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In previous studies of the half-filled bilayer attractive Hubbard model [Prasad et al., Phys. Rev. A 89,
043605 (2014); Prasad, Phys. Rev. B 106, 184506 (2022)], it has been shown that the clean system has a
band-insulator (BI) to superfluid (SF) quantum phase transition. In this paper, we append the effects of random
on-site disorder on the kinetic energy, double occupancy, and the pair-pair correlations in the bilayer model.
Using the determinant quantum Monte Carlo simulation, we observe that the on-site random disorder plays a
significant role in the localization of on-site pairs, and hence in the reduction of the effective hopping. This
results in an increase of the double occupancy, which is an effect that is similar to the attractive interaction. We
find no change in the critical value of the interaction at which the model undergoes a transition from the BI to SF
regime, even though the pair-pair correlations get suppressed for finite on-site disorder strengths Vd/t = 0.1–0.8.
We also confirm that the weak-disorder suppresses the SF phase largely in the strong-coupling limit. Hence the
region of the SF phase reduces in the presence of random on-site disorder. Finally, through finite-size scaling,
we have estimated the critical disorder strength V c

d /t ∼ 1.44 at |U |/t = 5.

DOI: 10.1103/PhysRevB.109.064506

I. INTRODUCTION

Anderson [1] argued that the disorder in the absence of
any interaction leads to the localization of the electronic
states. On the other hand, the attractive interaction between
the electrons lead to superconductivity, a very good example
of the long-range order in physics. The competition between
the superconductivity and the localization raises profound
questions in condensed matter physics. The interplay of the
effects of the interactions and the localization results in the
destruction of the superconductivity with an increasing disor-
der and this leads to the superconductor-insulator (SI) [2,3]
or superconductor-metal transition [4,5]. Earlier it was rec-
ognized that s-wave superconductivity is remarkably robust
against weak disorder [1,6]. It has also been argued that the
superfluid (SF) phase can survive even when single-particle
states are localized by disorder [7]. Also, the s-wave supercon-
ductivity in two coupled Hubbard chains is more resistant to
disorder than in the one-chain case [8]. In spite of the decades
of research, a generally accepted physical picture of how the
SF state is destroyed and the nature of the SI transition have
not yet been understood. Ultracold atomic gases in optical
lattices offer an opportunity to emulate these fundamental
issues. The disorder in an optical lattice can be introduced
[9] using the optical speckle [10–14], impurities [15], or a
quasiperiodic optical lattice [16,17].

Motivated by the recent developments in the realization of
an attractive Hubbard model on optical lattices [18,19], we
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investigate the interplay between the on-site random disorder
and the attractive interaction on the long-range pair-pair cor-
relations in the two-dimensional bilayer band-insulator (BI)
model at half filling. The bilayer BI model has been studied
earlier in the absence of any disorder, both with on-site at-
tractive Hubbard interaction [20,21] and repulsive Hubbard
interactions [22,23], via quantum Monte Carlo and cluster
dynamical mean-field approaches. The quantum Monte Carlo
studies for the disordered attractive Hubbard model have been
done in the past for a single-layer square lattice [3,24]. It has
been found that in the single-layer attractive Hubbard model
(AHM) at half filling in a square lattice, the superconducting
order survives randomness out to a critical amount of disorder,
but the charge ordering state is immediately destroyed [24].

In this work, we employ the exact and unbiased determi-
nant quantum Monte Carlo (DQMC) technique to study the
two-particle properties such as pair correlations in the bilayer
BI (discussed in Refs. [20,21]) with random on-site disorder.
The paper is organized as follows: In Sec. II, we briefly de-
scribe the bilayer BI model in the presence of the attractive
Hubbard interaction with random on-site disorder. We also
discuss the computational details of the DQMC technique
used to investigate the model. In Sec. III, we investigate the
effect of disorder on the double occupancy and the effective
hopping, and on the two-particle pair-pair correlations. We
also compare our results with the clean system. We find that
the pair-pair correlation survives in the weak-disorder limit.
The weak disorder suppresses the SF phase largely in the
strong-coupling limit, whereas the effect of disorder on the
pair-pair correlations is minimal in the weak-coupling limit.
We perform scaling analysis to estimate the critical disor-
der strength required to destroy the SF phase. Finally, we
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conclude by providing a phase diagram after summarizing our
results in Sec. IV.

