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Intrinsic superconducting diode effects in tilted Weyl and Dirac semimetals

Kai Chen, Bishnu Karki , and Pavan Hosur
Department of Physics and Texas Center for Superconductivity, University of Houston, Houston, Texas 77204, USA

(Received 22 September 2023; revised 16 January 2024; accepted 30 January 2024; published 20 February 2024)

We explore Weyl and Dirac semimetals with tilted nodes as platforms for realizing an intrinsic superconduct-
ing diode effect. Although tilting breaks sufficient spatial and time-reversal symmetries, we prove that — at
least for conventional s-wave singlet pairing — the effect is forbidden by an emergent particle-hole symmetry
at low energies if the Fermi level is tuned to the nodes. Then, as a stepping stone to the three-dimensional
semimetals, we analyze a minimal one-dimensional model with a tilted helical node using Ginzburg-Landau
theory. While one might expect a drastic enhancement of the effect when the node turns from type-I to type-II,
we find that the presence of multiple Fermi pockets is more important as it enables multiple pairing amplitudes
with independent contributions to supercurrents in opposite directions. Equipped with this insight, we construct
minimal lattice models of Weyl and Dirac semimetals and study the superconducting diode effect in them. Once
again, we see a enhancement when the normal state has multiple Fermi pockets per node that can accommodate
more than one pairing channel. In summary, this study sheds light on the key factors governing the intrinsic
superconducting diode effect in systems with asymmetric band structures and paves the way for realizing it in
topological semimetals.
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I. INTRODUCTION

In recent years, there has been a growing interest in the
field of electronics and superconductivity due to the fasci-
nating observation of superconducting diode effects (SDEs).
These effects involve the ability of certain materials and
structures to exhibit nonreciprocal superconducting transport,
effectively blocking electric current flow in one direction
while allowing it to pass in the opposite direction. This be-
havior resembles that of a diode, making SDEs crucial for
devising rectifiers and switches.

A seminal experimental study by Ando et al. [1] demon-
strated the presence of SDEs in an artificial superlattice
[Nb/V/Ta]. This observation was achieved by breaking
the inversion symmetry of the structure and introducing
time-reversal symmetry breaking through the application
of an external magnetic field. Since then, the study of
SDEs has become an active area of research in the field
of superconductivity, owing to the significant potential of
the nonreciprocal critical supercurrent in various applica-
tions, such as electronics, spintronics, phase-coherent charge
transport, direction-selective charge transport, and quantum
computation using superconductor qubits [2–7].

Experimental investigations have explored SDEs in di-
verse materials and structures. For instance, SDEs have
been observed in magic angle twisted graphenes [8–10]
and in few-layer NbSe2 [11]. Furthermore, Josephson su-
percurrent diode effects have been demonstrated in highly
transparent Josephson junctions fabricated on InAs quantum
wells [12], in van der Waals heterostructures and symmet-
ric Al/InAs-2DEG/Al junctions [13], in a three-terminal
Josephson device based upon an InAs quantum well [14],
and Josephson junctions containing single magnetic atoms
[15]. The thin superconducting films made of niobium and

vanadium indicate a robust SDE when exposed to an ex-
tremely low magnetic field of 1 Oe. Furthermore, when a
layer of EuS is introduced, the SDE is amplified [16]. For
asymmetric vortex motion, which exposes the mechanism
underpinning the superconducting vortex diode phenomenon,
has been reported in the layered structure of Nb/EuS
(superconductor/ferromagnet) [17]. SDE has also been ob-
served in topological insulator/superconductor [18–20] and
superconductor nanowire/topological Dirac semimetal [21]
hybrid systems.

The intriguing experimental findings have stimulated the-
oretical efforts to understand the underlying mechanisms
of SDEs. The Rashba-Zeeman-Hubbard model has been
proposed as a theoretical framework to explain SDEs, and es-
tablished a close relationship between SDE and Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) states [22,23]. In the FFLO
state, Cooper pairs form with finite center-of-mass momenta
due to opposite spin states on Zeeman-split Fermi surfaces
[24,25]. Numerical calculations and Ginzburg-Landau (GL)
theory have provided further support and insights into the un-
derstanding of SDEs [23,26]. Among extrinsic mechanisms,
SDE behavior has been predicted in topological insulators
and Rashba nanowires [27] as well as general metallic wires
with asymmetric dispersion, with the latter expected to show
the theoretically maximum SDE in a range of parameters
[28]. Moreover, researchers have investigated the influence
of disorder on SDEs by using the quasiclassical Eilenberger
equation [29]. The disorder effect is crucial in comprehend-
ing the behavior of SDEs in realistic and practical scenarios.
Theoretical studies have also focused on the Josephson diode
effect, revealing its universality and potential applicability in
various contexts [27,30–33].

