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By solving the renormalization of the s-d interaction from magnetic impurities embedded in conventional
superconductors at low concentration, we derive the macroscopic superconducting phase fluctuation and
electromagnetic linear-response properties within the path-integral approach. It is found that there exist two
superconducting phase modes, both exhibiting similar behaviors of the Nambu-Goldstone mode. The existence
of two phase modes suggest that in addition to the conventional free Cooper pairs as in the BCS case, there
emerges a small part of the localized Cooper pairs around magnetic impurities due to the quantum correlation by
the s-d interaction, acting as Josephson islands. The emerging impurity Shiba bands inside the superconducting
gap then correspond to the excitation of the ground state of the localized Cooper pairs, associated with the
breaking of these Cooper pairs. In the diamagnetic response, the state of the free Cooper pairs gives rise
to the conventional real contribution in the generated supercurrent, whereas the one of the localized Cooper
pairs results in an imaginary contribution, leading to the superconducting Friedel oscillation, i.e., oscillation
in the decay of the vector potential in the Meissner effect. As for the optical absorption of a conventional
superconductor lying in the anomalous-skin-effect region, it is found that besides the conventional interband
transition of Bogoliubov quasiparticles as revealed by Mattis-Bardeen theory, there also exist the interband
transition between the impurity Shiba bands as well as all interband transitions between Bogoliubov quasiparticle
and impurity Shiba bands. These transitions exhibit clear and separate resonance characters, providing a feasible
scheme for the experimental detection.
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I. INTRODUCTION

In the past few decades, the in-gap excitations in super-
conducting systems have attracted much attention as they
share robust gap protection from superconductors and ex-
hibit a long-range phase coherence, allowing for the desired
manipulation in potential application. Various proposals have
therefore been put forward in the literature, such as the vortex
bound state [1,2] and Yu-Shiba-Rusinov state (YSR) [3–5]
in conventional BCS superconductors, Andreev bound state
confined in normal region of short Josephson junction [6–11]
as well as Majorana bound state localized at the boundaries of
topological superconductors [12–18]. Among them, the YSR
state, which was first analytically revealed by Yu [3], and later
by Shiba [4] as well as Rusinov [5] in 1960s considering a
classical local spin in a conventional BCS superconductor,
has recently attracted the renewed and growing interest. This
type of state is characterized as a pair of in-gap bound states
that appear around single magnetic impurity embedded in
an s-wave superconductor, with the particle-hole-symmetric
excitation energies ±η�0 associated with the local Cooper-
pair breaking by magnetism. Here, 0 < η < 1 and �0 denotes
the superconducting gap. Induced by local magnetism, the
YSR state as the in-gap excitation is expected to enable the
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investigation in the Andreev tunneling process [19] as well
as the study of the magnetic phenomena in superconductors
[20–23] with high-energy resolution. As for the case at finite
impurity concentration, Shiba predicted a pair of impurity
bands inside the superconducting gap formed by hybridization
of the YSR states from individual magnetic impurities [4], via
calculating the self-consistent self-energy within the random
phase approximation. Nowadays, thanks to the advanced fab-
rication technique that can tailor and control down to each
individual atom, the band formed by hybridization of the YSR
states is predicted to achieve the topological superconductiv-
ity [24–32] as potential platform for quantum computational
architectures.

Inspired by the renewed attention, a great deal of ex-
perimental efforts have been devoted to the search for the
existence of the YSR state. The scanning tunneling mi-
croscopy and spectroscopy (STM/STS) techniques have been
widely applied in the literature to identify a pair of the in-gap
resonance peaks that are symmetrically located around zero
bias. Such observation was first reported on the surface of su-
perconducting Nb sample with Mn and Gd adatoms [33], and
have now been observed in a variety of systems, ranging from
different magnetic adatoms [34–41], magnetic molecules
[21,42–46], magnetic nanostructures (such as ferromag-
netic nanowires [27] or artificial atomic chains [29]) and
magnetic islands [47,48] embedded in conventional supercon-
ductors, over magnetic molecular junctions with proximity-
induced superconductivity [49], to iron-based unconventional
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superconductors [50–52]. In comparison with the tremendous
experimental progress for the YSR state around single mag-
netic impurity, the scheme to detect the impurity Shiba band
at finite impurity concentration is still absent in the literature,
since such detection requires the macroscopic measurements,
which are beyond the STM/STS technique.

For elucidating the physics of superconductivity and ex-
ploring the novel properties, the electromagnetic responses
have played a significant role in the past. On one hand,
the diamagnetic effect caused by induced supercurrent in
magnetic response, referred to as Meissner effect [53,54],
is known as one of the fundamental phenomena of super-
conductors. On the other hand, the optical spectroscopy in
superconductors has been proved as powerful tool to access
the properties of superconductivity. Particularly, for supercon-
ductors lying in the anomalous-skin-effect region with smaller
skin depth compared with the mean free path [55,56], by
measuring the optical conductivity σs(�) = σ1s(�) + iσ2s(�)
in linear optical response, fitting 1/�-like divergent behavior
in the imaginary part σ2s(�) at low-frequency regime gives
rise to the density of the superfluid [57–63]. The real part
σ1s(�) (i.e., optical absorption) around terahertz-frequency
regime at T = 0 K is attributed to the interband transition of
Bogoliubov quasiparticles, according to the Mattis-Bardeen
theory [64,65]. Thus, in s-wave superconductors at T = 0 K,
σ1s(�) vanishes at � < 2�0 but becomes finite for � above
2�0 [64], providing a clear feature to measure the value
and symmetry of the superconducting gap [55,66–73]. Con-
sequently, as the YSR state is associated with the local
Cooper-pair breaking, finite-concentration magnetic impuri-
ties embedded in conventional superconductors is expect to
influence the superfluid density as well as optical absorption.
By studying this influence, one can therefore reveal the fea-
sible scheme to detect the impurity Shiba bands, and gain a
deeper understanding of the competition/coexistence of the
superconductivity and local magnetism, which has been one
of the focus and intriguing topics in the field.

In this paper, in conventional superconductors with mag-
netic impurities at low concentration, by analytically solving
the renormalization of the s-d interaction, we derive the super-
conducting phase fluctuation and electromagnetic properties
within the path-integral approach. Specifically, to elucidate
the macroscopic physical picture of the ground state be-
hind the emerging impurity Shiba bands, we calculate the
superconducting phase fluctuation within the path-integral ap-
proach. It is found that there exist two superconducting phase
modes, and both become inactive after the coupling with the
long-range Coulomb interaction, which causes the original
gapless spectra lifted up to the high-energy frequency as a
consequence of Anderson-Higgs mechanism [74], similar to
the conventional Nambu-Goldstone mode [75–78,80,81]. As
the existence of the collective phase mode is a direct conse-
quence of the formation of the superconducting state due to
the spontaneous breaking of the continuous U (1) symmetry
[75–81], two phase modes in superconductors with magnetic
impurities suggest that there exist two types of states of the
Cooper pairs, forming the ground state through the direct
product: A small part of the Cooper pairs become localized
around individual magnetic impurities due to the quantum
correlation by the s-d interaction, acting as Josephson islands,

FIG. 1. Interband transitions in conventional superconductors
with magnetic impurities. The blue and gray shadow regions denote
the impurity Shiba bands and Bogoliubov quasiparticle continuum,
respectively. Et and Eb stand for the top and bottom edges of
the electron-type (e-type) impurity Shiba band, respectively, and the
density of states of e-type Shiba band is centered around η�0. The
dashed arrow denotes the interband transition from electron type to
electron type and from hole type to hole type that occurs at T �= 0 K.
The solid arrow represents the interband transition from hole type to
electron type that can occur at T = 0.

similar to the case of the granular superconductors [90,91];
the remaining part of the Cooper pairs is still conventional
free one as in the BCS case. The Bogoliubov quasiparticle
continuum and emerging impurity Shiba bands then corre-
spond to the excitations of the ground states of the free and
localized Cooper pairs, associated with the corresponding pair
breaking, respectively.