II. MODEL AND COMPUTATIONAL METHOD

A. Disordered bilayer band-insulator model

We start with a band-insulating state in the absence of any
interaction such that the hoppings in both the layers of the
bilayer square lattice are with opposite signs and the band
gap is determined by the intralayer hopping, as studied in
Refs. [20,21]. The Hamiltonian of the system in the presence
of on-site random disorder is

HK =
A-layer︷ ︸︸ ︷

− t
∑

〈ij〉,σ
(a†

iσ ajσ + H.c.) − t ′ ∑

〈〈ii′〉〉,σ
(a†

iσ ai′σ + H.c.)

B-layer︷ ︸︸ ︷
+ t

∑

〈ij〉,σ
(b†

iσ bjσ + H.c.) + t ′ ∑

〈〈ii′〉〉,σ
(b†

iσ bi′σ + H.c.)

−
∑

i,σ

th(i)(a†
iσ biσ + H.c.)

︸ ︷︷ ︸
A-B Layer hybridization

− μ
∑

i,σ

(a†
iσ aiσ + b†

iσ biσ )

+
∑

i∈A,σ

Vd (i)a†
iσ aiσ +

∑

i∈B,σ

Vd (i)b†
iσ biσ

︸ ︷︷ ︸
Disorder term

;

HU = − U
∑

i

(a†
i↑a†

i↓ai↓ai↑ + b†
i↑b†

i↓bi↓bi↑)

︸ ︷︷ ︸
Interaction term

. (1)

We recall that a†
iσ (b†

iσ ) and aiσ (biσ ) are the creation and
annihilation operators of spin- 1

2 fermions with spin σ =↑,↓
at site i corresponding to the A layer (B layer) of the bilayer
square lattice. Here, t is the nearest-neighbor hopping, t ′ is
the next-nearest-neighbor hopping, and th is the interlayer
hopping which hybridizes the A and B layers, U (> 0) is the
attractive Hubbard interaction, and μ is the chemical poten-
tial. The random potential V A/B

d (i) is chosen independently at
each site i, belonging to layer A or B, from the uniform distri-
bution [−Vd : Vd ] that is symmetric about zero. According to
the central limit theorem,

∑N
i=1 Vd (i) = 0, where N being the

total number of sites. The pure case corresponds to all on-site
potentials vanishing [Vd (i) = 0].

B. Brief description of determinant quantum
Monte Carlo simulation

We begin by including the disorder term of the Hamilto-
nian in HK and applying the Trotter-Suzuki decomposition to
separate the kinetic and the interaction energy exponentials
[25,26]. With the addition of the disorder term in the kinetic
energy (KE) term, the kinetic exponential will have the fol-
lowing expression:

e−�τK̃ =
∏
σ

e−�τ
∑

α,γ

∑
〈ij〉(c

†
i,α,σ

K̃σ
ijαγ cj,γ ,σ +H.c.), (2)

where cα’s are equivalent to a and b operators for α = 1 and 2,
respectively, and K̃ is the modified KE matrix whose elements

are given by

K̃σ
ijαγ = tij − [μ − Vd (iα )] δij δαγ , (3)

with tij being the hopping matrix. The interaction exponential
has the following expression:

e−�τV = e−�τ
∑

α

∑
i Unα

i↑nα
i↓ . (4)

After applying the Hubbard-Stratonovich transformation
for the bilayer band-insulator model, the elements of the ma-
trix V in the interaction exponential term are modified to

V σ
ijαγ = − λsi

�τ
δij δαγ , (5)

with cosh(λ) = e|U |�τ/2 and si being the discrete Ising vari-
ables, s = ±1. At half filling, μ is set as μ = |U |

2 . Following
all the steps of the DQMC algorithm, we performed the
simulation for our model at half filling for N = 2 × L2 sites
with the periodic boundary conditions. Here, L represents
the number of sites in each direction of the square lattice.
We choose the hopping t = 1 to set our unit of energy.
t ′/t = 0.1 and th/t = 0.6 have been set to compare the re-
sults with the “clean” system studied in Refs. [20,21]. The
inverse temperature has been discretized in small imaginary
time intervals �τ t = 0.05, resulting in very small systematic
errors (∼�τ 2) involved in these simulations. For |U |/t = 8,
the �τ t = 0.025 has been chosen to reduce fluctuations in the
high-interaction regime. All the simulations have been done
at temperature T/t = 0.1 for a system size L = 16, unless
specified otherwise. In all these calculations, disorder aver-
ages have been done over 300–400 disorder configurations,
generated randomly from a uniform distribution as discussed,
and the indicated error bars are the statistical error bars over
these disorder averages of the Monte Carlo sampling.