Recent experiments have drawn attention to superconduc-
tivity in topological semimetals, prompting substantial efforts
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in the quest for topological superconductors among various
materials. For example, in the Dirac material PdTe, its surface
states show a fully gapped superconducting Cooper pairing
structure below Tc, and its bulk hosts nodal gap structures
due to spin-orbit coupling [34]. The type-II Dirac semimetal
PdTe2 is an intrinsic superconductor below Tc with a con-
ventional fully gapped order parameter [35–37]. In addition,
intrinsic superconductivity is also observed in NbC [38] and
in Ir1−xPtxTe2 [39]. Superconductivity can be induced via tips
and pressure in type-I Weyl semimetal TaP [40,41]. It can also
be induced through the application of hydrostatic pressure in
the type-II Weyl semimetal MoTe2 and the three-dimensional
Dirac semimetal Cd3As2 [42–45]. By conducting hard point
contact measurements on nonsuperconducting topological
semimetals using nonsuperconducting metallic tips can in-
duce superconductivity in the contact region. This method
is capable of enhancing the Tc for some superconductors,
such as Au2Pb [46]. Furthermore, the superconductivity in
a transition-metal dipnictide like NbAs2 can be induced by
pressure, causing a structural phase transition [47].

In semimetals, lattice symmetries, interactions, and strong
spin-orbit coupling can give rise to a rich variety of pairing
states [48–50]. The nontrivial Berry curvature at the Fermi
surface of Weyl semimetals leads to a pairing function with
no specific momentum dependence, enabling the realization
of topological superconductors [51]. Weyl semimetals can
support effective s-wave and p-wave pair correlations through
opposite pseudospin and equal pseudospin channels. By tun-
ing the parameters, the effective s-wave and p-wave symmetry
classes can evolve into d-wave and f -wave classes [52]. On
the other hand, a magnetic Weyl semimetal sandwiched be-
tween two conventional s-wave spin-singlet superconductors
can exhibit interorbital s-wave pairing, featuring both even-
frequency spin-singlet and odd-frequency mixed-spin-triplet
symmetry [53]. In this work, we explore intrinsic SDEs in
semimetals, focusing on s-wave pairing for its simplicity and
commonality in phonon-mediated superconductivity. Our aim
is to illustrate SDEs arising from the band structure rather than
pairing symmetry.

Weyl and Dirac semimetals are characterized by gapless
points between their valence and conduction bands, known
as Weyl and Dirac points, respectively [54–59]. They possess
several favorable properties that make them promising plat-
forms for the SDEs. For instance, the density of states near
the nodes is low, which facilitates breaking of time-reversal,
inversion and spatial symmetries necessary for enabling the
SDE. These materials also typically have multiple Fermi
pockets centered at different points in momentum space,
which enhances the possibility of FFLO states [48–50,60].
Moreover, Fermi pockets centered around the origin can also
develop finite momentum pairing if the dispersion is tilted.
There are two different types of Weyl/Dirac semimetals: type
I, with point-like Fermi surfaces, and type II, defined by
electron and hole pockets touching at the Weyl nodes [61–63].
Tilting the dispersion around the node induces the transition
from type-I to type-II. In this study, we shed light on the key
factors that enhance the SDE in tilted semimetals. In partic-
ular, we show that multiple inequivalent pairing channels can
enhance the intrinsic SDEs and are more important than the
band tilting.

The outline of this paper is as follows. In Sec. II, we
delve into the symmetries beyond time reversal and inversion
symmetry that need to be broken to support SDEs. We explore
how tuning the chemical potential impacts these symmetries,
shedding light on the underlying symmetry breaking responsi-
ble for SDEs, and offering potential avenues for experimental
control and manipulation of these effects. In Sec. III, we
employ the Ginzburg-Landau theory to investigate a one-
dimensional model characterized by an asymmetric band
structure. Our analysis reveals that this simple yet insightful
model can indeed support a ground state with Cooper pairs
possessing finite momentum, thus providing a compelling
platform to observe and study SDEs. Building on the insights
gained from the one-dimensional (1D) model, we extend our
study to lattice modes of tilted Weyl semimetals and Dirac
semimetals in Secs. IV and V, respectively. Our numerical
simulations reveal the existence of nonreciprocity in the de-
pairing critical current, the key requirement for SDEs in these
intriguing materials, and support the heuristic that multiple
inequivalent pairing channels are more important than band
asymmetry for a large SDE.

II. SYMMETRY AND THE ROLE OF CHEMICAL
POTENTIAL μ

In general, the necessary conditions for realizing the SDE
are the violation of time-reversal (T ), inversion (I), and
spatial symmetries under which current in the desired nonre-
ciprocal direction is odd. These conditions ensure the breaking
of reciprocity in the system, meaning that the response of
the superconductor to external perturbations is different for
perturbations applied in opposite directions. In most cases,
these violations suffice to guarantee a SDE; however, a chiral
or particle hole symmetry in the normal state, common found
at low energies near band intersections, can suppress the SDE
for singlet pairing as shown below.

