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Observation of quantum oscillations in the extreme weak anharmonic limit
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We investigate a granular aluminium quantum circuit with an anharmonicity of the order of its decoherence
rate in a three-dimensional microwave cavity. We perform single qubitlike manipulations such as Rabi oscilla-
tions and Ramsey fringes. Our findings, supported by quantitative numerical modeling, show that a very weakly
anharmonic oscillator can also display quantum oscillations outside the qubit regime. These oscillations are
hard to disambiguate from qubit oscillations in time domain measurements for a single driving frequency. This
sheds light on recent findings for material superconducting quantum bits. Our platform shows in addition large
magnetic field resilience which could find applications for quantum enhanced dark matter search.
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Superconducting circuits have become a major platform
for quantum information processing and quantum amplifica-
tion. Whereas the conventional Josephson junction has been
extensively used so far, many efforts aim to replace it by
more elaborate materials which range from semiconduct-
ing nanowires [1] or nanotubes [2] to 2D materials [3–5].
Such setups would offer an enhanced electrical tunability
(via, e.g., gate electrodes) and magnetic field resilience. Both
these aspects could be crucial regarding new applications
for quantum sensing or for scaling up quantum information
processing platforms [3–5]. In particular, the potential for
quantum sensing applications range from quantum amplifica-
tion of cosmological signals to readout of topological systems.

These new platforms are appealing in terms of technology,
but they often display a reduced anharmonicity which could
endanger their qubit character. This motivates the detailed
study of the dynamics of such systems at the frontier be-
tween the harmonic and the anharmonic regime, i.e., when
the anharmonicity is comparable to the damping rate of these
oscillators. In this context, the use of a simple superconduct-
ing material offering both low anharmonicity and weak losses
without the inherent complexity of low dimensional materials
would be appealing. Granular aluminium (grAl) is such a
material. It can be used both in the extreme weak anharmonic
regime and in the qubit regime [6,7,10–12]. It is therefore
ideal to study the above mentioned crossover.

In this work, we use a grAl based quantum circuit in the
extreme weak anharmonic regime. We show that we can per-
form qubitlike manipulations, such as Rabi oscillations and
Ramsey interferometry. However, the dynamics of the circuit
involve many oscillator levels. This behavior is understood
quantitatively by a simple quantum model of an anharmonic
oscillator. By the analysis of the Rabi chevron patterns and the
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Ramsey fringes, we can assess about the “quantumness” of the
observed oscillations. We show in particular that single time
domain traces in these systems can easily mimic qubit dynam-
ics both for Rabi and Ramsey oscillations. This emphasizes
that one has to be cautious in assigning these qubitlike signals
to a qubit signature. Doing so, we benchmark the time domain
oscillations in the weak anharmonic regime. In addition, we
are able to drive our circuit up to 0.7 T making our simple grAl
circuit appealing for magnetic field resilient quantum sensing
applications.

The Josephson junction is mounted in a copper three-
dimensional (3D) microwave cavity with a fundamental
frequency of about ωcav = 2π×6.0 GHz and a quality factor
Q = 2700 at low temperature. The whole setup is mounted
in a dilution refrigerator with a standard microwave setup [8]
and all the measurements are carried out at T ≈ 20 mK. Such
a geometry is that of a “3D-transmon” [9,10]. The details of
the nanofabrication are given in the Appendix. From the DC
switching current measurements, we estimate the supercurrent
as shown in [13] to Ic ≈ 600 nA(see Appendix). The induc-
tance of the circuit is estimated to LJ ≈ 1.63 nH from the
Mattis-Bardeen formula [10]. From microwave simulations,
we estimate for the layout of Fig. 1, which yields a charging
energy of EC ≈ 47 MHz, which yields a resonance frequency
of 6.14 GHz, close to our measurements. In addition, from
the DC measurements stated above, we can expect a trans-
mon anharmonicity of K0 ≈ Cπaω2