III. RESULTS

A. Double occupancy and the pair formation

Figure 1 shows the evolution of the rescaled double occu-
pancy D̃ or the density of the on-site pairs defined as

D̃ = D − 〈ni↑〉2

〈ni↑〉 − 〈ni↑〉2
= 4D − 1,

with the random on-site disorder Vd/t for various system
sizes. Here the double occupancy D = 1

N

∑
i,α〈nα

i↑nα
i↓〉. The

inset of Fig. 1 shows the plot of the D̃ versus the attractive
interaction |U |/t at temperature T/t = 0.1. We see that D̃
is independent of the system size and it increases with the
increase in the disorder strength and saturates to its maxi-
mum value for the large disorder strengths. At weak-disorder
strengths (Vd/t 	 1), D̃ increases slowly as the kinetic energy
term dominates and favors delocalization, but in the interme-
diate disorder region (Vd/t∼1), the random disorder potential
competes with the KE term and hence enhances the pairing.
As we go towards the large disorder region, D̃ approaches its
limiting value and hence saturates. Thus the random on-site
disorder promotes D̃, the local pair formation, and hence the
localization of pairs, i.e., the effect similar to the attractive
interaction |U |/t . We see the existence of the molecule for-
mation along the BCS-BEC crossover as we tune the attractive
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FIG. 1. The evolution of the rescaled double occupancy D̃ =
(4D − 1) with random on-site disorder Vd/t for various system sizes
at the temperature T/t = 0.1. The system is at half filling, with
interplane hybridization th/t = 0.6. Inset: The plot of the D̃ vs the
attractive interaction |U |/t .

interaction both in the absence and in the presence of the ran-
dom disorder which comes from the evolution of the double
occupancy (inset of Fig. 1). We see that the double occupancy
increases from its noninteracting limit value (D̃ ≈ 0) to its
limiting value (D̃ ≈ 1 at half filling) as |U |/t approaches
infinity and the presence of the disorder enhances this pair
formation process.

B. Effective hopping

As we tune the disorder strength at finite attractive in-
teraction, we expect the effective single-fermion transfer to
decrease. Hence the local fermions tend to form pairs, result-
ing in the increase in the double occupancy, as seen earlier.
A measure of this reduction in the single-fermion transfer is
given by the effective hopping defined as

teff

t
= 〈HK〉

〈HK〉V =0
, (6)

the ratio of KE at finite disorder to the kinetic energy at zero
disorder at a given interaction strength |U |/t . In Fig. 2, we
plot the effective hopping for various disorder strengths Vd/t
at temperature T/t = 0.1. We see that the effective hopping
declines as the attractive interaction |U |/t increases and the
declination gets faster as we increase the disorder strength.
Hence the disorder enhances the pairing and reduces the ef-
fective hopping due to the localization effects. We observe
that the decrease in the effective hopping is very sharp in
the strong-coupling limit (inset of Fig. 2) in the presence of
disorder, where the system goes to the Bose-glass (BG) phase.

In Fig. 3, we have shown the evolution of KE and its deriva-
tive with respect to the attractive interaction |U |/t at disorder
strength Vd/t = 0.5. We observe a peak at |U |/t = 5 in the
derivative of KE, which coincides with the critical strength
|Uc|/t , calculated from the finite-size scaling analysis of the
pair structure factor, which marks the transition from the BI
to the SF state. In the inset of Fig. 3, we see that for the
interaction strengths |U |/t∼0–2, the KE increases slowly, but

FIG. 2. The effective hopping teff/t as a function of the interac-
tion strength |U |/t for various disorder strengths Vd/t at T/t = 0.1.
As the interaction energy |U |/t increases, the effective hopping de-
clines. Inset: The effective hopping as a function Vd/t for various
|U |/t at the same temperature.

as we increase the interaction strength further, there is a sharp
rise in the KE (or a sharp decrease in the effective hopping).

C. Pair-pair correlations

In the following sections, we have studied the pair-pair
and density-density correlations in the presence of random
on-site disorder at half filling in the proposed bilayer band-
insulator model. We find that the pair-pair correlation survives
in the weak-disorder limit, while the density-density correla-
tion function gets suppressed even with a slight increase in the
disorder.