Consider a Bloch Hamiltonian H (k). The Bogoliubov–de
Gennes (BdG) Hamiltonian for generic pairing in the basis
(ck+q/2, c†

−k+q/2)T is

HBdG(k, q,�k ) =
(

H (k + q/2) �k

�
†
k −H∗(−k + q/2)

)
, (1)

where we allow for pairing with finite momentum q and
fermion antisymmetry ensures �k = −�T

−k. HBdG(k, q,�)
obeys particle-hole symmetry

τxKHBdG(k, q,�k )Kτx = −HBdG(−k, q,�k ), (2)

where τx is a Pauli matrix in Nambu space and K denotes
complex conjugation.

Suppose the normal state also has a chiral unitary symme-
try Q:

QH (k)Q† = −H (k), (3)

or a chiral antiunitary or particle-hole symmetry QK:

QKH (k)KQ† = −H∗(−k). (4)

Under Q and QK, HBdG(k, q,�k ) transforms into
−HBdG(k, q,−�̃k ) and −τxHBdG(−k, q, �̃k )τx, respec-
tively, where �̃k = Q�kQ†. Along with the BdG particle-hole
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symmetry Eq. (2), these two symmetries in the normal state
ensure that HBdG(k, q,�k ) is related to HBdG(k,−q,−�̃k )
and HBdG(−k,−q, �̃k ) by antiunitary and unitary operations.

Assuming the electrons experience an attractive Hubbard
interaction (g > 0)

Hint = −g
∑

k,k′,q

c†
k+ q

2 ↑c†
−k+ q

2 ↓c−k′+ q
2 ↓ck′+ q

2 ↑, (5)

where g represents the strength of attraction. Within the mean-
field approximation, we get the Ginzburg-Landau free energy
density

f (q,�) =
∫

k

tr(�k�
†
k )

g
− T Tr log[1 + e−HBdG(k,q,�k )/T ],

(6)

where
∫

k ≡ ∫
dDk

(2π )D , D is the spatial dimension of the system,
tr(. . . ) runs over spin and orbitals while Tr[. . . ] runs over
spin, orbital and Nambu degrees of freedom. Clearly, f (q,�)
only depends on the energy eigenvalues of HBdG(k, q) and
is unaffected under the change k → −k of the integration
variable. Moreover, U (1) gauge symmetry mandates f (q,�)
to be unchanged under the transformation �k → eiφk�k for
arbitrary φk. Thus, if �k equals �̃k (�̃−k) up to a phase when
the normal state possesses the symmetry Q (QK), f (q,�)
is even in q: f (q,�) = f (−q,�). The above condition on
�k is clearly obeyed by ordinary spin singlet s-wave pairing,
�k = �σy with σy a spin Pauli matrix. Henceforth, we take
pairing to be of this form and assume �k ≡ � independent of
k. Note, � can still pair electrons with nonzero center-of-mass
momentum q/2.

The SDE can be calculated by minimizing f (q,�) with
respect to � for fixed q to obtain the condensation energy
f (q,�) ≡ f (q) at that q, followed by extremizing the super-
current j(q) ≡ 2∂q f (q) over q. Positive and negative currents
of largest magnitudes represent critical currents in opposite
directions, j±c , and the SDE is characterized by the quality
factor

η =
∣∣∣∣ j+c + j−c

j+c − j−c

∣∣∣∣ ∈ [0, 1]. (7)

If f (q) = f (−q), critical currents in opposite directions have
the same magnitude and the SDE is absent (η = 0) while the
largest SDE occurs if either j+c or j−c vanishes.

Point nodes in band structures enjoy at least one of chiral
or particle-hole symmetries at low energies when the chemical
potential is tuned to the node. For instance, in the absence
of tilting, massless two-dimensional (2D) Dirac nodes enjoy
the chiral symmetry Q, three-dimensional (3D) Weyl nodes
respect QK, and 3D Dirac nodes possess both Q and QK.
Crucially, while Q is immediately violated by a tilt in the
dispersion, QK survives. Therefore, to obtain a SDE with
s-wave, singlet pairing in tilted Weyl and Dirac semimetals,
the chemical potential must be tuned away from the node to
break the particle-hole symmetry QK in the normal state.

Note that a finite chemical potential is not merely a density
of states requirement for superconductivity to occur in the
first place. Indeed, type-II semimetals already possess finite
Fermi surfaces and hence, a superconducting instability with
appropriate interactions. Instead, a finite chemical potential is

symmetry requirement for the SDE that goes beyond the usual
mandates of broken T , I, and other spatial symmetries that
reverse the supercurrent.