The proposed picture of the ground state with free and
localized Cooper pairs can well capture the derived electro-
magnetic properties in the linear response. On one hand, in
the diamagnetic response, the state of the free Cooper pairs
gives rise to the conventional real contribution in the gen-
erated supercurrent as in the BCS case, whereas the one of
the localized Cooper pairs results in an imaginary contribu-
tion, which can be understood by the π/2-phase difference
between wave vectors of the free and localized Cooper pairs.
Consequently, in the diamagnetic response, in contrast to the
exponential decay in the conventional Meissner effect [54,82],
the imaginary contribution in supercurrent due to the s-d
interaction from magnetic impurities leads to an oscillation
in the decay of the vector potential from the surface to the
interior of superconductors, similar to the Friedel oscillation
in normal metals [83] due to the local modulation of the
charge density by defect. We therefore refer to this oscillation
in superconductors with magnetic impurities as supercon-
ducting Friedel oscillation. On the other hand, it is noted
that the impurity Shiba bands and Bogoliubov quasiparticle
continuum, as corresponding excitations of the ground states
of the localized and free Cooper pairs, are similar to each
other. Because of this similarity, in the optical absorption of a
conventional s-wave superconductor lying in the anomalous-
skin-effect region [55,56], at zero temperature, besides the
conventional interband transition (channel I in Fig. 1) of Bo-
goliubov quasiparticles as revealed by Mattis-Bardeen theory
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[64], there also exist the interband transitions (from hole type
to electron type) between the impurity Shiba bands (channel
II in Fig. 1) as well as between Bogoliubov quasiparticle
and impurity Shiba bands (channels III and IV in Fig. 1).
The channel II leads to a resonance peak centered around
� = 2η�0 in optical spectroscopy, whereas channels III and
IV cause a resonance peak centered around � = (1 + η)�0

in the optical spectroscopy. Interestingly, with increase of
temperature from zero, between Bogoliubov quasiparticle and
impurity Shiba bands, there gradually emerge the interband
transitions from electron (hole) type to electron (hole) type,
as shown by channel V (VI) in Fig. 1, leading to a resonance
peak centered around � = (1 − η)�0. Consequently, a feasi-
ble scheme for experimental detection of the impurity Shiba
band is proposed, by measuring the emerging character in
diamagnetic property and/or optical spectroscopy.

II. MODEL

In this section, we first introduce the Hamiltonian of
superconductors in the presence of the s-d interaction be-
tween electrons and magnetic impurities, and show the
corresponding renormalized Green’s function revealed by
Shiba at finite impurity concentration within the random phase
approximation. In contrast to the qualitative analysis by Shiba,
we present the analytical solution of the complex renormal-
ization by s-d interaction in the Green’s function at a low
concentration of the magnetic impurities. A finite density of
states, which is centered around η�0 with bandwidth propor-
tional to the square root of the impurity concentration emerges
inside the superconducting gap, suggesting the emergence of
the impurity Shiba band as revealed by the qualitative analysis
from Shiba. Then, we apply the path-integral approach to
investigate the electromagnetic properties of superconductors
in the linear regime.

A. Hamiltonian and renormalized Green’s function

In conventional s-wave superconductors, the total Hamilto-
nian with the s-d interaction between electrons and magnetic
impurities in Nambu⊗spin space reads [4]

H = 1

2

∑
k

ψ
†
k (ξkτ3 − �0τ2σ2)ψk − 1

2
J
∑
kk′

ψ
†
k σ̃ψk′ · S, (1)

where the field operator ψk = (ψk↑, ψk↓, ψ
†
−k↑, ψ

†
−k↓)T ;

ξk = k2/(2m) − μ with m denoting the effective mass and
μ being the chemical potential; σi and τi are the Pauli ma-
trices in Nambu and spin particle-hole space, respectively;
σ̃ = σ(1 + τ3)/2 + σ2σσ2(1 − τ3)/2; S and J denote the local
spin and exchange interaction in the s-d interaction, respec-
tively. Particularly, in consideration of a classical spin, one
has S2

x = S2
y = S2

z = S2/3 and SxSy = SxSz = SySz = 0.
For the convenience of reading, we begin with Shiba’s

previous formulation of the impurity Shiba bands. It is es-
tablished that the Green’s function formalism provides an
efficient approach to elucidate the single-particle excitation
spectrum. In general, the Green’s function is defined as
Gk(ω) = −i〈ψk(ω)ψ†

k (ω)〉, which can be solved through the

Dyson equation [82,83],

Gk(ω) = G0k(ω) + G0k(ω)�(ω)Gk(ω). (2)

Here, G(0)
k (ω) represents the bare Green’s function and

�(ω) denotes the self-energy due to the external interaction.
The bare Green’s function of the conventional BCS supercon-
ductors is established as [82]

G0k(ω) = ω + ξkτ3 − �0τ2σ2

ω2 − ξ 2
k − �2

0

, (3)

and within the random phase approximation to take random
spatial distribution and random orientation of individual lo-
cal spins, the self-energy due to the s-d interaction between
electrons and magnetic impurities is given by [4]

�(ω) = ni(S · σ̃)Z (ω)(S · σ̃) + (S · σ̃ )Z (ω)�(ω)Z (ω)(S · σ̃ ),
(4)

where Z (ω) =∑k Gk(ω) and ni represents the impurity con-
centration.

To self-consistently calculate the Green’s function from
Eqs. (2) and (4), based on the bare one in Eq. (3), one can
consider a renormalized Green’s function as [4,82]

Gk(ω) = ω̃ + ξkτ3 − �̃0τ2σ2

ω̃2 − ξ 2
k − �̃2

0

, (5)

and the self-energy in Eq. (4) becomes

�(ω) = ni(JS/2)2Z (ω)

1 − [JSZ (ω)/2]2
, (6)

with

Z (ω) = −πD
ω̃ − �̃0σ2τ2√

�̃2
0 − ω̃2

. (7)

Then, substituting Eqs. (5) and (6) into Eq. (2), one arrives
at the renormalization equations revealed by Shiba [4],

ω

�0
= ω̃

�̃0

⎡
⎢⎣1 − γs

�0

√
1 − ( ω̃

�̃0

)2
η2 − ( ω̃

�̃0

)2
⎤
⎥⎦, (8)

and

�̃0 =
[

1 − 1 − (JSDπ/2)2

2

(
1 − ω/�0

ω̃/�̃0

)]
�0. (9)

Here, γs = 2niDπ (JS/2)2/[1 + (JSDπ/2)2]2 denotes the re-
laxation rate due to the s-d interaction; D denotes the density
of states at the Fermi level in the normal state; the coefficient
η is written as

η = 1 − (JSDπ/2)2

1 + (JSDπ/2)2
, (10)

which is related to the energies ±η�0 of the pair of the
YSR state around single magnetic impurity in a conventional
s-wave superconductor [3–5].

As the imaginary part of the σ0τ0 component of the re-
tarded Green’s function corresponds to the spectra function,
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one can calculate the density of states as

ρ(ω) = ImTr[Z (ω + i0+)/4] = −Im

[
πDω̃√
�̃2

0 − ω̃2

]
. (11)

Without magnetic impurities (γs = 0) and hence the renor-
malization according to Eqs. (8) and (9), the density of states
ρ(ω) from Eq. (11) becomes finite at ω � �0 but vanishes
for 0 < ω < �0 as it should be, since the continuum of the
Bogoliubov quasiparticle lies above the superconducting gap.