1/ jcVgrAl ≈ 250 kHz, with
C = 3/16 and a = 5 nm [10,12], a being the Al grain size. The
parameters of our circuit can be determined experimentally
by the microwave two-tone spectroscopy which is shown in
Fig. 1(c), detuned from the cavity mode. We observe a clear
dip at 5.9102 GHz which displays the characteristic asym-
metric lineshape of an anharmonic oscillator as the power
of the microwave input signal is increased. The linewidth at
lowest power is �exp ≈ 2π×0.935 MHz ± 0.1 MHz, as fitted
by the black line. From the shift toward low frequencies of
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FIG. 1. (a) Large scale view of the grAl transmon circuit. (b) Mi-
crograph of the grAl Josephson inductor. The bar is 250 nm.
(c) Microwave spectroscopy of the grAl circuit for −113 dBm (blue),
−101 dBm (red), and −97 dBm (orange). It shows the characteristic
features of an anharmonic oscillator. (d) From the power dependence
of the phase contrast and the grAl circuit frequency, we extract an
anharmonicity of ≈ 250 kHz. The shaded dark gray region is the
linear regime from which we extract these values. In this region,
we can compute the excitation number of the device. We find that
the device remains in the linear regime up to an average occupation
number around two.

the edge of the transmon resonance and the phase contrast as
the power is increased, shown in Fig. 1(d), we calibrate the
microwave power and estimate a Kerr anharmonicity of about
Kexp ≈ 2π×250 kHz and a coupling between the cavity and
the transmon of about g ≈ 16 MHz. Details on this calcula-
tion can be found in Appendixes B and C. This is in good
agreement with the expected anharmonicity given the inher-
ent uncertainty on the grain size of the GrAl. The linewidth
observed at lowest power is directly related to the decoherence
rate of the circuit. This places our circuit in the regime of
extreme weak anharmonicity where Kexp � �exp. Does this
regime enable quantum oscillations such as Rabi-like oscil-
lations and Ramsey fringes which are usual signatures of
driven quantum systems? This question is addressed in the
subsequent part of the paper.

We first study Rabi oscillations as a function of the time
τR of the excitation burst and the carrier frequency, fdr , at
zero external magnetic field B [see Fig. 2(a)]. The state of
the circuit is measured using the conventional dispersive read-
out, i.e. the phase ϕ of the microwave signal at the cavity
resonance frequency fcav = 6.0 GHz here. The phase con-
trast �ϕ is simply related to the population of the circuit
via �ϕ = 2χ〈b̂†b̂〉/κ where χ is the cross-Kerr coupling
between the cavity photons and the circuit, κ is the cavity
linewidth, and b̂ is the transmon annihilation operator of the
weakly anharmonic oscillator picture for our circuit. Defin-
ing g as the circuit-cavity coupling strength, we have χ =
−2Kg2/( fcav − f0)2. The specific power of the drive and the
cavity readout pulses are respectively Pdr = −78 dBm and
Pcav = −103 dBm. As explained above, the phase contrast
is a direct measurement of 〈b̂†b̂〉. As shown in Fig. 2(a),

FIG. 2. (a) Rabi chevrons of the grAl transmon at B = 0 T as
observed from the phase of the cavity signal at fR = 6.0 GHz.
(b) Modeling of the Rabi chevrons for K = −2π×200 kHz and
� = 2π×0.954 MHz and a Hilbert space truncated at 120 quanta.
The driving frequency is fixed using the frequency of the maximum
dephasing of the measured chevron. (c) Measurement (red dots)
and modeling (black lines) for the Rabi-like damped oscillations
of the grAl transmon for the red cuts represented in panels (a) and
(b). (d) Measurement (red dots) and modeling (black lines) for the
Rabi-like damped oscillations of the grAl transmon for the white
cuts represented in panels (a) and (b). (e) Experimental Fourier
transform of the Rabi chevrons showing the spectral content of the
observed oscillations. (f) Modeling of the Fourier transform of the
Rabi chevrons showing good agreement with the experiment.

we observe the characteristic fringes witnessing Rabi oscilla-
tions for conventional qubits. Nevertheless, we should stress
that this is a different regime from the qubit regime. This
is first qualitatively shown by the observed unusual “Rabi
chevron” pattern. Two features are particularly striking: first,
the “chevron pattern” seems truncated below the continuous
wave resonance frequency; second, a closer inspection of the
oscillations shows that they are nonsinusoidal. Interestingly,
the asymmetry can be qualitatively recovered by stating that,
similarly to the two level system case, the chevrons result from
a multiplication of the frequency envelope of the transition
and the time domain damped Rabi oscillations. In such a
heuristic picture, the asymmetry stems simply from the asym-
metry of the lineshape of a Duffing oscillator.