III. SDE IN A MINIMAL 1D MODEL WITH
ASYMMETRIC BANDS

In this section, we focus on a 1D model with asymmetric
bands. This will yield insight that will be useful for un-
derstanding the SDE for 3D Weyl and Dirac fermions. In
particular, we will gradually develop the following intuition:
when multiple pairing channels are present, it is possible for
critical currents in opposite directions to be dominated by
different channenls and can, therefore, be vastly different,
resulting in a large SDE.

A minimal model can be described by

H1D(k) = (1 + αk2)kσz − λk − μ, (8)

where μ is the chemical potential and σz is the Pauli-Z matrix
in spin space. The parameter λ creates a tilt in the dispersion
around k = 0 while α > 0 ensures that the tilt is undone at
finite k. H1D has two qualitatively different regimes separated
by a critical value of λ,

λc =
∣∣∣∣∣1 + 3

(
μ2|α|

4

)1/3
∣∣∣∣∣ (9)

for given α and μ. For |λ| < λc, there are only two Fermi
points and one momentum channel for Cooper pairing, while
|λ| > λc results in four Fermi points and three channels as
sketched in Figs. 3(a) and 3(d).

For singlet superconductivity with Cooper pair momentum
q, the appropriate BdG Hamiltonian is

HBdG
1D (k, q) =

(
H1D(k + q/2) −iσy�

iσy� −H∗
1D(−k + q/2).

)
, (10)

At μ = 0, H1D satisfies a particle-hole symmetry,
σyH∗

1D(k)σy = −H1D(−k), which suppresses the SDE as
described in Sec. II with Q ≡ σy. At nonzero μ, we calculate
the diode coefficient η in three different ways with increasing
amount of analytical input and physical insight.

First, we directly compute the free energy density

f (q,�) = |�|2
g

− T
∫

dk

2π
Tr log

(
1 + e− H1D

BdG (k,q)

T

)
, (11)

minimize it with respect to � to obtain �(q) up to a phase and
f (q) ≡ f [q,�(q)], and compute the current j(q) = 2∂q f (q).
All steps are carried out numerically and the results are shown
in Fig. 1. For weak tilting, |λ| < λc, we see a single minimum
in f (q) close to q = 0 and a small diode coefficient η ≈ 3.2%
[Figs. 1(a) and 1(b)]. Strong tilting unsurprisingly produces
a larger η ≈ 12%. However, the enhancement is not merely
quantitative; we observe qualitatively new features in f (q) in
the form of two inequivalent local minima away from q = 0
and a large corresponding asymmetry in j(q) [Figs. 1(c) and
1(d)], suggesting that the change in Fermiology plays an im-
portant role in enhancing the SDE.

To analyze this point further, we focus on T close to the
critical temperature Tc where � is small and f (q,�) can be
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FIG. 1. (a, b) Free energy density and supercurrent with parame-
ter λ = 2. (c, d) Free energy density and supercurrent with parameter
λ = 4.4. Other parameters are α = 16, μ = 0.4, and g = 3π , which
yield λc ≈ 3.58 and Tc ≈ 0.46, and we set T = 0.1.

approximated as

f (q,�) = A(q)�2 + B(q)

2
�4. (12)

In this regime, the main role of B(q) is to ensure physical sta-
bility by lower bounding f (q,�), allowing us to safely take it
to be a positive constant, B(q) ≈ b > 0 (we set b = 1 through-
out this work). In contrast, the physics of the system depends
sensitively on A(q). For instance, minimizing f (q,�) yields a
superconducting ground state with |�(q)| = √−A(q)/b only
if A(q) < 0, while the supercurrent an be expressed as j(q) =
2 ∂

∂q f (q) = |A(q)| ∂
∂q A(q). Thus, we explicitly calculate A(q)

following [64] as

A(q) = − T
∫

dk

2π

∑
n

tr[G(k + q, εn)G(−k,−εn)]

+ Tc

∫
dk

2π

∑
n

tr[G(k, εn)G(−k,−εn)]T =Tc , (13)

where the Matsubara Green’s function G(k, εn) = [iεn −
H1D(k)]−1 with εn = (2n + 1)πT . The second term in
Eq. (13) reduces to just 1/g, which determines the value of
the critical temperature Tc. The momentum integral is carried
out numerically and A(q) hence obtained is used to reeval-
uate f (q) using Eq. (12). The results, shown in Fig. 2, are
qualitatively consistent with the fully numerical results pre-
sented earlier. In particular, we see that f (q) exhibits a single
minimum, resulting in a diode quality factor of η ≈ 18%
in the weak tilting regime with λ = 2, which is less than
λc ≈ 3.58 [Figs. 2(a) and 2(b)]. In contrast, a strong tilt of
λ = 4.4 > λc shows two local minima in f (q) and yields η ≈
21% [Figs. 2(c) and 2(d)]. Clearly, the change in Fermiology
is correlated with a enhancement of the SDE. The quantitative
values are different because we set T = 0.1, which is quite far
from Tc, for numerical stability.