In the presence of the magnetic impurities, as seen from
Eq. (8), there exist the complex solutions of the renormal-
ization ω̃/�̃0 when ω > �0, suggesting the existence of the
interaction between Bogoliubov quasiparticles and magnetic
impurities. Particularly, a further qualitative analysis of Eq. (8)
by Shiba [4] revealed that there exists additional complex
solutions of ω̃/�̃0 when 0 < ω < �0, and this complex renor-
malization leads to a finite density of states ρ(ω) [Eq. (11)]
inside the superconducting gap, suggesting the emergence of
the impurity Shiba band. The density of states of the emerging
electron-type impurity Shiba band is centered around η�0

with bandwidth proportional to the square root of the impu-
rity concentration [4], whereas considering the particle-hole
symmetry, a corresponding hole-type impurity Shiba band
emerges at ω < 0 symmetrically. As mentioned in the In-
troduction, the similarly derived YSR state around single
magnetic impurity has been observed by a lot of experiments,
whereas the scheme to detect the impurity Shiba band at finite
impurity concentration is still absent in the literature.

It is noted that the treatment of the renormalized Green’s
function in Eq. (5) by Shiba is based on the renormalization
group theory, i.e., assuming that the analytical structure of the
Green’s function does not change in consideration of the s-d
interaction. The applied T -matrix approximation in Shiba’s
treatment [4] neglects the couplings between magnetic im-
purities. Whereas the influence of the interactions/couplings
between magnetic impurities remains an open question in the
literature, we believe such influence becomes marginal at the
case of low impurity concentration.

B. Solution of renormalization at low concentration

A feasible scheme to detect the impurity Shiba bands is
to study the electromagnetic properties that manifest in the
macroscopic measurements. For the formulation of the elec-
tromagnetic properties within the Green’s function formalism,
without the specific solution of the impurity Shiba bands, it
is hard to handle for further practical calculation, whereas a
rigorous solution of the complex renormalization (i.e., in-gap
excitations of the impurity Shiba band) from Eqs. (8) and
(9) is difficult and has long been absent in the literature.
Consequently, in this part, we tend to present the analytical
solution of Eq. (8) at low impurity concentration with small
dimensionless ratio r = γs/�0.

By defining x = ω/�0, we consider a complex solution of
the renormalization,

ω̃/�̃0 = x + δx + im, (12)

in which the real parameters δx and m are small quantities for
weak renormalization at low impurity concentration.

For the branch of the solutions of the continuum of the
Bogoliubov quasiparticle, which is away from the narrow
impurity Shiba bands at low impurity concentration, Eq. (8)
can be written as

δx + im ≈ r
(x + δx + im)

√
1 − (x + δx + im)2

η2 − x2
, (13)

and then, considering the weak renormalization, the solutions
of the renormalization read (refer to Appendix A)

m2 = r2x2(x2 − 1)/[(η2 − x2)2]

1 + r2x2/(η2 − x2)2
, (14)

and

δx = rx
√

|1 − x2 + m2 − 2imx| + 1 − x2 + m2

√
2(η2 − x2)

. (15)

In this situation, the imaginary part has defined solutions
only in the regime with x � 1 and hence m2 � 0 as it should
be, since the continuum of the Bogoliubov quasiparticle lies
above the superconducting gap.

As for the branch of the solutions of the impurity Shiba
bands at ω > 0, considering the fact that the narrow impurity
Shiba band is away from the edge of the continuum of Bogoli-
ubov quasiparticle, Eq. (8) can be written as

δx + im ≈ r
(x + δx + im)

(√
1 − x2 − imx√

1−x2

)
η2 − (x + δx + im)2

. (16)

From above equation, one can analytically derive the solu-
tions of the renormalization (refer to Appendix A),

m2 = −B(x) +
√

[B(x)]2 + rW (x) − (η2 − x2)2, (17)

and

δx = rx
√

1 − x2(η2 − x2 + m2)

(η2 − x2 + m2)2 + 4m2x2
. (18)

Here, B(x) = η2 + x2 − r/2√
1−x2 and W (x) = √

1 − x2(η2 +
x2) − x2(η2−x2 )√

1−x2 .
Comparison with Shiba’s results. It is noted from Eq. (17)

that the imaginary part of the renormalization has defined
solutions only in the regime with m2 � 0, which limits the
energy regime [Eb, Et ] of the emerging density of states inside
the superconducting gap and hence the impurity Shiba band.
For analysis, mathematically, since the condition of m2 � 0
prefers a low factor (η2 − x2)2 in Eq. (17), the solution of
m is centered around η�0, whereas the factor rW (x) de-
termines the bandwidth �E = Et − Eb of the solution, as
one requires rW (x) � (η2 − x2)2 for condition of m2 � 0 in
Eq. (17). Then, from Eq. (17), by solving m2 = 0 and hence
rW (x) = (η2 − x2)2 for x > 0, at low concentration of the
magnetic impurities, one has the solutions

xm=0 = [η2 ±
√

rW (x)]1/2 ≈ [η2 ±
√

rW (η)]1/2

= η ±
√

2r
√

1 − η2/2, (19)

which correspond to the top and bottom edges of the en-
ergy spectrum of the impurity Shiba band (i.e., Et/�0
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FIG. 2. Numerical results of the density of states [Eq. (11)] of
the impurity Shiba bands (i.e., inside the superconducting gap). The
inset shows the results in energy regime [−2�0, 2�0] of the results,
to compare with the density of states above the superconducting gap.
η = 0.4.

and Eb/�0). Therefore, with (Et + Eb)/2 = η�0 and �E =
�0

√
2r
√

1 − η2, the density of states of the impurity Shiba
band is centered around η�0 with bandwidth proportional to
the square root of the impurity concentration as well as to
the factor (1 − η2)1/4. Particularly, with ni → 0+ and hence
the vanishing hybridization of the YSR state, for m2 � 0, one
finds the sole solution of x = η in Eq. (17), which corresponds
to the YSR state around single magnetic impurity. All these
characters from our analytical derivation agree well with the
ones from Shiba [4].

In other regimes (x < Eb/�0 and Et/�0 < x < 1), one has
the vanishing imaginary part (i.e., m = 0), and in this situa-
tion, at low impurity concentration with small r, the solution
of the renormalization reads

δx = rx
√

1 − x2

(η2 − x2)
. (20)

It is noted that the solution of the real part δx of the renormal-
ization in Eqs. (18), (15), and (20) is analytically continuous
at the boundaries with m = 0, guaranteeing the analytic con-
tinuity of the derived solution in the entire energy regime for
the practical calculation.

Consequently, in contrast to the qualitative analysis by
Shiba, we obtain the analytical solutions of the complex renor-
malization ω̃/�̃0 [Eq. (12)], and then the renormalized gap
�̃0 [Eq. (9)] as well as the renormalized Green’s function
in Eq. (5) and density of states in Eq. (11) can be obtained
for the practical formulation. Using the analytical solution
of the complex renormalization, a numerical calculation of
the density of states in Eq. (11) is performed and the results
are plotted in Fig. 2 at η = 0.4. As seen from the inset of
the figure, there emerge finite density of states inside the
superconducting gap and hence the impurity Shiba band.
From Fig. 2, the impurity Shiba bands are centered around
±η�0 and with bandwidth proportional to the square root of
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FIG. 3. Numerical results of impurity-concentration (i.e., r) de-
pendence of 2λd/λo = Re(ηs )/Im(ηs ) at different T for η = 0.2. The
inset shows the temperature dependence of Re(ηs ) and Im(ηs ) at
r = 0.3 for η = 0.2.

the impurity concentration (�Er=0.15
�Er=0.05

= 0.56�0
0.32�0

= 1.75 ∼ √
3),

in agreement with our analysis above. It is also noted that
the density of states in Fig. 2 exhibits remarkably similar
behaviors to the qualitative ones in Fig. 3 of Shiba’s previous
work [4].

C. Formalism for electromagnetic properties in linear regime

In this part, in the presence of the s-d interaction from
magnetic impurities at finite concentration, we present the for-
malism for the electromagnetic properties of superconductors
in the linear response. Specifically, considering the presence
of the vector potential A and long-range Coulomb interaction
for the formulation of the electromagnetic properties, with the
s-d interaction between electrons and magnetic impurities,
the action of an s-wave superconductor after the Hubbard-
Stratonovich transformation is written as [77,82,84–88]

S =
∫

dx

{ ∑
s=↑,↓

ψ∗
s (x)[i∂t − ξp̂−eA − μH (x)]ψs(x)

+ ψ†(x)[�(x)τ+ − �∗(x)τ−]iσ2ψ (x) − |�(x)|2
U

+ J
∑
ss′

ψ∗
s (x)σss′ψs′ (x) · S

}
+
∫

dtdq
|μH (q)|2

2Vq
.