Figure 4 show the dependence of the ground-state pair-pair
correlation functions, defined as

Pαγ
s (i, j) = 〈�s(i, α)�†

s (j, γ ) + H.c.〉, (7)

FIG. 3. The evolution of the kinetic energy (KE) and its deriva-
tive with respect to the attractive interaction |U |/t at disorder
strength Vd/t = 0.5. In the intermediate-coupling regime, there is a
sharp increase in the KE, which can be clearly seen in the derivative
of KE where we observe a peak at |U |/t = 5.
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FIG. 4. The spatial dependence of the ground-state pair correlation functions P11
s (l ) for different disorder strengths Vd/t in a bilayer BI

model at attractive interaction |U |/t = 1, 5, and 8 (top panels) and for different interaction strengths |U |/t at Vd/t = 0.0, 0.5, and 0.8 (bottom
panels). The correlation functions converge to a nonzero value at large separations for |U |/t = 5 and 8, providing clear evidence for the
long-range order even in the presence of random on-site disorder, though the value of the pair-pair correlations decreases with the increase in
the disorder strength and goes to zero for Vd/t = 0.8 at |U |/t = 8.

on separation i for different combinations of the disorder
strengths Vd and the attractive interactions |U |/t in the bilayer
BI model at half filling. Here, �s(i, α)∼ci,α↓ci,α↑ and �†

s (i, α)
are the pair annihilation and creation operators. As mentioned
earlier, the separation l = (i, j) follows a trajectory along the
x axis to maximal x separation ( L

2 , 0) on a lattice with the
periodic boundary conditions, and then to ( L

2 , L
2 ) before re-

turning to separation (0,0). In the weak-coupling limit, there is
no pair-pair correlation (shown in Fig. 4 for |U |/t = 1) as the
system remains in the BI. We see that the correlation functions
converge to a nonzero value at large separations for |U |/t = 5
in weak (Vd/t << 1) and intermediate (Vd/t ∼ 1) disorder
regimes, providing a clear evidence for the long-range order
even in the presence of random on-site disorder. At |U |/t = 8,
the pair correlation survives in the weak-disorder limit, but
goes to zero for Vd/t = 0.8, indicating a transition from the
SF to the BG phase where the fermionic pairs get localized in
the strong-coupling and the strong-disorder limit. We observe
that the pair correlations in the strong-coupling regime gets
strongly suppressed as compared to the intermediate-coupling
regimes. This reduces the SF region in the phase diagram. The
existence of the long-range order for |U |/t � 5 implies that
the presence of the random on-site disorder does not change
the critical value of the interaction strength |Uc|/t , which we
confirm from the finite-size scaling analysis.

In Fig. 5, we show the evolution of the s-wave pair structure
factor Ss with the disorder strength Vd/t for various system
sizes for interaction |U |/t = 5 at T/t = 0.1. We observe that
in the weak-disorder limit, the pair structure factor increases
slightly from its “clean” system (absence of disorder) value
and then decreases sharply with the increase in the disorder

strength, finally saturating to a finite nonzero value which does
not depend on the size of the lattice. It shows that the s-wave
pair structure factor has a strong system-size dependence in
the weak-disorder limit, indicating that the correlation length
ξ , which depends on the disorder strength and temperature, is
large compared to the lattice size L. The lattice-size depen-
dence goes away as soon as ξ becomes small as compared to

FIG. 5. The evolution of the s-wave pair structure factor Ss with
the disorder strength Vd/t for different system sizes at interaction
|U |/t = 5. In the weak-disorder limit, Ss almost remains constant.
With the increase in the disorder strength, Ss slightly increases and
then decreases sharply, finally saturating to a finite nonzero value
which does not depend on the size of the lattice. Ss depends on the
system size in the weak-disorder limit.
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(a) (b)

FIG. 6. Finite-size scaling of the s-wave pair structure factor
Ss/2/L2. The symbols are the determinant quantum Monte Carlo re-
sults and the dashed lines are the extrapolation performed via a linear
least-squares fit for (a) each |U |/t in presence of disorder Vd/t = 0.5
and (b) each Vd/t at |U |/t = 5. The inverse temperature has been
fixed at β t = 10. We observe that Ss vanishes for |U |/t < 4.5 as
L → ∞. Thus, |Uc|/t lies in the range 4.5 < |Uc|/t < 5.

L, which gives the information about the short-range nature of
the pair-pair correlation in the large disorder limit.

