄[−�γ · �k + �γ · �bγ 5 + γ 0(P−b−
0 + P+b+

0 )]�, (70)

with P± = 1
2 (1 ± γ 5) and �̄ = �†γ 0. Heisenberg equa-

tions of motion then yield

[/∂ − �γ · �bγ 5 − γ 0(P−b−
0 + P+b+

0 )]� = 0, (71)

from which we can extract the Lagrangian:

L = �̄[i/∂ − �γ · �bγ 5 − γ 0(P−b−
0 + P+b+

0 )]. (72)

Coupling to the electromagnetic field via minimal coupling
gives

L = �̄[i/∂ + /A − �γ · �bγ 5 − γ 0(P−b−
0 + P+b+

0 )]�. (73)

By shifting the zeroth component of the gauge field A such
that A0 → A0 − 1

2 (b+
0 + b−

0 ), and defining b0 = 1
2 (b−

0 − b+
0 ),

it can be written as

L = �̄(i/∂ + /A + /bγ 5)�. (74)

Thus, the shifts in momentum and energy of the Weyl
nodes can be recast into an effective axial gauge field (of
a very special form) in the Lagrangian. A constant bμ can
be written bμ = ∂μξ , with ξ = bμxμ. Naively, such a bμ can
be eliminated by the chiral rotation ψ → eiξγ 5

ψ . However, a
nonzero contribution to the effective action arises from the

triangle anomaly, see Fig. 4. After a partial integration, it
becomes (see, e.g., Ref. [20])

Stop = 1

8π2

∫
d4xεμνρσ Tr(bμAν∂ρAσ ). (75)

Here, εμνρσ is the Levi-Civita symbol with convention ε0123 =
1. We will now break down the individual components of
this variation and write them out explicitly to understand their
physical significance:

Stop = 1

8π2

∫
d4x(ε0i jkb0Ai∂ jAk + εi0 jkbiA0∂ jAk

+ εi j0kbiA j∂0Ak + εi jk0biA j∂kA0)

= 1

8π2

∫
d4x(b0 �A · �B − A0�b · �B + �b · �A × �E ). (76)

Here, we again used that bμ are constants, in order to perform
integration by parts.

At first glance, it seems that an �A · �B term appears al-
ready here, and its presence has been debated in recent years
[7,8,10–15]. Here, however, we have calculated the current in
the vacuum, meaning that we have assumed that each of the
Weyl cones are filled up exactly to the nodes, despite them
being at different energies. Having finite density amounts to
filling particles at the nodes to levels set by the chemical
potentials μ+ and μ−, and the total current becomes �j =
μ5−b0

2π2 �B, where μ5 = μ+ − μ−, and the energy shift b0 plays
the role of an A5

0 term [10]. In realistic systems, this is not a
stable situation, since there are scattering processes that trans-
fer electrons between the cones, so the (generalized) grand
canonical equilibrium amounts to having both Weyl cones
filled up to the same Fermi energy rather than to the separate
ones. This amounts to μ5 = A5

0 and thus no CME, so we are
left with

Stop = 1

8π2

∫
d4x(�b · �A × �E − A0�b · �B), (77)

where �b, as promised, is the (constant) axial vector that gives
rise to the �b · �A × �E term in Seff. Note that there is an addi-
tional term ∼�b · �B, whose strength is determined by A0.

B. k0�A · �B term from a flux biased Weyl supercondutor

It is more difficult to generate an Stop[ �E , �B] with an �A · �B
term by this mechanism. Formally, in the static limit, such
a term corresponds to an imbalance between Weyl nodes of
positive and negative chirality, which is disallowed in a system
with bounded energy bands, according to fermion doubling
theorems. Here, we further want to clarify an important dif-
ference to the work by Zhong et al. in Ref. [9], where the
current associated to the �A · �B term remains finite. This is
due to the presence of an electromagnetic wave, resulting in
a nontrivial electric field and this a driving in the system.
Here, we consider the static case where we assume a constant
magnetic field and no electric fields.

Imbalances between chiral nodes are, however, known to
arise in several contexts, including Floquet systems [21–23],
and situations where effects that only gap out nodes of one
particular chirality are present. Examples of the latter include
chirality locking charge density waves [24] and certain Weyl
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superconductors [25–27]. To illustrate that terms on the form
�A · �B indeed do arise in physically realizable systems, we will
show it for a single Weyl node Hamiltonian originating from
a flux-biased Weyl superconductor.