It is possible to numerically model the dynamics of the
circuit using as input parameters K , �, and the driving am-
plitude of the circuit thanks to the Qutip Python package. The
simulation is run in the rotating frame by varying the detuning
� fdr between the drive and ω0. The result of such a simulation
is shown in Fig. 2(b), where the driving frequency has been
fixed using the frequency of the point with maximum con-
trast in the experiment. We find an excellent agreement with
the data for K = −2π×200 kHz and � = −2π×0.954 MHz.
These values are close to those determined independently by
the continuous wave spectroscopy of the circuit in Fig. 1(c).
Interestingly, the population 〈b̂†b̂〉 of the transmon which is
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FIG. 3. (a) Rabi chevrons of the grAl transmon at B = 0.15 T
(b) Rabi chevrons of the grAl transmon at B = 0.45 T (c) Rabi
chevrons of the grAl transmon at B = 0.6 T (d) Rabi chevrons of
the grAl transmon at B = 0.7 T.

encoded in the phase contrast is found to oscillate between
nearly 0 to about 60. This shows that we are not in a qubit
regime, although we can observe quantum oscillations of the
state of our circuit. The agreement between the modeling
and the data is further exemplified in Figs. 2(c) and 2(d). In
order to further test the validity of the numerical simulation
for modeling our circuit, it is interesting to Fourier transform
the time domain signals. This is shown in Figs. 2(e) and 2(f)
(for the experiment and the theory, respectively). We observe
again an excellent agreement and all the features observed
experimentally are observed in the modeling. In particular,
we identify a linear behavior at large positive or negative
detuning. This is a sinusoidal regime with a simple broadening
arising from the decay rate of the circuit. In addition, the gen-
eral features are strongly asymmetric in the detuning (vertical)
axis. Such a behavior is not expected for a spin 1/2 or a
conventional transmon qubit as it should be symmetric and
scale like 
qubit =

√

2

0 + (ωdr − ω0)2, where ωdr = 2π fdr

and 
0 is a linear function of the drive amplitude δ. This is
one important qualitative difference with our circuit. Close
to 5.88 GHz, we observe a broad feature in the spectrum
indicating a nonsinusoidal behavior. Rabi-like oscillations are
observed here in a regime totally different than conventional
qubits.

The observed “Rabi chevron” pattern is specific to the
weakly anharmonic regime. It is interesting to put our findings
in perspective with recent works using, e.g., 2D material as
a weak link for replacing the Josephson junction [3–5]. In
Ref. [4] in particular, there is a striking similarity of the
observed “Rabi chevron” patterns with Fig. 2(a). The imme-
diate consequence of our findings is that it seems difficult to
distinguish between the extreme weak anharmonic regime and
the qubit regime simply by measuring individual time-domain
cuts at a given detuning. We will see below that this holds true
even if Ramsey-like fringes are observed.

The fact that the superconducting reservoirs are made of
Nb, which has a rather high critical field, combined by the
magnetic field resilience of GrAl films makes it possible to
operate our superconducting circuits at high magnetic field.
This is shown in Fig. 3. Each of the panels corresponds to a
different magnetic field ranging from 0.15 T to 0.7 T. Whereas

the Rabi chevrons are barely affected at 0.15 T, they are more
affected at 0.7 T, but still clearly visible. The decoherence
time decreases from TRabi ≈ 1.25 µs to TRabi ≈ 0.3 µs. We at-
tribute this decrease to the slight misalignment between the
B-field axis and the plane of the quantum circuit. Interestingly,
we find a B-field resilience up to 0.2 T in out of plane b-field
(see Appendix [14]). This is about two orders of magnitude
larger than conventional superconducting qubits or grAl based
resonators [15].