D. Scaling analysis

We have observed that our bilayer BI model displays the
long-range order in the pair-pair correlations, even at in-
termediate disorder strengths. Hence, we expect the Huse’s
argument [27] of the “spin-wave scaling” to hold,

Ss

2L2
= Δ2

0|V + C(U,Vd )

L
, (8)

where Δ0 is the SF order parameter at zero temperature and
disorder Vd/t , and C is a constant which depends on the
interaction strength U/t and random on-site disorder Vd/t .

The SF order parameter Δ0 can also be extracted from
the equal-time s-wave pair-pair correlation function Ps(l) for
the two most distant points on a lattice, i.e., having R =
(L/2, L/2) [3], with a similar spin-wave theory correction,

Ps(R) = Δ2
0 + B(U,Vd )L. (9)

Thus, we estimate the zero-temperature SF parameter from
the finite-size scaling of the s-wave pair structure factor using
Eq. (8) and Eq. (9), and hence estimate the zero-temperature
critical value of the interaction at which our bilayer BI, in the
presence of disorder, undergoes a transition to the SF state.

In Fig. 6, we present the finite-size scaling of the s-wave
pair structure factor Ss/2L2 in the presence of the random
disorder. It shows that the zero-temperature critical interac-
tion |U |/t lies between 4.5 and 5.0 at the disorder strength
Vd/t = 0.5, which is the same as is obtained in the absence of
disorder in Ref. [21]. Hence the disorder does not affect the
critical value, but plays a significant role in suppressing the
pair correlation function.

In the strong-coupling limit, due to a large on-site at-
traction, the fermions form tightly bound pairs and can
be treated as bosons which condense to form a SF phase.
In this limit, we can map our attractive Hubbard model
to the effective hard-core Bose-Hubbard model with repul-
sive next-nearest-neighbor interaction. The pair annihilation

FIG. 7. Rescaled Ss as a function of the disorder strength Vd/t
at |U |/t = 5 for different system sizes. Inset: The enlarged region
where the curves intercept each other, around Vd/t = 1.5–2.0.

[�s(i, α) ∼ ci,α↓ci,α↑] and creation [�†
s (i, α)] operators of our

proposed model will be equivalent to the bosonic creation
and annihilation operators (b†

i and bi). Thus we expect that
in the presence of disorder, there exists a BG phase before
the system goes to a CDW insulator state since, at half fill-
ing, in the strong-coupling limit, a hard-core Bose-Hubbard
model exhibits a SF to BG transition with increasing disorder
Vd/t . This transition belongs to the (d + 1) − XY universality
class [28].

To estimate the critical value of the disorder strength be-
yond which our system undergoes a SF to BG transition, we
use the scaling ansatz used in Refs. [28,29],

L1+η Ss

L2
= F [(Vd − Vc)L1/ν], (10)

where ν and η are the correlation length exponent and
the order parameter exponent, respectively. Vc/t is the crit-
ical disorder strength required to destroy the superfluid
order. At Vd/t = Vc/t , the rescaled pair structure factor be-
comes independent of the system size and hence all the
curves for different system sizes must intercept each other
at Vc/t .

Figure 7 shows the rescaled pair structure factor Ss as a
function of the disorder strength Vd/t at |U |/t = 5 for differ-
ent system sizes. We observe that all the curves corresponding
to different system sizes intersect each other at V c

d /t ∼ 1.4.
The inset shows the enlarged region, around Vd/t = 1.1–1.7,
where the curves intersect each other. In Fig. 8, we plot the
rescaled pair structure factor Ss versus the universal scal-
ing function F (z) [Eq. (10)]. We observe that all the curves
corresponding to different system sizes collapse to a single
curve for ν = 0.67, η = 0.04, and V c

d /t = 1.44, except in the
weak-disorder regime. The perfect collapse of our data, for
ν = 0.67 and η = 0.04, shows that the SF to BG transition lies
in the universality class of the 3D − XY model. The obtained
critical disorder strength is roughly the same as the single-
layer half-filled attractive Hubbard model where V c

d /t ∼ 1.5
at |U |/t = 4 [24].

064506-5



YOGESHWAR PRASAD AND HUNPYO LEE PHYSICAL REVIEW B 109, 064506 (2024)

FIG. 8. Rescaled Ss plotted against |Vd − V d
c | L1/ν at |U |/t = 5

for different system sizes. All the data points of the various system
sizes collapse into a single curve for ν = 0.67, η = 0.04, and V c

d /t =
1.44.