(21)

Here, the superconducting order parameter reads �(x) =
�0eiδθ (x) with δθ (x) being the phase fluctuation; the momen-
tum operator p̂ = −ih̄∇; μH denotes the Hartree field that is
related to long-range Coulomb interaction [77]; U represents
the BCS pairing potential and Vq = e2/(q2ε0) stands for the
Fourier component of the Coulomb potential.

In Nambu⊗spin space, using the unitary transformation

ψ (x)→eiτ3δθ (x)/2ψ (x), (22)
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the action becomes

S = 1

2

∫
dx

{
ψ†(x)

[
G−1

0 ( p̂) − �̂
]
ψ (x) − η f

(
p2

s

2m
+ μeff

)

−|�(x)|2
U

}
+
∫

dtdq
|μH (q)|2

2Vq
, (23)

with the vertex operator: �̂ = ps·p̂
m + p2

s
2m τ3 − JS · σ̃ + μeffτ3.

Here, G−1
0 p̂ = i∂t − ξp̂ − �0σ2τ2 and η f =∑k 2 emerges

because of the anti-commutation of Fermi field; the super-
conducting momentum ps = ∇δθ/2 − eA and effective field
μeff = ∂tδθ/2 + μH . It is noted that the first term in vertex
operator �̂ is related to the current vertex p̂/m and drives a
current (drive effect) through the conventional current-current
correlation [82,83,86,87], whereas the second term in �̂ is
related to the density vertex τ3 and can directly pump a current
−e2nA/m (pump effect), which is conventionally considered
as an unphysical nongauge-invariant current in the literature
[82,83,87].

Then, through the standard integration over the Fermi field
within the path-integral approach, one obtains the action,

S = 1

2

∫
dx

{
− iT̄r ln

[
G−1

0

]− �2
0

U
+ iT̄r

∞∑
n=1

1

n
[(G0�)n]

− η f

(
μeff + p2

s

2m

)}
+
∫

dtdq
|μH (q)|2

2Vq
. (24)

From above action, the effective action of the external
fields is obtained as

Seff (μeff , ps) =
∫

dx

2

{
iT̄r

∞∑
n=1

1

n
[(G0�)n] − η f

(
μeff + p2

s

2m

)}

+
∫

dtdq
|μH (q)|2

2Vq
. (25)

In the present paper, we focus on the influence of the impu-
rity Shiba band on the linear response of superconductors. In
this situation, one can neglect the term η f μeff in above action,
and in the expansion of the first term on the right-hand side of
above equation, one only needs to keep the second order of the
external fields μeff and ps but all orders of the s-d interaction.
Then, the effective action of the second order of external fields
μeff and ps reads

S(2)
eff (μeff , ps) =

∫
dtdq

[
|μH |2
2Vq

− χv + χ j j

2

p2
s

2m
+ μ2

effχρρ

]
.

(26)

It is noted that the odd orders of the s-d interaction (i.e.,
odd orders of S) vanish within the random phase approxima-
tion [4], and hence, the first-order correlation due to the direct
density-vertex contribution by pump effect,

χv = η f −
∞∑

n=0

iT̄r[G0τ3(G0JS · σ̃)2n] = η f − iT̄r(Gτ3),

(27)

and the second-order current-current correlation because of
the drive effect,

χ j j = −iT̄r

{
k2

3m
(G0τ0)2[1 + 2(G0JS · σ̃)2 + O(Jn>2)]

}

≈ −iT̄r

[
k2

3m
(Gτ0)2

]
, (28)

as well as the second-order density-density correlation due to
the effective field μeff ,

χρρ = iT̄r

4

{
(G0τ3)2[1 + 2(G0JS · σ̃ )2 + O(Jn>2)]

}

≈ iT̄r

4
[(Gτ3)2]. (29)

Here, to consider the influence of the impurity Shiba bands,
we have neglected the vertex and cross-diagram corrections
[82,83,89] by s-d interaction in both current-current and
density-density correlations, and only kept the self-consistent
Born corrections (i.e., self-consistent complex renormaliza-
tion by s-d interaction) as the renormalized equilibrium
Green’s function in Dyson equation [Eq. (2)] [82,83]. As
for the direct density-vertex contribution in Eq. (27), the
s-d interaction provides the renormalization to the fermion
bubble (i.e., bare Green’s function), exactly same as the one
by the equilibrium self-energy �(ω) in Eq. (2). Moreover,
in the second order of the external field, the coupling term
between current-vertex related ps · p̂/m and density-vertex-
related μeffτ3 vanishes as a consequence of the particle-hole
symmetry. It is also noted that the effective action in Eq. (26)
at the case without magnetic impurities (i.e., without renor-
malization from s-d interaction) exactly recovers the one in
the literature by various studies [84–86,93], which has been
used to study the phase-mode equation of motion and linear-
response Meissner supercurrent.

Then, by calculating the effective action S(2)
eff (μeff , ps) in

Eq. (26), one can derive the electromagnetic properties of
superconductor in the linear response to study the influence
of the s-d interaction from magnetic impurities.

III. RESULTS

In this section, to elucidate the macroscopic physical pic-
ture behind the emerging impurity Shiba bands, using the
solved renormalized Green’s function at low concentration of
the magnetic impurities, we first derive the equation of motion
of the superconducting phase fluctuation in the presence of
the magnetic impurities. Then, by formulating the effective
action in consideration of the stationary magnetic and optical
responses, we calculate the diamagnetic property and optical
absorption, respectively, and study the influence of the impu-
rity Shiba bands on these properties.

A. Superconducting phase fluctuation and physical picture

Using the analytically obtained renormalized Green’s func-
tion in Sec. II B, we derive the superconducting phase
fluctuation in the presence of the magnetic impurities. Specifi-
cally, by taking the superconducting momentum ps = ∇δθ/2,
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in the center-of-mass momentum space, after the integration
over the Hartree field, the effective action in Eq. (26) directly
becomes the effective one of the phase fluctuation,

S(2)
eff (δθ ) =

∫
dtdq
εq

×
[

χρρ (∂tδθ )2

4
− (1 + 2Vqχρρ )ηsn

m

(iqδθ )2

4

]
,

(30)

where εq = 1 + 2Vqχρρ denotes the dielectric function; ηs =
(χv + χ j j )/(2n) stands for the ratio of the superfluid density
ns to the electron density n.

To consider the case at nonzero temperature, we preform
the formulation within the Matsubara representation [ω →
iωl = (2l + 1)πT , −iT̄r → T̄r], and then, the related corre-
lation coefficients are given by

χρρ = −T
∑

kl

Tr

4
[Gk(iωl )τ3Gk(iωl )τ3] = −T

∑
kl

Tr

4

× [τ3∂ξk Gk(iωl )] =
∑

l

2DT ωD

ω̃2
l + ω2

D + �̃2
0

, (31)

and

ηsn =
∑

k

{
2 + T

∑
l

Tr

[
τ3Gk(iωl ) + k2

6m
G2

k(iωl )

]}

= T
∑

l

∫
4πk2dk

(2π )3
Tr

{
k2[Gk(iωl )]2

6m
− τ3k∂kGk(iωl )

6

}

=
∑

kl

4k2
F T �̃2

0/(3m)[
(iω̃l )2 − ξ 2

k − �̃2
0

]2 =
∑

l

nπT �̃2
0(

�̃2
0 + ω̃2

l

)3/2 , (32)

where ωD denotes the Debye frequency.
Due to the complex renormalization by the s-d interac-

tion from magnetic impurities (the complex solution of the
renormalization within the Matsubara-frequency representa-
tion refers to Appendix B), from the effective action of the
phase fluctuation in Eq. (30), there emerge two separate equa-
tions of motion of the phase modes,[