For the sake of completeness, we first outline how the
considered system is set up, referring the reader to the very
insightful original work in Ref. [25] for further details. The
parent Hamiltonian is taken as

H =
∑

�k
�

†
�k H (�k)��k, ��k = (ψ�k, σ

yψ
†
−�k ), (78)

H (�k) =
(

H0(�k − e �A) �0

�∗
0 −σ yH∗

0 (−�k − e �A)σ y

)
, (79)

H0(�k) =
∑

i

τ zσ i sin ki + τ 0(βσ z − μσ 0) + m�kτ
xσ 0, (80)

m�k = m0 +
∑

i

(1 − cos ki ). (81)

τi and σi, i = x, y, z, are orbital and spin Pauli matrices,
respectively, β a magnetization, μ a chemical potential, �A
the electromagnetic vector potential, and �0 the BCS-pairing
potential. A system with this Hamiltonian can be obtained
by stacking alternate layers of topological insulators and con-
ventional BCS superconductors, which introduces a coupling

between the Weyl nodes centered at (0, 0,±
√

β2 − m2
0 ) of H0

and their corresponding particle-hole conjugates. The number
of ungapped particle-hole conjugate Weyl cones determine the
topological phase of the Weyl superconductor, phases that can
be accessed in an externally controllable way, as explained
in Ref. [25]. This is done by coupling a flux-bias circuit to
the material slab. This will alter the Hamiltonian, as the flux
bias will be taken into account as a constant shift in the
vector potential �A. In this particular setup, the flux bias gives
a contribution �/e to Az. As a result, the Weyl nodes appear
at (0, 0, b±) and (0, 0,−b±), with

b2
± = (√

β2 − m2
0 ± �

)2 − �2
0, (82)

meaning that when∣∣√β2 − m2
0 − �

∣∣ < �0 <

√
β2 − m2

0 + �, (83)

one of the two pairs of particle-hole conjugate Weyl nodes are
gapped out, leaving only the nodes with positive chirality.

In the regime where Weyl nodes of only one chirality are
gapped out, we are left with two nodes of the same chirality.
The contribution from the current from these respective nodes
will then add up instead of canceling one another (as for
nodes of opposite chirality). The two nodes are described by
essentially the same Hamiltonian,

H̃α =
∑

�k
ψ̃

†
�k

[∑
i

νi(δki − QiAi )σ
i − Q0μσ 0

]
ψ̃�k, (84)

where �k = (0, 0, bα ) + δ�k, �ν = (1, 1,−κ ), Q0 = κ , �Q =
e(κ, κ, 1/κ ), and

κ ≈
√

1 − �2
0

(β + �)2
. (85)

Using standard procedure, this can be recast as a Lagrangian,

Lα = ψ̄α (i /̃∂ + /̃Aα )ψα, (86)

where /̃∂ = γ 0∂0 − νiγ
i∂i and the left-handed chiral gauge

field is Ãα = (A0 − Q0μ, νiQiAi − νibα;i ).
We now set A0 = 0 and take �bα to be constant, but allow

for an �x-dependent chemical potential μ(�x). The left-handed
chiral anomaly is ∂̃μJμ = − e2

32π2 ε
μνσλF̃μν F̃σλ, where F̃ is the

field strength related to Ã. From this, we can extract the
topological part of the chiral current:

Ji = − e2

16π2
εi0 jkÃ0∂̃iÃk . (87)

where Ã0 = −Q0μ. This expression is well-defined and finite
also for constant μ, but a direct calculation of Ji will give
a logarithmically divergent result, as shown in Appendix A.
This is no contradiction with Eq. (87), since for constant μ

∂iJi = 0, there can be an extra contribution that is not deter-
mined by the anomaly. We believe that the limiting procedure
∂iμ → 0, which parallels the derivation in Ref. [25], gives
the correct result. It is moreover consistent with a physically
motivated subtraction procedure, which is explained in Ap-
pendix A.

We now express the components of the current in terms of
the original fields �A and �B. Recalling that we have two nodes,
and that J ≡ Jem = 2JL, we get (for details, see Appendix A)

Jx = κe2μ

4π2
[Bx + (1 − κ2)∂zAy],

Jy = κe2μ

4π2
[By − (1 − κ2)∂zAx], (88)

Jz = κe2μ

4π2
Bz.