To unearth the connection between Fermiology and the
SDE more precisely, we analytically calculate A(q) in Eq. (13)
in the weak pairing limit, valid for T near Tc. In this limit,

FIG. 2. (a, b) The GL free energy density f (q) and the super-
current j(q) (blue line) and − j(q) (red line) under weak tilting
with λ = 2, respectively. (c, d) The same quantities as (a, b) under
strong tilting with λ = 4.4, respectively. The parameters are α = 16,
Tc ≈ 0.46, T = 0.1, and μ = 0.4.

Cooper pairs predominantly form from electrons near the
Fermi points. This allows us to analytically perform the
Matsubara summation and momentum integral to obtain the
following expression:

A(q) = −
∑
i=1,2

ρ
(i)
F

[
Tc − T

Tc
− 7ζ (3)

16π2T 2
c

δ2
i (q)

]
, (14)

where δi(q) = (−1)iαq3 + (−1)i+13p(i)
F αq2 − [λ + (−1)i+1

+ (−1)i+13(p(i)
F )2α]q + 2λp(i)

F , and ρ
(i)
F is the density of states

at the ith Fermi point. For values of |λ| < λc, the densities of
states are given by

ρ
(1)
F = [

2π
(
3α

[
p(1)

F

]2 + (1 − λ)
)]−1

,

ρ
(2)
F = [

2π
(
3α

[
p(2)

F

]2 + (1 + λ)
)]−1

, (15)

where the Fermi momentum p(1,2)
F are

p(1)
F =

[
μ

2α
+

√
μ2

4α2
+ (1 − λ)3

27α3

]1/3

+
[

μ

2α
−

√
μ2

4α2
+ (1 − λ)3

27α3

]1/3

,

p(2)
F =

[
− μ

2α
+

√
μ2

4α2
+ (1 + λ)3

27α3

]1/3

+
[
− μ

2α
−

√
μ2

4α2
+ (1 + λ)3

27α3

]1/3

. (16)

If p(1)
F + p(2)

F �= 0, electrons at two Fermi points can form
Cooper pairs with a finite momentum q∗ ≈ p(1)

F + p(2)
F , where

the supercurrent j(q∗) = 0. However, for |λ| > λc, there exist
three possible Fermi momenta near p(2)

F, j=1,2,3, each corre-

sponding to a density of states ρ
(2)
F, j=1,2,3 for spin-up states.

As illustrated in Fig. 3(b), this leads to three potential pairing
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FIG. 3. (a, b) Schematics of Cooper pairs in the quasi-one-
dimensional system. (c, d) The GL free energy density f (q), the
supercurrent j(q) (solid line), and − j(q) (dashed line) for weak
tilting with λ = 2. The parameters are α = 16, λ = 1, Tc ≈ 0.46,
T = 0.1, and μ = 0.4. (e) The GL free energy density f (q) for
different Cooper pairs: red line (Cooper pairing channel 1), blue line
(Cooper pairing channel 2), and black line (Cooper pairing channel
3). The supercurrent j(q) for different Cooper pairs: red line (Cooper
pairing channel 1), blue line (Cooper pairing channel 2), and black
line (Cooper pairing channel 3). Dashed lines represent the opposite
supercurrent − j(q) for Cooper pairing channels with the same color.
The parameters in (e) and (f) are the same as in (c) and (d), except
that the parameter λ = 4.4.

channels with electrons having Fermi momentum near p(1)
F

and spin-down, which leads to additional structure in the free
energy density.

In general, the quality factor of the SDE depends on the
model’s parameters. In our 1D model, two relevant parameters
are λ and μ. To elucidate the relationship between the quality
factor and (μ, λ), we present the phase diagram shown in
Fig. 4(a). Interestingly, higher quality factors are observed just
above the critical line [the dashed line in Fig. 4(a)], as the free
energy density becomes more asymmetric in that region, as
shown in Fig. 4(b). In the Bardeen-Cooper-Schrieffer (BCS)
limit, an infinitesimally small attraction mediated by phonons
can induce Cooper pair condensation, leading to a minimum
in the free energy. Consequently, once λ reaches λc, a second
pairing channel is established, resulting in a new minimum
and inducing the largest asymmetric free energy. The transi-
tion from “one minimum” to “two minimums” is expected to
occur at λc and give the maximum quality factor. However,
our numerics cannot access this limit, hence we observe the
transition just above the critical line.

We also observe that the quality factor tends to zero as λ

increases. Qualitatively, for very large λ, two Fermi points that
form channel 3 in Fig. 3(b) merge into a single Fermi point
[see the inset band dispersions in Fig. 4(b)]. Effectively, there

FIG. 4. (a) The quality factor η(μ, λ) for the tilted 1D model
in the λ-μ plane. The dashed line represents the critical tilting
value λc as a function of the chemical potential μ, where λc =
|1 + 3( μ2 |α|

4 )1/3| with α = 16. The green points depict the maximum
quality factor calculated numerically. (b) The free energy density
with parameters corresponding to the star, hexagon, disk, and half-
disk in (a). Insets display the associated band dispersion.

are only two possible Cooper pairing channels; therefore, the
diode quality factor could be diminished.