∂2
t + Re(ηs)ne2

ε0m
+ Re(ηs)n

Re(χρρ )m
q2

]
δθ

2
= 0, (33)[

∂2
t + Im(χρρηs)ne2

Im(χρρ )ε0m
+ Im(ηs)n

Im(χρρ )m
q2

]
δθ

2
= 0. (34)

It is noted that both phase modes in Eqs. (33) and (34)
exhibit gapless linear energy spectrum at free case (i.e.,
without long-range Coulomb interaction), and show gapful
energy spectrum at long-wavelength limit after the coupling
to the long-range Coulomb interaction as a consequence of
the Anderson-Higgs mechanism [74]. Hence, both become
inactive, and the original global and rigid phase coherence
for achieving robust superconductivity in conventional super-
conductors [86] remains even in the presence of the magnetic
impurities. Clearly, the phase mode in Eq. (33) corresponds to
the conventional Nambu-Goldstone mode [75–79,84,85], as

this equation of motion in the case without magnetic impu-
rities exactly recovers the one [76,79,84–86] as in the BCS
case, whereas the one in Eq. (34) emerges totally due to the
complex renormalization by s-d interaction from magnetic
impurities.

According to the Goldstone theorem [80,81], as the ex-
istence of the collective gapless phase mode is a direct
consequence of the formation of the macroscopic super-
conducting state due to the spontaneous breaking of the
continuous U (1) symmetry [75–81], the emerging two phase
modes here suggest that there exist two types of states of the
Cooper pairs, forming the ground state in superconductors
with magnetic impurities through the direct product. Specif-
ically, with magnetic impurities, a small part of the Cooper
pairs become localized around individual magnetic impurities
due to the quantum correlation by the s-d interaction, acting
as Josephson islands and hence leading to the phase mode in
Eq. (34), similar to the case of the granular superconductors
[90,91]. However, within the random phase approximation
that takes random spatial distribution [4,83], the emerging
Josephson islands by localized Cooper pairs does not mani-
fest themselves explicitly. The remaining part of the Cooper
pairs is still conventional free type, resulting in the phase
mode in Eq. (33). The impurity Shiba bands and Bogoliubov
quasiparticle continuum then correspond to the excitations
of the ground state of the localized and free Cooper pairs,
respectively.

Based on this picture with localized and conventional free
Cooper pairs, one can understand the properties of the single-
particle energy spectra in superconductors with magnetic
impurities. On one hand, due to the small proportion of the
localized Cooper pair compared with the free ones, the YSR
state around single magnetic impurity exhibits a small (i.e.,
in-gap) excitation energy η� associated with the breaking of
the localized Cooper pair, whereas the enhancement of the
exchange interaction profiting the pair breaking suppresses the
excitation energy η�0. The hybridization of the YSR states in
ensembles of magnetic impurities at finite concentration then
leads to the impurity Shiba band [4], showing the finite density
of states centered around η�0 with bandwidth proportional to
the square root of the impurity density. On the other hand,
with the increase of the magnetic impurities, the loss of the
free Cooper pairs leads to a suppressed energy gap �0 of
the Bogoliubov quasiparticle as revealed by Shiba by self-
consistently solving the gap equation [4].

Moreover, one can also understand the similarities in the
behaviors of the phase modes in Eqs. (33) and (34), as
the revealed phase mode on Josephson islands in describing
the granular superconductors [90] exhibits similar behavior
of the Nambu-Goldstone phase mode [75–79]. Particularly,
it is noted that for the phase mode on the state of local-

ized Cooper pair in Eq. (34), the energy gap
√

Im(χρρηs )ne2

Im(χρρ )ε0m =√
[Im(χρρ )Re(ηs )+Re(χρρ )Im(ηs )]ne2

Im(χρρ )ε0m at long-wavelength limit in-
volves not only the contribution of the superfluid density
Im(ηs)n in the localized state, but also the one Re(ηs)n
in the free state. This is because that the electric long-
range Coulomb interaction between the free and localized
states is inevitable. Furthermore, we show in the following
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sections that the proposed picture of the ground state with
free and localized Cooper pairs can well capture the obtained
electromagnetic properties in conventional superconductors
with magnetic impurities.

B. Diamagnetic property

In this part, by considering a stationary and transverse
vector potential, we derive the diamagnetic response of con-
ventional superconductors with s-d interaction from magnetic
impurities. In this situation, one has ps = −eA in Eq. (26).
The generated diamagnetic supercurrent from the effective
action in Eq. (26) then reads

js = −e∂ps S
(2)
eff (ps) = −χv + χ j j

2

e2A
m

= −ηsne2A
m

, (35)

with the ratio of the superfluid density to the electron density
from Eq. (32) written as

ηs =
∑

l

πT �̃2
0(

�̃2
0 + ω̃2

l

)3/2 . (36)

As a self-consistent check, with the vanishing renormal-
ization (i.e., ω̃ → ω and �̃0 → �0) in the absence of the
magnetic impurities, one has ηs = 1 at T = 0 K and ηs =
7�2

0ζ (3)
4(πT )2 near Tc from Eq. (36), which are exactly same as

the established superfluid density in the literature by various
approaches [82,86,92,93]. Moreover, with the magnetic impu-
rities, at the case above Tc, one has �0 = 0 and hence �̃0 = 0
from Eq. (9), and then, the supercurrent in Eq. (36) vanishes,
i.e., the drive current exactly cancels the pump current one in
normal metals as it should be [82], since the stationary mag-
netic vector potential can not drive the normal-state current
even with the magnetic impurities.

With the magnetic impurities in superconductors, due
to the complex renormalization by s-d interactions, there
emerges an imaginary part in the superfluid-density ratio ηs,
i.e., the presence of the magnetic impurities lead to a finite
imaginary part in the generated supercurrent. This imaginary
part can be understood as follows based on the proposed pic-
ture of the ground state with free and localized Cooper pairs
in Sec. III A. Specifically, between the states of the free and
localized Cooper pairs, the wave vectors exhibit a π/2-phase
difference, and hence, the induced center-of-mass momenta
by vector potential, which are related to the generation of the
supercurrent, also have a π/2-phase difference. Therefore, in
comparison with the state of the free Cooper pairs that con-
tributes to the real part in the supercurrent, the state of the free
Cooper pairs leads to an imaginary part in the supercurrent.

It is noted that the real part in supercurrent guarantees
the diamagnetic effect in the magnetic response, whereas in
contrast to the conventional exponential decay at the case
without magnetic impurities [54], the induced imaginary part
in supercurrent due to the magnetic impurities is incapable
of causing the relaxation of the supercurrent, but leads to
an oscillation in the decay of the vector potential from the
surface to the interior of superconductors in the diamagnetic
response, similar to the Friedel oscillation in normal metals
due to the local modulation of the charge density by defect
[83]. Therefore, we refer to this oscillation as superconducting

Friedel oscillation. Particularly, from Eq. (35), together with
the Maxwell equation, one can obtain the equation of the
vector potential, and then, solve the penetration depth λd as
well as the characteristic length λo of the oscillation through
the following equation:(

1

λd
+ i

λo

)2

= 4πηsne2

m
. (37)

At low concentration of the magnetic impurities, one has

λd = λc/
√

Reηs, (38)

λo = 2λc

√
Reηs/Imηs, (39)

where λc =
√

m/(4πne2) denotes the London clean-limit
penetration depth at zero temperature.

Using the analytical solution of the complex renormal-
ization obtained in Sec. II B, by a numerical calculation of
Eq. (36), the impurity concentration (i.e., r) dependence of
2λd/λo = Re(ηs)/Im(ηs) for different temperatures at η =
0.2 is plotted in Fig. 3. As seen from the figure, the ratio
2λd/λo increases with the increase of r, as it should be due to
the increase of the localized Cooper pairs and suppressed free
Cooper pairs. With the increase of temperature, 2λd/λo de-
creases since the state with small amount of localized Cooper
pair is more fragile against temperature (as shown by the inset
in Fig. 3). Consequently, a larger 2λd/λo can be expected at
large impurity concentration and low temperature as well as
strong exchange interaction.