Integrating Eqs. (88), we get the topological action,

Stop[A] = −κe2μ

8π2

∫
d3x [ �A · �B + 2(1 − κ2)Ax∂zAy], (89)

which is the central result of this section.
The electromagnetic response in this regime can be ex-

pected to support a CME, i.e., a current in the direction on
the externally applied magnetic field, which is often read
off directly from the anomaly equation. In our approach, the
dynamics is determined by considering the full action, as in
Sec. II, where we do find qualitative effects of that kind. In
prospective experiments, it would be natural to take the field
perpendicular to the stacked planes and to require that the
slabs should be thinner than the penetration depth, so tour
averaging over layers is justified.

The term ∼Ax∂zAy is not gauge invariant, and contrary to
∼ �A · �B, not even in the bulk. Since we started from a gauge
invariant theory, this means that in a full calculation the gauge
invariance would be restored by extra terms that would effec-
tively amount to the substitution 2e �A → 2e �A + �∇φ, where φ

is the phase of the superconducting order parameter. Using

Eq. (85), the amplitude of the term ∼Ax∂zAy is ∼ �2
0

(β+�) and
could be made small in certain parameter ranges.
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In Appendix A, we shall give an alternative derivation of
Eq. (89), which is more in line with the derivation in this paper
and does not rely on the chiral anomaly.

We note that the expression for Jz is the same as derived
in Ref. [25] and that in Ref. [25] it is shown that this current
component is accompanied by a surface counterflow sourced
by Fermi arcs. This is to ensure that the system does not have
a thermal current in the ground state, as required by thermo-
dynamics. Although we have not done an explicit calculation,
we believe that the same is true for the other components in
Eqs. (88).

We should also note that there is a hidden assumption in the
preceding derivation, in that we neglected the possibility of
adding a Wess-Zumino counter term, but took the perturbative
result at face value. Usually, this ambiguity is fixed by requir-
ing gauge invariance, but in our superconducting context it is
less clear. Still, it is reassuring that the simple argument based
on the anomaly gives the same result as the direct calculation
in Appendix A if we there make a physically motivated sub-
traction inspired by the treatment in Ref. [25]. Importantly, it
was shown there that the expression for Jz (which was the only
one considered in that paper) agrees numerically with a direct
calculation in the parent eight-band theory, Eq. (78). Although
we believe that the connection to the anomaly cannot be a
coincidence, we presently lack a sound theoretical argument
excluding any Wess-Zumino term.

VI. SUMMARY AND OUTLOOK

We have motivated the consideration of emergent Chern-
Simons interactions in 3 + 1 dimensions, displayed some of
their striking phenomenological consequences, and indicated
how they might be realized in plausible material systems.

These interactions arise in two forms: �A · �B and n̂ · �A ×
�E − A0n̂ · �B. Highlights for the first type include a precise
form of current-field mixing, nondissipative complex pene-
tration depths, and anapole moments. This type generically
arises in s-wave superconductors that break parity symme-
try. It is closely related, at a mathematical level, to optical
activity. We suggest that it can be achieved in chirally pu-
rified organic superconductors or, more generally, by chiral
doping or through parity-violating crystalline structures. We
also calculated its appearance in a microscopic model based
on superconducting Weyl semimetals, where it arises through
a mechanism closely related to the chiral anomaly of quantum
field theory.

Highlights for the second type include massless boundary
excitations and unusual bulk effects in electromagnetic wave
propagation. This type appears to be comparatively easy to
achieve in the Weyl semimetal context.

We also extended the optical activity analogy in a slightly
different direction—formally, towards higher rather than
lower orders of gradient—to define actively chiral magnets.
These do not bring in Chern-Simons terms, but physical intu-
ition and mathematical techniques carry over. This extension
frees us of the constraints of superconducitivity (notably,
cryogenic temperatures and magnetic screening) and opens up
many possibilities for realization in organic magnetism and
metamaterials, as well as naturally occurring materials.