E. V − U phase diagram of bilayer band insulator
in the presence of disorder

Finally, we discuss a V − U phase diagram for the pro-
posed bilayer BI model at finite hopping between the layers
and in the presence of disorder, shown in Fig. 9. In the
“clean” noninteracting case, as we tune disorder, we expect
that the BI will eventually go to the Anderson-insulator state

FIG. 9. V − U phase diagram of proposed bilayer band insulator
(BI) in the presence of disorder at finite layer hybridization. In the
absence of disorder, the system goes to a superfluid (SF) phase from
the BI phase as we tune the interaction. In the strong-coupling limit,
it goes to a “bosonic” charge density wave (CDW) phase. As we
tune the disorder, the BI phase is expected to go to an Anderson-
insulating phase in the large disorder limit. We observe that weak
disorder suppresses the SF phase largely in the strong-coupling limit.
Hence the region of the SF phase reduces in the presence of random
on-site disorder. In the strong-coupling limit, based on the mapping
to the hard-core Bose-Hubbard model, the system is expected to go
from the SF phase to the Bose-glass phase. Blue circles denote the
critical disorder determined by the scaling analysis for U/t = 5, 5.5,
and 6, respectively.

for higher values of the disorder strengths. Beyond the critical
interaction, tuning of the disorder is expected to suppress the
pair-pair correlations. In the strong-coupling limit (|U |  t ),
the fermions exist in a bound state and hence the system can
be described by a hard-core bosonic Hubbard model with
repulsive next-nearest-neighbor interactions. As we expect
that in the strong-coupling limit at noncommensurate integer
filling (n = 0.5), the hard-core Bose-Hubbard model shows
a SF to BG transition [28]. Based on this mapping, we can
expect our system to go from a SF to BG phase in the presence
of disorder. We observe that weak disorder suppresses the
SF phase largely in the strong-coupling limit, leading to the
reduction of the SF region in the presence of random on-site
disorder.

IV. CONCLUDING REMARKS

In this paper, we have studied the bilayer BI model in the
presence of disorder. Using the DQMC numerical technique,
we have shown the effect of disorder on the KE and the double
occupancy. We observe that the on-site random disorder plays
a significant role in the localization of on-site pairs, and hence
in the reduction of the effective hopping. This results in an
increase in the double occupancy, which is an effect similar to
the attractive interaction.

We also observe the existence of the long-range order in
the pair-pair correlations at various disorder strengths. The
random disorder does not affect the critical value of the inter-
action strength and the SF state survives even at intermediate
disorder strengths. Finally, via finite-size scaling analysis, we
have computed the critical disorder strength Vc ∼ 1.44. For
a single-layer attractive Hubbard model on a square lattice,
previous QMC studies [24] reported Vc ∼ 1.5 at |U |/t = 4.
In Table I, we have summarized the differences between the
single-layer attractive Hubbard model with the bilayer band-
insulator model studied here. In the single-layer AHM, the
ground state is degenerate with the superfluid along with the
CDW state for any finite interaction in the absence of disorder.
Any finite amount of disorder removes this degeneracy with
only the SF state in the ground state. At Vc, we observe the
SF to BG transition. In the bilayer band-insulating model pre-
sented here, we have a BI to SF transition at finite interaction
Uc in the absence of any disorder and there is no leading
CDW order up to U = 10. In the presence of disorder, there is
transition from a band-insulating to SF phase and from a SF
to BG phase in the ground state.

Note that for large energy scale parameters t , β, and U ,
small �τ is necessary for the accuracy of the Trotter-Suzuki
decomposition [30]. Generally, the imaginary time steps are
chosen such that �τ � √

0.25/U . As U increases, one fur-
ther need to decrease the imaginary time step, which further
increases the running time of programs. The finiteness of
�τ is a source of systematic errors. In this work, for prac-
tical purposes, the inverse temperature has been discretized in
M = 200 small imaginary time intervals �τ t = 0.05, which
shows large fluctuations in two-particle correlations at large
interaction regime (though disorder seems to destroy these
fluctuations). For |U |/t = 8, we reduced the size of the imag-
inary time step to �τ t = 0.025 by increasing the number of
grids, M = 400.
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TABLE I. Comparison of presented bilayer band-insulator model with single-layer attractive Hubbard model.

System Single-layer model Bilayer model

V = 0 Degenerate SF+CDW BI to SF transition
V �= 0 SF to BG transition BI to SF transition; SF to BG transition
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