The oscillatory decay of the vector potential provides a
feasible detection scheme for the involved s-d interaction
and in particular, impurity Shiba bands in superconductors
with magnetic impurities, via using the muon spin relaxation
(μSR) measurements [94]. It is also noted that the oscillatory
decay in superconductors with magnetic impurities has totally
different origin from the observed one in superconducting
proximity structure with triplet Cooper pairs induced by mag-
netism [94]. In that case, the emerging oscillation comes from
the paramagnetic Meissner effect [i.e., Re(ηs) < 0, directly
leading to an imaginary λd in Eq. (38)] by triplet Cooper pairs
[95], and the decay is due to the suppressed gap during the
diffusion in proximity structure [96].

C. Optical absorption

We next derive the optical absorption of conventional su-
perconductors with magnetic impurities to present a more
determined detection scheme for the impurity Shiba bands.
Following the Mattis-Bardeen theory [64,65], we also con-
sider a conventional s-wave superconductor lying in the
anomalous-skin-effect region with a mean free path L larger
compared with the skin depth λ [55,56], where the excited
current at one space point depends not only on the electric
field at that point but also on the ones nearby. This nonlo-
cal effect in fact provides an effective dipole in the optical
response, leading to the emergence of the optical absorption.
The excited current in this situation reads [64,65]

j(r) =
∫

R[R · A(r′)]I (�, R)e−R/L

R4
dr′, (40)
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where R = r − r′; the normalized linear-response coeffi-
cient I (�, R) = �(�, R)/(k2

F /3) with �(�, R) denoting the
linear-response coefficient and � representing the optical
frequency. At dirty limit with a larger coherence length ξ

compared with the mean free path L (i.e., ξ > L > λ), by the
mean value theorem of integrals, one has

j(r) ≈ I (�, R = 0)A(r)
∫

e−R/L

3R2
dr′, (41)

which leads to the optical conductivity

σs = σ1s + iσ2s = 4πL

3i�

∑
q

I (�, q). (42)

The artificial scheme of taking the external optical fre-
quency as imaginary bosonic Matsubara frequency within the
Matsubara representation makes it hard to directly distinguish
the influence (complex renormalization) of the s-d interaction.
We therefore perform the formulation within the Keldysh
formalism [89]. Specifically, it is noted that the direct density-
vertex contribution by pump effect in the effective action as an
unphysical nongauge-invariant current makes no contribution
to the optical absorption, and only the current-current corre-
lation contributes to σ1s. Therefore, within the Keldysh space,
substituting Eq. (28) into Eq. (42), one has

σ1s = −Re

[
2e2πL

i�mk2
F

∑
q

χ j j (�, q)

]

= 2e2πL

3�m2

∫
dE

2π

∑
kq

TrRe

4
{[Ĝk+ (E+)Ĝk(E )]K}, (43)

where k+ = k + q and E+ = E + �; the subscript “K” de-
notes the Keldysh component; the Green’s function matrices
Ĝk(E ) is defined as [89]

Ĝk(E ) =
(

GR
k GK

k

0 GA
k

)
, (44)

and it is established in the literature [89,97,98] that the
retarded (R), advanced (A), and Keldysh (K) Green’s func-
tions can be obtained by GR

k (E ) = Gk(E + i0+), GA
k (E ) =

Gk(E − i0+), and GK
k (E ) = h(E )[GR

k (E ) − GA
k (E )], respec-

tively, with the distribution function h(E ) = tanh(βE/2).
Here, β = 1/(kBT ).

Using the facts that ReGR
k (E ) = ReGR

k (E ) and ImGA
k (E ) =

−ImGA
k (E ), the optical absorption becomes

σ1s = 2e2πL

3�m2

∫
dE

2π

∑
kq

Tr
[
ImGR

k+ (E+)ImGR
k (E )

]

× h(E+) − h(E )

2
, (45)

and through the replacement
∑

kq →∑
kk+ , one obtains

σ1s = σn

∫
dE

f (E ) − f (E+)

�

Tr[ImZR(E+)ImZR(E )]

π2D2
,

(46)

where σn = ne2τ
m represents the electrical conductivity in nor-

mal metals with τ being the momentum-relaxation time; f (E )

denotes the Fermi distribution function. Particularly, for the
analysis and discussion, the above equation can be effectively
written as

σ1s = σn

∫
dE

f (E ) − f (E+)

�

m(E )ρ(E+)ρ(E )

π2D2
, (47)

with m(E )×L behaving as an effective dipole mediated by the
scattering.

As a self-consistent check, with the vanishing renor-
malization in the absence of the magnetic impurities, the
density of states ρ(E ) becomes finite only when energy |E |
lies above the superconducting gap, and one has ρ(E ) =
πD Esgn(E )√

E2−�2
0

θ (|E | − �0) and m(E ) = 1 + �2
0

EE+ from Eq. (11),

with θ (x) being the step function. Then, substituting ρ(E ) and
m(E ) to Eq. (47), the optical absorption becomes

σ1s

σn
=
[(∫ ∞

�0

+
∫ −�0−�

−∞

)
− θ (� − 2�0)

∫ −�0

�0−�

]

× f (E ) − f (E+)

�

(
EE+ + �2

0

)
dE√

E2 − �2
0

√
(E+)2 − �2

0

=
[

2
∫ ∞

�0

f (E ) − f (E+)

�
− θ (� − 2�0)

∫ −�0

�0−�

× 1 − 2 f (E+)

�

] (
EE+ + �2

0

)
dE√

E2 − �2
0

√
(E+)2 − �2

0

, (48)

which exactly recovers the one from the Mattis-Bardeen the-
ory [64,65]. It is noted that the first and second terms in
Eq. (48) correspond to the intraband and interband transitions
of the Bogoliubov quasiparticles, respectively. As mentioned
in the introduction, at T = 0 K with only the contribution of
the interband transition, the optical absorption σ1s(�) van-
ishes when � < 2�0 but becomes finite above 2�0, leading to
a crossover point at 2�0. At finite temperature, an additional
quasiparticle contribution appears below 2�0 due to the intra-
band transition.

As for the case with magnetic impurities at finite con-
centration, according to the proposed picture of the ground
state with free and localized Cooper pairs in Sec. III A, the
impurity Shiba bands and Bogoliubov quasiparticle contin-
uum correspond to the excitations of the ground states of
the localized and free Cooper pairs, respectively, and hence,
are similar to each other. Then, based on the revealed inter-
and intraband transitions of the Bogoliubov quasiparticle by
the Mattis-Bardeen theory [64], one expects the inter- and
intraband transitions of the impurity Shiba bands as well as all
interband transitions between Bogoliubov quasiparticle and
impurity Shiba bands.

Specifically, with magnetic impurities, due to the emer-
gence of the impurity Shiba bands inside the superconducting
gap, the density of states becomes finite not only above
the superconducting gap but also in the Shiba-band regime
of Eb < |E | < Et . In this situation, considering the case
at zero temperature with only the interband transition, the
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optical absorption becomes

σ1s

σn
=
{

θ (� − 2�0)
∫ −�0

�0−�

+θ (� − �0 − Eb)
∫ min(−�0,Et −�)

Eb−�

+θ (� − Eb − �0)
∫ −Eb

max(�0−�,−Et )

+ θ (2Et − �)θ (� − 2Eb)
∫ min(−Eb,Et −�)

max(−Et ,Eb−�)

}
m(E )ρ(E+)ρ(E )

�π2D2
dE . (49)

It is noted in above equation that the first term corresponds
to the interband transition (channel I in Fig. 1) from the Bo-
goliubov quasiholes to quasielectrons, which is finite at � >

2�0, leading to a crossover at � = 2�0. The second term
denotes the interband transition (channel III in Fig. 1) from
the Bogoliubov quasiholes to electron-type impurity Shiba
band, and the third one represents the interband transition
(channel IV in Fig. 1) from the hole-type impurity Shiba band
to Bogoliubov quasielectrons. The second and third terms are
symmetric, whereas both are finite at � > �0 + Eb and cause
a resonance peak (from �0 + Eb to �0 + Et ) centered around
� = (1 + η)�0. The forth term stands for the interband tran-
sition (channel II in Fig. 1) from the hole- to electron-type
impurity Shiba bands, which is finite at 2Et > � > 2Eb and
hence leads to a resonance peak (from � = 2Eb to � = 2Et )
centered around 2η�0.