How quantum are our observed oscillations if we are not
in a qubit limit? This question echoes with the old debate
on whether a weak anharmonic oscillator displaying Rabi
oscillations can at all be considered as a quantum system or
not [16–18]. In our case, the Rabi chevron pattern is a strong
discriminator between the classical and the quantum model
which has an excellent agreement with our experiment. In
particular, we can compare the expected frequency content
between the two models. In the classical model, a single Rabi
frequency is expected 
cla = A(δ)|ωdr − ω0|, with A(δ) a
sublinear function of the driving amplitude a. Such an ex-
pression contrasts with the qubit case 
qubit which contains,
in addition, a “transverse Rabi field” arising from the driving
of the effective two level system in the rotating frame. The
expression of 
cla means that we should expect only two
symmetric lines in the maps 2(e) and 2(f). While at large
detuning around 5.87 GHz or 5.90 GHz a linear dispersion is
present, this is clearly not the case at low detuning both in
terms of frequency content and dispersion, as highlighted by
the dashed lines in Figs. 2(e) and 2(f). Thus, our findings are
not explained by the classical anharmonic model. This further
validates that we observe quantum oscillations in the time
domain manipulation of our transmon circuit.

The final picture for the dynamics of our system can be
sketched by performing Ramsey interferometry. A first pulse
of duration τ0 = 30 ns with Pdr = −78 dBm is followed by
a waiting time τRamsey, by a second τ0 with Pdr = −78 dBm,

and by a readout pulse. As in the conventional Ramsey inter-
ferometry setup, they correspond to half of one modulation
in the Rabi sequence between the low and high number of
quanta in Fig. 2(c). As shown in the 2D map of Fig. 4(a),
we observe fringes which are the result of Ramsey interfer-
ences taking place in our circuit. Ramsey fringes are slightly
asymmetrical, however, whereas there was a clear qualitative
difference between the observed Rabi chevron pattern and that
expected for a qubit, the asymmetry in the Ramsey fringes
is not as noticeable. The difference in frequency between the
Rabi chevrons of Fig. 2 and the Ramsey fringes is due to a
slight shift of the circuit frequency. The simulation of this
experiment is shown in Fig. 4(b). The duration of the pulses
is 31 ns. The parameters are the same as in the Rabi chevrons
simulation of Fig. 2, and the frequency offset is again set using
the point of maximum contrast in the measurement. As for
the Rabi chevrons, the modeling of the Ramsey interferometry
reproduces closely the behavior of the device. Ramsey oscilla-
tions after a pulse π/2 are shown in 2(b) for the measurement
and the simulation. The frequency and length of the pulses
are 5.91 GHz and 20 ns for the measurement, and 5.9106 GHz
and 21 ns in the simulation. We find an excellent agreement
between the two curves. This agreement is also shown for
time traces in Fig. 4(c). As in the Rabi oscillations, they differ
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FIG. 4. (a) Ramsey fringes as a function of detuning and time
delay between the two “π/2′′ pulse of duration τ0. (b) Simulated
Ramsey fringes for the same parameters as in Fig. 2 and a Hilbert
space truncated at 80 quanta. The duration of the π/2 pulses is
31 ns. The frequency is defined relatively to the measurement fre-
quency. (c) Measurement (red) and modeling (black) for the Ramsey
interferometry of the grAl transmon after a π/2 pulse. The measure-
ment pulse is 20 ns long at a frequency of 5.91 GHz, the simulation
pulse is 21 ns long at 5.9016 GHz. (d), (e), (f), (g), (h) Simulated
Wigner tomography for our parameters and fdr = 5.9188 GHz for
tpulse = 0, τ0, 2τ0, 3τ0, 70τ0.

from the sinusoidal oscillations expected for Ramsey fringes
in a two level system. We are led to conclude that the Rabi
chevron pattern is more discriminant for disambiguating the
qubit and the weak anharmonic regime, although the quanti-
tative analysis of both fringes reveals strong difference with
the qubit case. Since we find a very good agreement between
the modeling and our experimental findings, it is interesting to
further simulate the Wigner tomography expected for different
pulse times of our weakly anharmonic oscillator. Such a result
is shown in Figs. 4(c)–4(f). We show the Wigner functions
for pulse times tpulse = 0, τ0, 2τ0, 3τ0, 70τ0. Except from the
starting point in vacuum, we see that there are clear signatures
of nonclassicality in the form of squeezing and negative parts
in the Wigner tomography. Interestingly, the 2τ0 leads to the
most nonclassical state as it displays negative, forming a blue
crescent in the Wigner function whereas τ0 displays simple
squeezing. This is also a strong difference with the qubit case.
In our system, the pulse time τ0 does not play a special role,
like for a qubit.