Quantitatively, we selected four typical parameters in the
parameter space (denoted by the star, hexagon, disk, and half-
disk), as shown in Figs. 4(a) and 4(b). At larger values of
λ, the free energy density exhibits two valleys, and the two
valleys are approximately mirror images of each other about
the axis at q ≈ 0. The supercurrent is defined as the derivative
of the free energy density with respect to the Cooper pairing
momentum. Therefore, for any positive current, there exists a
negative current with the same absolute value. In other words,
the diode quality factor equals zero.

Our findings not only confirm the presence of SDEs in
our 1D model with asymmetric band dispersions but also
underscore the significance of accounting for multiple Cooper
pairing channels under strong tilting conditions. The observed
complex patterns in the free energy density and supercurrent
open up new avenues for optimizing superconducting systems
for nonreciprocal effects.

IV. SDE IN TILTED WEYL SEMIMETALS

Weyl semimetals are materials defined by nondegenerate
points of contact known as Weyl nodes, located between
valence and conduction bands. These nodes exhibit linear
dispersion, resulting in a variety of intriguing properties tied
to the topological characteristics of the bulk band structure
[57–59]. There are two principal types of Weyl semimetals:
type-I, featuring point-like Fermi surfaces, and type-II, char-
acterized by electron and hole pockets merging at the Weyl
nodes [61–63]. The latter type can be derived from the former
by strongly tilting the band dispersion.

In general, to realize SDEs, both T - and I- symmetries
must be broken. The low density of states in Weyl semimetals
makes breaking the T - and I- symmetries easier. On the other
hand, as shown in the last section, we find that asymmetric
band dispersions can induce the SDEs. Therefore, tilted Weyl
semimetals provide us with a typical example for investigating
the possibility of realizing SDEs. In this section, we introduce
two simple lattice models of tilted Weyl semimetals to inves-
tigate the SDEs. The Bloch Hamiltonian describing the first
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FIG. 5. (a) Projected band structure of a tilted Weyl semimetal
near the Weyl node with Bloch momentum k = (0, 0, π/3).
(b) Fermi surface of a weakly tilted Weyl semimetal. Parameters:
λ = −1/2, T = 0, g = 12, and μ = 0.55. (c, d) show the same
quantities as (a, b), respectively, with the parameter λ = −2. The
band dispersion remains consistent at the other Weyl node with k =
(0, 0, −π/3). The red and blue Fermi surfaces in (d) are determined
by E−

W and E+
W in Eq. (18).

tilted Weyl semimetal and its corresponding energy spectrum
can be expressed as follows:

HW(k) = (3 + 2 cos kz − 2 cos kx − 2 cos ky)σz

+ 2 sin k+σx + 2 sin k−σy + (λ sin 2kx − μ)σ0,

(17)

E±
W(k) = ± [(3 + 2 cos kz − 2 cos kx − 2 cos ky)2

+ 4 sin2 k+ + 4 sin2 k−]1/2 + λ sin 2kx − μ, (18)

where the parameter λ controls the tilt strength, k =
(kx, ky, kz ) represents the Bloch momentum, μ is the chem-
ical potential, k± = (kx ± ky)/2, and the Pauli matrices
(σx, σy, σz ) denote spin. This model has two Weyl nodes
at k = (0, 0,±π/3). In Figs. 5(a) and 5(c), we provide the
eigenenergies as a function of kx at kz = π/3, ky = 0 for
the tilted Weyl semimetal with different tilt strengths. At
λ = 0, the system Hamiltonian preserves I = σz but breaks
T = iσyK. For nonzero λ, I- symmetry is also broken while
|λ| > λc ≈ 0.7 renders the Weyl nodes type-II. For arbitrary
λ but μ = 0, HW(k) obeys σxH∗

W(−k)σx = −HW(k), which
is particle-hole symmetry of the form (4). Thus, μ �= 0 is
necessary for a nonzero SDE.

In the presence of s-wave pairing with a nonzero Cooper
pair momentum, the BdG Hamiltonian is given by

HBdG
W (k, q) =

(
HW(k + q/2) −i�σy

i�σy −H∗
W(−k + q/2)

)
. (19)

The tilt is along kz, allowing us to set q = (0, 0, q).
HBdG

W (k, q) satisfies the particle-hole symmetry
τxKHBdG

W (k, q)Kτx = −HBdG(−k, q), which ensures the
existence of pairs of opposite eigenvalues E±(−k) and
−E±(k).