Consequently, in addition to the conventional interband
transition of Bogoliubov quasiparticles as revealed by Mattis-
Bardeen theory [64], due to the emergence of the impurity
Shiba bands by s-d interaction from the magnetic impurities,
at zero temperature, there also exist the interband transitions
(from hole type to electron type) between the impurity Shiba
bands as well as between Bogoliubov quasiparticle and impu-
rity Shiba bands, causing a resonance peak centered around
2η�0 and a resonance peak centered around (1 + η)�0 in
the optical absorption, respectively, providing clear features
for the detection of the impurity Shiba bands in the optical
spectroscopy.

With increase of temperature from zero, interestingly,
two additional interband transitions also emerge at nonzero
temperature: from electron-type impurity Shiba band to the
Bogoliubov quasielectrons (channel V in Fig. 1); from the
Bogoliubov quasiholes to the hold-type impurity Shiba band
(channel VI in Fig. 1), leading to the contribution

σ1s

σn

∣∣∣∣∣
eS→eB

hB→hS

=
[∫ Et

max(�0−�,Eb)
+
∫ min(−�0,−Eb−�)

−Et −�

]
m(E )

× θ (� + Et − �0)
[ f (E ) − f (E+)]ρ(E+)ρ(E )

�π2D2
dE .

(50)

This contribution becomes finite at � > �0 − Et , and
hence, a resonance peak (from �0 − Et to �0 − Eb) centered
around � = (1 − η)�0 in the optical absorption gradually
emerges with increase of temperature from T = 0 K , also

providing a clear feature for the detection of the impurity
Shiba bands in the optical spectroscopy.

In addition, at finite temperature, with the decrease of the
optical frequency � inside 2�0, due to the emerging intraband
transitions inside the Bogoliubov quasiparticle continuum and
inside the impurity Shiba band, one can expect an upturn
behavior in the optical absorption at low frequency regime,
similar to the behavior in the Mattis-Bardeen theory without
magnetic impurities.

Using the analytical solution of the complex renormaliza-
tion obtained in Sec. II B, we further perform a numerical
calculation of Eq. (46). The obtained results of the optical
absorption at r = 0.05 and η = 0.25 are plotted in Fig. 4.
As seen from figure, at zero temperature (red curve), a sig-
nificant enhancement of the optical absorption starting from
� = 2�0 to high frequency is observed, due to the inter-
band transition by channel I in Fig. 1, whereas inside 2�0,
there exist a remarkably obvious resonance peak centered at
1.35�0 ∼ (1 + η)�0 and a relatively weak but visible one
centered at 0.47�0 ∼ 2η�0, arising from the interband transi-
tions in channels III and IV and the one in channel II in Fig. 1,
respectively. With the increase of temperature from zero, an
additional resonance peak centered at 0.85�0 ∼ (1 − η)�0

gradually emerges in the optical absorption, due to the emerg-
ing interband transitions by channels V and VI in Fig. 1,
whereas an upturn behavior at low frequency regime with the
decrease of � below �0 is also observed. All these characters
from numerical calculation agree well with our analysis and
discussion above.

 0
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FIG. 4. Numerical results of the optical absorption in frequency
regime 0.1�0 < � < 2�0 for different temperatures at r = 0.05 and
η = 0.25 from Eq. (46). The inset shows the results in frequency
regime 0 < � < 3�0, to compare with the contribution from the
Bogoliubov quasiholes to quasielectrons at � > 2�0.
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IV. SUMMARY AND DISCUSSION

In summary, in conventional superconductors with mag-
netic impurities, via analytically solving the renormalized
Green’s function by the s-d interaction at low impurity con-
centration, we have derived the macroscopic superconducting
phase fluctuation, and found that there exist two super-
conducting phase modes. Consequently, by the Goldstone
theorem [80,81] of the collective phase mode in supercon-
ductors [75–81], we suggest that there exists a state of lo-
calized Cooper pairs around magnetic impurities, besides the
one of the conventional free Cooper pairs. Then, we derived
the electromagnetic properties in the linear regime to study
the influence of the emerging impurity Shiba bands inside the
superconducting gap.

On one hand, in the diamagnetic response, the state of the
localized Cooper pairs due to the magnetic impurities results
in an imaginary contribution in supercurrent, which leads to
an oscillation in the decay of the vector potential in the Meiss-
ner effect, i.e., superconducting Friedel oscillation, similar to
the Friedel oscillation in normal metals due to the local modu-
lation of the charge density by defects [83]. It is noted that the
superconducting Friedel oscillation is a unique character of
the magnetic impurities, which breaks the time-reversal sym-
metry and leads to the complex renormalization, in contrast
to the null renormalization [99–102] (i.e., ω̃/�̃0 = ω/�0) by
nonmagnetic impurities as the Anderson theorem revealed
[103]. Hence, this oscillation provides a feasible scheme to
detect the involved s-d interaction in superconductors with
magnetic impurities, via using μSR measurement [94].

On the other hand, in the optical absorption of a
conventional s-wave superconductor lying in the anomalous-
skin-effect region [55,56], besides the conventional interband
transition of Bogoliubov quasiparticles as revealed by Mattis-
Bardeen theory [64], there also exist the interband transitions
(from hole type to electron type) between the impurity Shiba
bands as well as between Bogoliubov quasiparticle and impu-
rity Shiba bands. Additional interband transitions from hole
(electron) type to hole (electron) type between Bogoliubov
quasiparticle and impurity Shiba bands gradually emerge with

increase of temperature. All these interband transitions give
clear and separate resonance characters in the optical spec-
troscopy, providing a feasible scheme for the experimental
detection of the impurity Shiba band. It is noted that the
interband transitions between Bogoliubov quasiparticle and
impurity Shiba bands are unique characters of superconduc-
tors lying in the anomalous-skin-effect region, where the
excited current at one space point depends not only on the
optical field at that point but also the ones nearby [55,56],
leading to the coupling (i.e., effective dipole) between two
excitations.

Finally, we point out that the present study provides
the long missing analytical solution of the impurity Shiba
bands, i.e., complex renormalization by s-d interaction in
the Green’s function. Therefore, besides the electromagnetic
properties studied in the present paper, one also expects this
renormalized Green’s function can be applied to study the
mesoscopic physics as well as more diagrammatic-formalism
and transport-equation investigations in superconductor with
magnetic impurities.
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APPENDIX A: DERIVATION OF SOLUTION
OF THE RENORMALIZATION WITHIN
REAL-FREQUENCY REPRESENTATION

In this Appendix, we present the derivation of the solu-
tion of the renormalization of ω̃/�̃. At low concentration
of magnetic impurities, the narrow impurity Shiba band
is away from the edge of the Bogoliubov quasiparticle
continuum.