As a conclusion, we have investigated a simple supercon-
ducting circuit made out of a granular aluminium Josephson
junction in the time domain. We observe quantum oscilla-
tions, i.e., Rabi oscillations and Ramsey fringes. We have
a quantitative understanding of the Rabi oscillations in the
extreme weak anharmonic regime and the Ramsey fringes are
qualitatively similar to the qubit regime. Although our quan-
tum circuit is not a quantum bit, it displays all the requested
features for quantum sensing and quantum amplification. In
particular, we could in principle use it in the photon number

FIG. 5. Rabi chevrons of the grAl transmon for out of plane B
fields. (a) B = 0 T, (b) B = 0.1 T, (c) B = 0.15 T, and (d) B = 0.2 T.

resolved regime to use it as a single photon detector. Such
detectors have been put forward recently for quantum sensing
of cosmological objects using conventional transmon qubits.
However, a major hurdle for the use of these single photon
detectors is magnetic field resilience. For example, there is
a strong motivation to sense single microwave photon for
quantum enhanced axion dark matter search [19] in cavities
in strong magnetic field. Our quantum circuit could therefore
have interesting applications for quantum sensing of cosmo-
logical signals.
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APPENDIX A: RABI OSCILLATIONS WITH OUT OF
PLANE MAGNETIC FIELD AND WITH DIFFERENT

DRIVE AMPLITUDES

In the main text, we have shown magnetic field resilience
for an in-plane magnetic field up to 0.7 T. It is interesting
to explore the same feature for an out-of-plane magnetic
field. In addition to the Rabi measurements made with an
in-plane magnetic field, we show that our device is strongly
resilient to out-of-plane magnetic field. Figure 5 shows Rabi
chevrons observed for magnetic fields perpendicular to the
device plane, ranging from 0 to 0.2 T. This is roughly two
orders of magnitude more than the expected mT range for
magnetic field resilience of plain Al grAl material [15].

We also present in this section the amplitude dependence of
the measured Rabi oscillations. As expected since we do not
have a simple two-level system, the extracted Rabi frequency
does not scale linearly with the amplitude of excitation in the
cavity (see Fig. 6).

APPENDIX B: NANOFABRICATION AND DC
CHARACTERIZATION OF OUR GRAL

JOSEPHSON JUNCTIONS

Our granular aluminium (grAl) transmon is fabricated in
a single nanolithography step using two evaporation angles.
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FIG. 6. Amplitude dependence of the Rabi frequency.

These evaporations are done in an evaporator with a base
pressure of 5×10−10 mbar. First, a layer of 30 nm Al is
evaporated at a rate of 1.9 Å/s with an oxygen pressure of
1.2×10−5 mbar at a normal angle. Second, a Nb layer of
50 nm is evaporated with an angle of 45◦. This recipe is similar
to the one of the Karlsruhe group [6]. The lithography layout
is essentially composed of two antenna pads of dimensions
500 µm×250 µm separated by 20 µm as shown in Fig. 1(a).
The grAl Josephson junction is shown in Fig. 1(b). The junc-
tion dimensions are 500 nm×100 nm×30 nm. The junction
sheet resistance obtained with our recipe is about 1 k
 at room
temperature. The device presented in this paper has a junction
resistance of 6.2 k
 at room temperature. These devices are
characterized at low temperatures (T = 20 mK) using either a
vector network analyzer or a SHFQC (Zurich Instruments).
Using a DC setup, we measure a Josephson supercurrent
Ic � 600 nA, yielding an IcRn ≈ 5 mV and a supercurrent den-
sity jc ≈ 0.25 mA/µm2. Interestingly, the critical current only
decreases by about 10% at a magnetic field of 2 T. We show
in this section the I(V) curve which we measure on a typical
grAl Josephson junction. As we see in Fig. 7, the I(V) curve
is hysteretic and the switching current is about 600 nA. As
shown in Ref. [13], the switching current is a good estimate of
the critical current even for such small values. The inductance
of the circuit is estimated using the Mattis-Bardeen theory as
in [10]:

LJ = h̄Rn

π�
, (B1)

FIG. 7. I(V) curve of our grAl Josephson junctions.

where Rn is the normal state resistance and � the super-
conducting gap. In our case, we use Rn = 6.2k
 and � =
800 μeV. The latter corresponds to the estimated proximi-
tized value for the gap in Nb/Al planar structures [20].

APPENDIX C: DERIVATION OF THE COUPLING
CONSTANT BETWEEN THE QUANTUM CIRCUIT

AND THE CAVITY

We show here the details of the derivation for the coupling
constant between the cavity and the circuit. We also give the
relationship between the excitation number of the quantum
circuit and the power of the drive sent in the cavity. We
consider a quantum circuit of angular frequency ω0, coupled
to a cavity mode of angular frequency ωr . � = ω0 − ωr is the
detuning between the cavity and the quantum circuit. We only
consider the Kerr anharmonicity of the circuit, which is true
at low excitation levels where higher order anharmonicity can
be neglected. The Hamiltonian of the system is

Ĥ = h̄ωr â†â + h̄ω0b̂†b̂ + g(â†b̂ + b̂†â) − h̄
K

2
b̂†b̂†b̂b̂,

(C1)

where â and b̂ are the annihilation operators of the cavity
mode and the quantum circuit, respectively. This Hamiltonian
can be diagonalized using a Bogoliubov transformation, as
done in [21]:

Ĥdisp = h̄ω̃r â†â + h̄ω̃0b̂†b̂ + h̄Ka

2
â†â†ââ

− h̄K̃

2
b̂†b̂†b̂b̂ + h̄χabâ†âb̂†b̂, (C2)

where

ω̃r = 1

2
(ωr + ω0 −

√
�2 + 4g2), (C3a)

ω̃0 = 1

2
(ωr + ω0 +

√
�2 + 4g2), (C3b)

Ka � −Ec

h̄

( g

�

)4
, K̃ � K, χab � −2

g2K

�(� − K )
, (C4)

where Ka and K̃ are self-Kerr nonlinearities, and χab is a
cross-Kerr interaction between the cavity and the circuit. The
cross-Kerr enables the readout of the circuit by shifting the
cavity frequency by �ωr = χab〈b†b〉, where 〈b†b〉 is the aver-
age occupation level of the circuit. This frequency shift results
in a phase shift of the cavity mode: �ϕ = arctan( 2�ωr

κ
) ∼

2�ωr
κ

, where κ is the linewidth of the cavity, and κ 
 �. Thus,

�ϕ = 2
χab

κ
〈b†b〉. (C5)

The self-Kerr results in a shift of the quantum circuit fre-
quency

�ω = −K〈b†b〉. (C6)

Equations (C5) and (C6) show that at low enough excita-
tion number, the cavity phase shift, and the circuit frequency
shift are linear with the excitation number. We deduce the
coupling constant g by measuring these two quantities in this
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linear regime:

g = �

2

√∣∣∣∣�ϕκ

�ω

∣∣∣∣. (C7)

Using the parameters of our device � = 2π×80 MHz, κ =
2π×2.2 MHz and fits of �φ and �ω, shown in Fig. 1, we find
g = 17 MHz.

APPENDIX D: DERIVATION OF THE EXCITATION
NUMBER IN THE QUANTUM CIRCUIT

We derive the average excitation number 〈b†b〉 of the an-
harmonic oscillator when a signal of angular frequency ωRF is
sent through the cavity. We consider the Hamiltonian given in
Eq. (C1):

Ĥ = h̄ωr â†â + h̄ω0b̂†b̂ + h̄g(â†b̂ + b̂†â) − h̄
K

2
b̂†b̂†b̂b̂.