FIG. 6. (a, b) The free energy density f (q), the supercurrent j(q)
(blue dotted line), and − j(q) (red dotted line) for λ = −1/2, T = 0,
g = 12, and μ = 0.55. (c, d) The same quantities as (a, b) with the
parameter λ = −2.

In the 1D model, we observe that the strong tilting gives
rise to more pairing channels, which create new structures in
the free energy density and the supercurrent and enhance the
SDE. In the 3D model, the number and details of the pairing
channels will depend on the transverse momenta (kx, ky) in
general. The 3D model with band tilting along the kz-direction
could be thought of as a 1D model with tilted band dispersion
labeled by the parameters (kx, ky), and the tilting strength
depends on the values of the parameters (kx, ky). Therefore, a
similar enhancement as in the 1D model is expected to occur
in the 3D model. To investigate this possibility, we numer-
ically calculate f (q) and jz(q) ≡ j(q) at T = 0. As shown
in Fig. 5(a), for a relatively small tilt for a given μ, there is
only one type of pairing channel, only one minimum in f (q),
and a small difference between j±c that yield a diode quality
factor of η ≈ 1.8%. However, for a larger tilted strength, three
different types of Cooper pairing channels are present, which
induce two minima in f (q) a larger difference between j+c
and j−c are boosted diode quality factor of η ≈ 3.7% [see
Figs. 6(c) and 6(d)].

We perform a similar analysis on a different lattice model
of a tilted Weyl semimetal. In addition to the pockets near the
Weyl nodes for the chosen parameters, there are Fermi pockets
near the Brillouin zone boundary. Therefore, this model could
support more possible Cooper pairing channels, and the SDE
could be enhanced. The Bloch Hamiltonian describing the
tilted Weyl semimetal and its corresponding energy spectrum
can be expressed as

H̃W(k) = 2(cos kx − cos k0 − cos ky − cos kz + 2)σx

+ 2 sin kyσy + 2 sin kzσz + (λ sin 2kz − μ)σ0,

(20)

Ẽ±
W(k) = ± 2[(cos kx − cos k0 − cos ky − cos kz + 2)2

+ sin2 ky + sin2 kz]
1/2 + λ sin 2kz − μ. (21)
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FIG. 7. (a, b) Fermi pockets of the tilted Weyl semimetal. (c, d)
The free energy density f (q), the supercurrent j(q) (red dotted line),
and − j(q) (black dotted line) for λ = −1, T = 0, g = 10, and μ =
0.4. (e, f) The same quantities as (c, d) with the parameter λ = −2.

This model has two Weyl nodes at k = (±k0, 0, 0); we
set k0 = π/4 henceforth. In Figs. 7(a) and 7(b), we show the
Fermi pockets for the tilted Weyl semimetal with different tilt
strengths. At λ = 0, the system Hamiltonian preserves I = σx

but breaks T -symmetry. For nonzero λ, I is also broken
while |λ| > 1 renders the type-II Weyl nodes. For arbitrary
λ but μ = 0, H̃W(k) obeys σzH̃∗

W(−k)σz = −H̃W(k), which
is particle-hole symmetry of the form Eq. (4).

In the presence of s-wave pairing with a nonzero Cooper
pair momentum, the BdG Hamiltonian is given by

H̃BdG
W (k, q) =

(
H̃W(k + q/2) −i�σy

i�σy −H̃∗
W(−k + q/2)

)
. (22)

The tilt is along kz, allowing us to set q = (0, 0, q).
H̃BdG

W (k, q) satisfies the particle-hole symmetry
τxKH̃BdG

W (k, q)Kτx = −H̃BdG(−k, q), which ensures the
existence of pairs of opposite eigenvalues Ẽ±(−k) and
−Ẽ±(k).

As shown in Figs. 7(c) and 7(d), for a relatively small
tilt for a given μ, there is only one minimum in f (q) and a
small difference between j±c that yield a diode quality factor
of η ≈ 3.8%. However, for a larger tilted strength, two minima
in f (q) a larger difference between j+c and j−c are the boosted
diode quality factor of η ≈ 18.4% [see Figs. 7(e) and 7(f)].
The quality factor of the SDE in this model is much higher
than the diode quality factor in the first model, confirming
that multiple Cooper pairing channels can enhance the diode
quality factor.

FIG. 8. (a) Projected band structure of the Dirac semimetal.
(b) Fermi surface for λ = −0.3, T = 0, g = 2.6, and μ = 0.2. (c,
d) Same quantities as in (a, b), with the parameters being identical to
those in (a, b), except for the parameter λ = −1.5. The red and blue
Fermi surfaces in (d) are determined by Ẽ−

W and Ẽ+
W in Eq. (21).