For the branch of the solutions of the impurity Shiba
bands at ω > 0, the real and imaginary parts of Eq. (16) are
written as

δx = r
[(x + δx)

√
1 − x2 + m2x/

√
1 − x2][η2 − (x + δx)2 + m2] + 2m2(x + δx)2x/

√
1 − x2 − 2m2(x + δx)

√
1 − x2

[η2 − (x + δx)2 + m2]2 + 4m2(x + δx)2
, (A1)

m = mr
[
√

1 − x2 − (x + δx)x/
√

1 − x2][η2 − (x + δx)2 + m2] + 2(x + δx)2
√

1 − x2 + 2m2(x + δx)x/
√

1 − x2

[η2 − (x + δx)2 + m2]2 + 4m2(x + δx)2
. (A2)

Considering the fact that the real part δx of the renormalization is a small quantity compared to x, keeping the lowest order of
r, the solution of δx is directly given by Eq. (18). Moreover, one can also neglect δx in the equation of the imaginary part, and
then, Eq. (A2) becomes

(η2 − x2 + m2)2 + 4m2x2 = r
√

1 − x2(η2 − x2 + m2) − rx2/
√

1 − x2(η2 − x2 + m2) + 2rx2
√

1 − x2 + 2rm2x2/
√

1 − x2,

(A3)

which can be rewritten as

m4 + 2B(x)m2 + (η2 − x2)2 − rW (x) = 0, (A4)

leading to the solution in Eq. (17).
Similarly, for the branch of the solutions of the continuum of the Bogoliubov quasiparticle, considering the fact that the real

part δx of the renormalization is a small quantity compared to x, the real part of Eq. (13) directly becomes the solution of δx in
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Eq. (15), whereas the imaginary part reads

m = rx

η2 − x2

√√
(x2 − 1 − m2)2 + 4m2x2 + x2 − 1 − m2

2
, (A5)

and can be rewritten as[
1 + r2x2

2(η2 − x2)2

]
m2 − r2x2(x2 − 1)

2(η2 − x2)2
= r2x2

2(η2 − x2)2

√
(x2 − 1 − m2)2 + 4m2x2 ≈ r2x2(x2 − 1)

2(η2 − x2)2
, (A6)

where we have kept the lowest order of r. Consequently, the
solution of m in Eq. (14) is obtained.

APPENDIX B: DERIVATION OF SOLUTION
OF THE RENORMALIZATION WITHIN

MATSUBARA-FREQUENCY REPRESENTATION

In this Appendix, we present the derivation of the solu-
tion of the renormalization within the Matsubara-frequency
representation. For Matsubara frequency ωl , by defining xl =
ωl/�0, we consider a complex solution of the renormaliza-
tion,

ω̃l/�̃0 = xl + δxl + iml , (B1)

in which the parameters δxl and ml are small quantities for
weak renormalization at low impurity concentration.

It is noted that with ω → iωl = (2l + 1)πT , Eq. (9) is
unchanged, whereas Eq. (8) becomes different and is written
as

ωl

�0
= ω̃l

�̃0

⎡
⎢⎣1 − r

√
1 + ( ω̃l

�̃0

)2
η2 + ( ω̃l

�̃0

)2
⎤
⎥⎦. (B2)

By defining y = ωl/�0 and x = ω̃l/�̃0 in this part as well
as the right-hand side of Eq. (B2) as φ(x), for real renormal-
ization x, we plot y = φ(x) (solution at case with magnetic
impurities) and y = x (solution at case without magnetic im-
purities) in Fig. 5 at η = 0.2 and small r = 0.1. Similarly,
following the Shiba’s analysis for the real frequency [4], in

-0.2

-0.1

 0

 0.1

 0.2

-0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4 x

y=φ(x)

y=x

FIG. 5. Cases of the real renormalization with and without mag-
netic impurities within the Matsubara-frequency representation.

the Matsubara-frequency representation here, as seen from
Fig. 5, for y = 0 and y > 0.1, one finds the solutions x = 0
and x > 0.35, respectively. But for 0 < y < 0.1, there mathe-
matically exist two kinds of solutions: (i) the solution of x is
located in regime 0.35 > x > 0.25, leading to an abrupt jump
in solutions of x between y = 0 and y = 0+, and such a large
deviation between y ∈ (0, 0.1) and x ∈ (0.25, 0.35) at small
r �= 0 also causes a discontinuity from the case with y = x at
r = 0; (ii) the solution of x located in regime −0.25 < x < 0,
leading to an abrupt jump in solutions of renormalization x
between y = 0.1 − 0+ and y = 0.1 + 0+. Clearly, both so-
lutions of the real renormalization x are unphysical, and we
therefore consider a complex renormalization to eliminate the
discontinuity behavior.

Then, Eq. (B2) can be rewritten as

δxl + iml = r
(xl + δxl + iml )

√
1 + (xl + δxl + iml )2

η2 + (xl + δxl + iml )2
.

(B3)

Considering the facts that δxl is a small quantity compared
to xl and m2

l � 1 + x2
l for weak renormalization at low impu-

rity concentration, one approximately has

δxl + iml = r(xl + iml )

√
1 + x2

l + imlxl/

√
1 + x2

l

[η2 + (xl + iml )2]
. (B4)

We separate the above equation into two equations,

(
η2 + x2

l − m2
l

)
δxl − 2xlm

2
l = rxl

√
1 + x2

l − rm2
l xl

√
1 + x2

l ,

(B5)

2xlδxl = r
√

1 + x2
l + rx2

l /

√
1 + x2

l + m2
l − η2 − x2

l . (B6)

By keeping the lowest two orders of r and solving
Eqs. (B5) and (B6), at ωl > 0, one finds the solutions

2xlδxl = r/2√
1 + x2

l

+ 2rx2
l√

1 + x2
l

− 2x2
l + 2ixlη

⎛
⎜⎝1 − r/4√

1 + x2
l

⎞
⎟⎠, (B7)
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FIG. 6. Numerical results of the optical absorption for different
temperatures at r = 0.1 and η = 0.4 from Eq. (46).

ml = − η

⎛
⎜⎝1 − r

4

√
1 + x2

l

η2 + x2
l

⎞
⎟⎠

− ixl

⎡
⎢⎣1 + r

4

1 − η2√
1 + x2

l (η2 + x2
l )

⎤
⎥⎦, (B8)

and hence,(
ω̃l

�̃0

)2

= x2
l + 2xl (δxl + iml )

= x2
l + r

2

[
4x2

l√
1 + x2

l

+ x2
l (1 − η2)√

1 + x2
l

(
η2 + x2

l

)
]

+ iηr

2

xl

η2 + x2
l

1 − η2√
1 + x2

l

. (B9)

Consequently, differing from the solution in the real-
frequency representation as obtained in Appendix A, the
solution of the renormalization by the s-d interaction in the
Matsubara-frequency representation is always complex. As a
self-consistent check, in the case without magnetic impuri-
ties (r → 0+), the renormalization in Eq. (B9) vanishes as
it should be. It is noted that the solution of the complex
renormalization in Eq. (B9) is analytically continuous, guar-
anteeing the analytic continuity of the derived solution in the
entire energy regime for the practical calculation, in contrast
to the real renormalization discussed above.

Moreover, due to the factor xl/(η2 + x2
l ), the imaginary

part of the renormalization in Eq. (B9), which is related
to the contribution from the state of the localized Cooper
pairs, achieves the maximum at xl = η. Consequently, as the
minimum of xl is πT/�0, the increase of temperature at
πT > η�0 leads to the suppression on the imaginary part
of the renormalization and hence the imaginary part of the
superfluid-density ratio ηs [Eq. (32)], suggesting the breaking
of the localized Cooper pairs by the excitation of the impurity
Shiba band. By further increasing temperature until |xl | � η

at all l , the imaginary part of the renormalization nearly van-
ishes due to the vanishing localized Cooper pairs.

APPENDIX C: NUMERICAL RESULTS
OF THE OPTICAL ABSORPTION

In this Appendix, we present the numerical results of the
optical absorption for different temperatures at r = 0.1 and
η = 0.4 from Eq. (46). Most features of the resonance peaks
in Fig. 6 at r = 0.1 and η = 0.4 are similar to the ones in Fig. 4
at r = 0.05 and η = 0.25, whereas in Fig. 6 that the resonance
peak by channel II (centered at 0.8�0 ∼ 2η�0) and the one by
channels V and VI [centered at 0.7�0 ∼ (1 − η)�0] become
hard to distinguish at nonzero temperature, due to the close
central positions.
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