The next, crucial development for this work will be to bring
its mathematical paradise down to earth in concrete material
realizations.
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APPENDIX A: ALTERNATIVE DERIVATION OF
EQS. (88) AND (89)

In this Appendix, we recalculate Eq. (89) using straightfor-
ward diagrammatic perturbation theory. To get the pertinent
static electromagnetic response function to quadratic order,
we evaluate the Feynman diagram in Fig. 5 to linear order
in μ and �q. The relevant integrand is

Tr

[
σ i 1

/k

1
/k
σ j 1

/k − /q
+ σ i 1

/k
σ j 1

/k − /q

1
/k − /q

]

= 1

k2
Tr[σ iσ j (/k − /q) + σ i/k σ j]

1

(k − q)2

= − 2i

k4
εi jkqk + O(q), (A1)

where we used the four-vector notation kμ = (ω, �k) and the
cyclic property of the trace. Restoring μ, the energy and
momentum integrals, and the minus sign due to the fermion
loop, we get the polarization tensor:

�i j = 2iμqkε
i jk

∫
d3k

(2π )3

∫
dω

2π

1

(ω2 + k2)2
. (A2)

The appearance of �i j makes it clear that the contribution
from two nodes of positive chirality symmetrically shifted
from the origin of momentum space will indeed add up instead
of cancel. This can be seen by shifting k → k ± b and make
an expansion for small b.

The integral in Eq. (A2) is logarithmically divergent both
in the infrared and the ultraviolet. The infrared divergence is
clearly a result of expanding to order μ, and is regulated if the
full μ dependence is kept. However, to follow as closely as
possible to Ref. [25], we shall instead regulate the infrared by
a finite temperature T = 1/kBβ. The ultraviolet divergence is
a consequence of that, naively, there is a contribution to the
current from the whole Dirac sea, as will be discussed below.

Using the standard Euclidean formulation of finite temper-
ature QFT, the polarization tensor Eq. (A2) at temperature T
becomes

�i j = 2iμqkε
i jk

∫
d3k

(2π )3

1

β

∑
n

1

(ω2
n + k2)2

, (A3)

where T = 1
kBβ

, kB is the Boltzmann constant and ωn =
2π
β

(n + 1
2 ) are the fermionic Matsubara poles. Rewriting the
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FIG. 5. Feynman diagrams for the polarization tensor to leading order in μ.

sum in Eq. (A3) as

1

β

∑
n

1

(ω2
n + k2)2

= 1

β

(
− 1

2k

)
∂

∂k

∑
n

1

ω2
n + k2

= 1

β

(
− 1

2k

)
∂

∂k

β2

(2π )2

×
∑

n

1(
n + 1

2

)2 + (
βk
2π

)2 (A4)

and using
∑∞

n=−∞
1

(n+ 1
2 )2+(Ax)2 = π

Ax tanh(Aπx), the finite T

polarization tensor becomes

1

β

∑
n

1

(ω2
n + k2)2

=
(

− 1

2k

)
∂

∂k

1

2k
tanh

(
βk

2

)

= sech2
(

βk
2

)
[sinh (βk) − βk]

8k3
. (A5)

Since the integrand is isotropic, we use spherical coordinates
and

∫
d3k

(2π )3 = ∫
dk

2π2 k2, and after inserting the Jacobian factor
relating Ã to A in the integral measure, we get

�i j = 2iQ0μqkε
i jk 1

8π2

∫ ∞

0

dk

|νxνyνz|

×
[

2 tanh
(

βk
2

)
k

− β

2
sech2

(
βk

2

)]
. (A6)

The first term Eq. (A6) is divergent, while the second is
convergent. Subtracting the divergent piece, we arrive at the
final result for the polarization tensor,

�i j = 2iQ0μνkqkε
i jk

|νxνyνz|
(

− 1

8π2
+ Div

)
. (A7)

This subtraction will be discussed below. The finite part of the
effective action, after substituting qk → −i∂k , becomes

Seff [A] = 1

2
νiQiAi�

i jν jQ jA j

= −Q0μνiQiν jQ jνk

8π2|νxνyνz| Ai∂kA jε
i jk

= − 1

8π2
sgn(νxνyνz )Q0μQiQjAi∂kA jε

i jk, (A8)

and, finally, the current

Jl = δSeff [A]

δAl

= −sgn(νxνyνz )
μQiQj

8π2
∂kA jε

i jk δAi

δAl

= −sgn(νxνyνz )
μQlQj

8π2
∂kA jε

l jk, (A9)

where the index l in the right hand side is not summed over.
Inserting the system parameters from the Hamiltonian in