V. SDE IN TILTED DIRAC SEMIMETALS

Similar to Weyl semimetals, in a Dirac semimetal, the
valence and conduction bands touch linearly at specific points
in the Brillouin zone, known as Dirac points, where the en-
ergy dispersion relation is linear in momentum [54–56]. The
existence of these 3D Dirac points is of profound significance
in condensed matter physics. At the quantum critical point,
where a transition occurs between a normal insulator and
a topological insulator, a three-dimensional Dirac semimetal
manifests [65]. This quantum critical point represents a deli-
cate balance between different electronic states, resulting in
the appearance of a Dirac semimetal phase that possesses
distinct topological properties. The formation of this exotic
phase further highlights the role of symmetries in dictating
the behavior of electronic states and their topological nature.

In the last section, we showed that SDE could be realized
in tilted Weyl semimetals. Due to the similarity between Weyl
semimetals and Dirac semimetals, a natural question arises:
Can introducing a perturbation term to the Dirac semimetal,
which tilts the band dispersion and breaks both T - and I-
symmetries, support the emergence of SDEs? To answer this
question, we consider a lattice model of the Dirac semimetals
and study the possibility of SDEs induced by the tilting.

We focus on a cubic lattice model with a single Dirac point
at the � = (0, 0, 0) point. The dispersion is tilted in a specific
direction, assumed to be in the z-direction as shown in Fig. 8.
The Bloch Hamiltonian is

HD(k) = sin kx�zy + sin ky�zx + sin kz�y0

+ (3 − cos kx − cos ky − cos kz )�x0

+ (λ sin kz − μ)�00, (23)

where the matrix �ab ≡ τa ⊗ σb with a, b ∈ (0, x, y, z). The
term proportional to λ induces tilting and breaks the T - and I-
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FIG. 9. (a, b) Free energy density f (q), supercurrent j(q) (blue
dotted line), and − j(q) (red dotted line) for parameters λ = −0.3,
T = 0, g = 2.6, and μ = 0.2. (c, d) Same quantities as in (a, b) with
identical parameters, except for λ = −1.5.

symmetries while a nonzero μ is needed to break symmetries
studied in Sec. II.

s-wave superconductivity is captured by the BdG
Hamiltonian

HBdG
D (k, q) =

(
HD(k + q/2) −i�σy

i�σy −H∗
D(−k + q/2)

)
. (24)

As demonstrated in Fig. 9, our investigation reveals intriguing
similarities between the free energy density and the SDEs
observed in Dirac semimetals and those previously observed
in Weyl semimetals. The quality factor η ≈ 2.5% at weak
tilting with λ = −0.3 and η ≈ 11.7% at stronger tilting with
λ = −1.5. This enhancement is accompanied by the appear-
ance of multiple pairing channels and multiple minima in the
free energy. These behaviors motivate exploring tilted Dirac
semimetals as well for the realization of SDEs.

VI. CANDIDATE MATERIALS

For materials with broken T - and I-symmetries, the re-
alization of SDEs might be hindered by additional lattice
symmetries, such as mirror symmetry or reflection symmetry.

Consequently, these additional symmetries would also need to
be broken to enable the occurrence of SDEs. One such mate-
rial exemplifying this is Ti2MnAl, with space group F 4̄3M
(No. 216) [66]. In Ti2MnAl, weak spin-orbit coupling fur-
ther breaks the mirror symmetry (M±110), leading to different
tilts between the two mirror-symmetric Weyl points. Another
set of materials can be found in the RAlX family with the
space group I41md (No. 109), where R represents rare earth
metals like Pr, Ce, and Sm, and X denotes Ge or Si [67,68].
These materials lack horizontal mirror symmetry, which in-
creases the likelihood of asymmetric bands in the z-direction.
If superconductivity could be realized in them, then they
are potential candidate materials for verifying our theoretical
studies.

VII. CONCLUSION

In this work, we delved into the intriguing phenomenon
of SDEs in topological semimetals. We demonstrated, by in-
vestigating a simple 1D toy model using various numerical
and analytical methods, that multiple pairing channels rather
than tilting the dispersion enrich the superconducting physics
and enhance the SDE. We carried this understanding to 3D
Weyl and Dirac semimetals, showed the existence of the SDE
in these systems, and demonstrated its enhancement due to
multiple Fermi pockets and pairing channels.

While our toy models are too simple to fully capture the
complexity of tilting topological semimetals, they do demon-
strate the potential for SDEs in such systems if the necessary
symmetries, such as time-reversal, inversion, and reflection
symmetry, are broken. Furthermore, they indicate that the
tilting strength can influence and tune the quality factor of
SDEs in tilted topological semimetals. Our findings hold
implications for future explorations of superconducting phe-
nomena and topological effects in condensed matter systems.
Moreover, the intrinsic nature of SDEs in the presence of
asymmetric band dispersions suggests a promising avenue for
designing advanced superconducting devices and harnessing
nonreciprocal transport in quantum technologies. Ultimately,
this research opens up new directions for investigating emer-
gent phenomena at the intersection of superconductivity and
topological physics.
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