(D1)

We derive the equation of motion of â and b̂ using the
input-output formalism. A more detailed presentation of this
formalism can be found in Ref. [21]. The cavity is coupled
to the input and output lines via two ports of equal coupling
constants κp. A drive signal is sent through the input port at
angular frequency ωRF. The drive is described by a source
term b̂in(t ), defined so that the power sent at the input port
is Pin(t ) = h̄ωRF〈b̂†

in(t)b̂in(t )〉. Internal losses of the cavity are
taken into account as a third port of coupling constant κ0.
The total decay rate of the cavity is then κ = 2κp + κ0. The
equation of motion of â is given by

d

dt
â(t ) = i

h̄
[Ĥ , â] − κ

2
â(t ) − √

κpb̂in(t ), (D2)

= −iωr â(t ) − igb̂(t ) − κ

2
â(t ) − √

κpb̂in(t ), (D3)

where b̂in is the source term due to the drive at the input
port. For a coherent drive at frequency ωRF, the input mode
average value is 〈b̂in(t )〉 = b̄ine−iωRFt , 〈â(t )〉 = āe−iωRFt , and
〈b̂(t )〉 = b̄e−iωRFt , where ā is the average amplitude of â at the
drive frequency. We proceed in the semiclassical limit where
〈b†b〉 = |b̄|2. Equation (D3) then reads

ā = −√
κpb̄in − igb̄

i�r + κ
2

, (D4)

where �r = ωr − ωRF is the detuning between the cavity and
the drive signal. Then we do the same calculation to find the
evolution of b̂,

b̄ = −igā

i(�0 − K|b̄|2) + �
2

, (D5)

where �0 = ω0 − ωRF is the detuning between the anhar-
monic oscillator and the drive signal. Injecting this into
Eq. (D4) reads

ā = −
√

κpb̄in
(
i(�0 − K|b̄|2) + �

2

)
g2 + (

i�r + κ
2

)(
i�0 + �

2

) , (D6)

b̄ = ig
√

κpb̄in

g2 + (
i�r + κ

2

)(
i(�0 − K|b̄|2) + �

2

) . (D7)

We consider that the drive signal is at the circuit fre-
quency: �0 = 0 and �r = �. Furthermore for our device
K 
 κ/2, �/2 
 �, so that

ā =
√

κp
�
2 b̄in

g2 + i��
2

, (D8)

b̄ = ig
√

κpb̄in

g2 + i��
2

. (D9)

The average number excitations are then

〈â†â〉 = κp�
2

4g4 + �2�2
× Pin

h̄ω0
, (D10)

〈b̂†b̂〉 = g2κp

g4 + �2 �2

4

× Pin

h̄ω0
. (D11)

From room temperature measurement of the cavity, we find
the coupling between the cavity mode and the port to be
κp = 0.7 MHz. Equation (C6) shows that fitting the linear part
of �ω(〈b̂†b̂〉) gives the anharmonicity. We find the anhar-
monicity to be about K = 250 kHz with an uncertainty range
125 kHz < K < 500 kHz, mainly due to the uncertainty on
the cryostat lines attenuation.

APPENDIX E: ANHARMONIC OSCILLATOR
SIMULATIONS

Rabi and Ramsey oscillations have been made using the
Lindblad master equation solver of the Python’s library
QuTip. To simulate Rabi chevrons, we used the rotating frame
Hamiltonian

H = �b̂†b̂ + Kb̂†b̂†b̂b̂ + A(b̂† + b̂), (E1)

where � is the detuning between the drive and the anharmonic
oscillator. The last term of the Hamiltonian is the drive of the
oscillator, and A is the amplitude. We used A = 0.111 rad/s.
The Hilbert state is truncated to 120 states.

Ramsey oscillations are simulated by simulating the previ-
ous hamiltonian during a time corresponding to a π/2 pulse.
We then calculate the evolution of the density matrix after
the pulse using the first two terms of the Hamiltonian (E1),
during a time tRamsey. We then repeat the pulse simulation on
the density matrix.

In Figs. 2 and 4, the frequencies shown for the simulations
are obtained by adding an offset to �. The offset is calculated
so that the point with maximum occupation number in the
simulation has the same frequency as the point with minimum
phase in the measurement.
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