Eq. (84) gives

Stop[A] = − μκ

8π2
QiQkAi∂ jAkε

i jk

= − μκ

8π2
[QxAx(Qz∂yAz − Qy∂zAy) + QyAy(Qx∂zAx − Qz∂xAz ) + QzAz(Qy∂xAy − Qz∂yAx )]

= −μe2κ

8π2
[Ax(∂yAz − κ2∂zAy) + Ay(κ2∂zAx − ∂xAz ) + Az(∂xAy − ∂yAx )]

= −μe2κ

8π2
{Ax[∂yAz − ∂zAy + (1 − κ2)∂zAy] + Ay[∂zAx − ∂xAz − (1 − κ2)∂zAx] + Az(∂xAy − ∂yAx )}

= −μe2κ

8π2
[− �A · �B + (1 − κ2)(Ay∂zAx − Ax∂zAy)]

= μe2κ

8π2
[ �A · �B + (1 − κ2)(Ay∂zAx − Ax∂zAy)], (A10)
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and finally restoring h̄, using the notation e∗ = κe, the current
becomes

Jl = δStop[A]

δAl
= μee∗

h2

[
Bl + (1 − κ2)

(
δl

y∂zAx − δl
x∂zAy

)]
.

(A11)

Using the gauge where �A = (0, Bx,�/e), the only surviving
component of the current reads

Jz = ee∗μ
h2

Bz, (A12)

which agrees with the result of Ref. [25].
We now return to discuss the subtraction of the logarith-

mic UV divergence in the integral Eq. (A6). Note that the
second, convergent, term has support only close to the Fermi
surface (i.e., at k ≈ 0) while the first, UV divergent part gets
contributions from the full Fermi sea. Since anomalies are
expressed in IR phenomena, it is plausible to subtract the first
term and keep the second. This was done in Ref. [25], where
it was shown that it gives results consistent with a numerical
simulation of the full Hamiltonian Eq. (78). It is reassuring
that these various methods give the same result for the current,
and satisfying that our derivations make a close connection to
the chiral anomaly.

APPENDIX B: DETAILS OF SPHERE
AND CYLINDER SOLUTIONS

1. Sphere

Following Eqs. (26) and (32), we define α and
√

α:

α1 = γ + β

2
(−β + i

√
4γ − β2), (B1)

√
α1 =

√
γ − β2

4
+ i

β

2
= p + iq. (B2)

The reference solution has the form

Br = 2

αr3
[sinh(

√
αr) − √

αr cosh(
√

αr)] cos θ, (B3)

Bθ = 1

αr3
[(1 + αr2) sinh(

√
αr) − √

α r cosh(
√

αr)] sin θ,

(B4)

Bφ = 1

r2
[sinh(

√
αr) − √

αr cosh(
√

αr)] sin θ, (B5)

and since we must take α and
√

α complex, we get complex
fields, whose real and imaginary parts satisfy our Eq. (19)
separately, that we must combine to satisfy the boundary
conditions.

The real part Br , after considerable algebra, reads

Br
r = cos θ

γ 2r3

√
4γ−β2 cosh

[
1

2
r
√

4γ−β2

](
β sin

βr

2
−γ r cos

βr

2

)
− sinh

[
1

2
r
√

4γ − β2

](
(β2 − 2γ ) cos

βr

2
+ βγ r sin

βr

2

)

Br
θ = sin θ

2γ 2r3

√
4γ − β2 cosh

[
1

2
r
√

4γ − β2

](
β sin

βr

2
− γ r cos

βr

2

)
− sinh

[
1

2
r
√

4γ − β2

]

×
(

(β2 − 2γ (γ r2 + 1)) cos
βr

2
+ βγ r sin

βr

2

)

Br
φ = sin θ

2γ r2
sinh

[
1

2
r
√

4γ − β2

](
2γ r sin

βr

2
+ β cos

βr

2

)
−

√
4γ − β2 sin

βr

2
cosh

[
1

2
r
√

4γ − β2

]
, (B6)

and the imaginary part Bi reads

Bi
r = cos θ

γ 2r3
cosh

[
1

2
r
√

4γ − β2

](
βγ r cos

βr

2
− (β2 − 2γ ) sin

βr

2

)
−

√
4γ − β2 sinh

[
1

2
r
√

4γ − β2

]

×
(

γ r sin
βr

2
+ β cos

βr

2

)
,

Bi
θ = sin θ

2γ 2r3
cosh

[
1

2
r
√

4γ − β2

](
2γ ((γ r2 + 1) − β2) sin

βr

2
+ βγ r cos

βr

2

)

−
√

4γ − β2 sinh

[
1

2
r
√

4γ − β2

](
γ r sin

βr

2
+ β cos

βr

2

)
,

Bi
φ = sin θ

2γ r2

√
4γ − β2 cos

βr

2
sinh

[
1

2
r
√

4γ − β2

]
+ cosh

[
1

2
r
√

4γ − β2

](
β sin

βr

2
− 2γ r cos

βr

2

)
. (B7)

We note that this is the solution inside the superconducting sphere, and that it is thus valid only if r � R. To satisfy the
boundary condition jr (R) = 0, we must take a linear superposition Br + ηBi to get the full solution inside the superconducting
sphere. One finds

η = sinh
[

1
2 R

√
4γ − β2

](
2γ R sin βR

2 + β cos βR
2

) −
√

4γ − β2 sin βR
2 cosh

[
1
2 R

√
4γ − β2

]
cosh

[
1
2 R

√
4γ − β2

](
2γ R cos βR

2 − β sin βR
2

) −
√

4γ − β2 cos βR
2 sinh

[
1
2 R

√
4γ − β2

] . (B8)
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Thus, the final solution for the magnetic field inside the super-
conducting sphere reads

�Bin
sphere = (

Br
r, Br

θ , Br
φ

) + η
(
Bi

r, Bi
θ , Bi

φ

)
. (B9)

Outside the sphere, i.e., for r > R, the magnetic field takes
the usual dipole expansion form according to the solution of
London, and reads [19]

Bout
r (r, θ ) =

(
H0 + 2M

r3

)
cos θ, (B10)

Bout
θ (r, θ ) =

(
−H0 + M

r3

)
sin θ, (B11)

with

M = R3

3

[
Bin

r (R, θ )

cos θ
+ Bin

θ (R, θ )

sin θ

]
, (B12)

H0 = 1

3

[
Bin

r (R, θ )

cos θ
− 2

Bin
θ (R, θ )

sin θ

]
. (B13)

From the internal solutions, one can calculate the corre-
sponding currents �jsphere = �∇ × �Bin

sphere, which can be used to
explicitly calculate the magnetic anapole moment, which is
given by

Ti = 1

10c

∫
[ri(�r · �j) − 2r2Ji]d

3x. (B14)

In the present situation, Tx and Ty are both zero, but Tz takes
a finite value. On the unit sphere, and in units where c = 1, it
explicitly reads

Tz = −2π
−6β(1 + γ ) cosh (2δ−1) + 2[−3β(γ − 1) cos β + (3β2 − γ 2) sin β] + βδ[−3β2 + γ (12 + γ )] sinh (2δ−1)

3γ 2
[
δ cosh (δ−1)

(
2γ cos β

2 − β sin β

2

) − 2 cos β

2 sinh (δ−1)
] ,

(B15)
where δ = 2√

4γ−β2
is the penetration depth.

2. Cylinder

In the case of a cylinder, we take real and imaginary parts of an ansatz consisting of modified Bessel functions of the second
kind:

Br = 0, Bφ = √
ακK1(r

√
α), Bz = K0(r

√
α).

As in the spherical case, we take the real and imaginary parts independently and find coefficients to satisfy boundary conditions
Bz = B0, Bφ = 0, fixing R = 1. Since this brings in Bessel functions, it must be done numerically for specific values β and γ .

We looked at a few cases to get numerical solutions and here are the answers that we get for the azimuthal components of the
magnetic field:

For β = 15, γ = 57, we find

(−4.77814B0) Re

{
K1

[(
15i

2
+

√
3

2

)
r

]}
+ (−2.14645B0) Im

{
K1

[(
15i

2
+

√
3

2

)
r

]}
. (B16)

For β = 10, γ = 4, we find

(−69.1343B0) Re{K1[(5i +
√

15)r]} + (69.2327B0) Im{K1[(5i +
√

15)r]}. (B17)

For β = 1, γ = 200, we find

(2.06099 × 106B0) Re

{
K1

[(
i

2
+

√
799

2

)
r

]}
+ (3.61166 × 106B0) Im

{
K1

[(
i

2
+

√
799

2

)
r

]}
. (B18)
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